1887

Chapter 5 : Signal Transduction Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Signal Transduction Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap05-2.gif

Abstract:

Most filamentous fungi are exquisitely sensitive to changes in their environment. Sensing and integration of signals from multiple sources require a complex web of signal transduction pathways. This chapter covers major signal transduction pathways that have been characterized in multiple species of filamentous fungi. The signaling pathways included are monomeric and heterotrimeric GTP-binding proteins, mitogen-activated protein kinases (MAPKs), protein kinase A/cyclic AMP (PKA/cAMP) signaling, two-component regulatory systems, calcium signaling, target of rapamycin (Tor) pathways and pH regulatory mechanisms. With the exception of two-component systems, related pathways are found in animals, where they also play fundamental roles. In general, the elements of these systems are found in all fungal species that have been sequenced; however, the number of genes representing each signaling protein class often varies. In spite of this conservation, several interesting variations in how pathway components are arranged or regulated have also emerged. Furthermore, accumulating evidence indicates that multiple pathways often cooperate to regulate the same function in the same species, resulting in more complex signal transduction networks. The response regulators from two-component regulatory systems have also been shown to regulate Hog1p-like cascades in filamentous fungi. Two-component regulatory systems are major signal transduction pathways in filamentous fungi.

Citation: Park G, Jones C, Borkovich K. 2010. Signal Transduction Pathways, p 50-59. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch5

Key Concept Ranking

Amino Acid Synthesis
0.42506212
Fungal Pathogenesis
0.4074907
0.42506212
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Overview of signal transduction pathways in filamentous fungi. Environmental signals are sensed by GPCRs or other unknown proteins, leading to regulation of downstream pathways. Activation of heterotrimeric and small G proteins can result in modulation of cAMP levels and MAPK pathways. In response to environmental signals, free Ca transported into the cytoplasm from the external environment or from intracellular Ca stores binds to the Ca sensor calmodulin and other regulatory proteins. The Ca+-calmodulin complex regulates downstream targets, including the serine-threonine protein phosphatase calcineurin. Abbreviations: Gα, Gα subunit; Gβ, Gβ subunit; Gγ, Gγ subunit; g, small G proteins; PAK, p21-activated kinase; PKC, protein kinase C; AC, adenylyl cyclase; PKA-R, protein kinase A regulatory subunit; PKA-C, protein kinase A catalytic subunit; CaM, calmodulin.

Citation: Park G, Jones C, Borkovich K. 2010. Signal Transduction Pathways, p 50-59. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Two-component regulatory systems. (A) Two-component signaling pathway. In simple two-component signaling pathways the two components are an HK and an RR protein. The sensor domain(s) located at the N terminus of the HK protein senses environmental signals. In response to such a signal, a histidine residue (H) in the HK domain autophosphorylates, using ATP. The same phosphate (P) is then transferred to an aspartate residue (D) on the RR protein. The phosphorylation status of the RR determines how it regulates downstream pathways, such as MAPK cascades. Alternatively, the RR may act directly as a transcription factor. (B) Multicomponent phosphorelays. Multicomponent phosphorelays contain HHKs, possessing both an HK and an RR domain within the same protein. The sensor domain(s) of the HHK located at the N terminus senses an environmental signal(s) to regulate autophosphorylation of the HHK on a histidine residue in the HK domain. The phosphate is then transferred intramolecularly from the HK domain to an aspartate residue in the RR domain of the same HHK protein. The phosphorelay continues with transfer of the phosphate from the RR of the HHK to a histidine residue on an HPT. This same phosphate is then passed onto an aspartate residue on a terminal RR protein.

Citation: Park G, Jones C, Borkovich K. 2010. Signal Transduction Pathways, p 50-59. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch05
1. Aravind, L., and, C. P. Ponting. 1997. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22:458459.
2. Bahn, Y. S.,, K. Kojima,, G. M. Cox, and, J. Heitman. 2005. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol. Biol. Cell 16:22852300.
3. Bahn, Y. S.,, K. Kojima,, G. M. Cox, and, J. Heitman. 2006. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol. Biol. Cell 17:31223135.
4. Banno, S.,, R. Noguchi,, K. Yamashita,, F. Fukumori,, M. Kimura,, I. Yamaguchi, and, M. Fujimura. 2007. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr. Genet. 51:197208.
5. Beck, T., and, M. N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689692.
6. Bencina, M.,, T. Bagar,, L. Lah, and, N. Krasevec. 2009. A comparative genomic analysis of calcium and proton signaling/homeostasis in Aspergillus species. Fungal Genet. Biol. 46:S93S104.
7. Bencina, M.,, M. Legisa, and, N. D. Read. 2005. Cross-talk between cAMP and calcium signalling in Aspergillus niger. Mol. Microbiol. 56:268281.
8. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky, et al. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
9. Brown, J. L.,, H. Bussey, and, R. C. Stewart. 1994. Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J. 13:51865194.
10. Brunner, K.,, M. Omann,, M. E. Pucher,, M. Delic,, S. M. Lehner,, P. Domnanich,, K. Kratochwill,, I. Druzhinina,, D. Denk, and, S. Zeilinger. 2008. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Curr. Genet. 54:283299.
11. Caracuel, Z.,, M. I. Roncero,, E. A. Espeso,, C. I. Gonzalez-Verdejo,, F. I. Garcia-Maceira, and, A. Di Pietro. 2003. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol. Microbiol. 48:765779.
12. Catlett, N. L.,, O. C. Yoder, and, B. G. Turgeon. 2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2:11511161.
13. Chauhan, N.,, D. Inglis,, E. Roman,, J. Pla,, D. Li,, J. A. Calera, and, R. Calderone. 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot. Cell 2:10181024.
14. Chen, C. B.,, Y. S. Ha,, J. Y. Min,, S. D. Memmott, and, M. B. Dickman. 2006. Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. Eukaryot. Cell 5:155166.
15. Chen, J. C., and, T. Powers. 2006. Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae. Curr. Genet. 49:281293.
16. Chin, D., and, A. R. Means. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10:322328.
17. Clemons, K. V.,, T. K. Miller,, C. P. Selitrennikoff, and, D. A. Stevens. 2002. Fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med. Mycol. 40:259262.
18. Coenjaerts, F. E.,, A. I. Hoepelman,, J. Scharringa,, M. Aarts,, P. M. Ellerbroek,, L. Bevaart,, J. A. Van Strijp, and, G. Janbon. 2006. The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Res. 6:652661.
19. Cruz, M. C.,, L. M. Cavallo,, J. M. Gorlach,, G. Cox,, J. R. Perfect,, M. E. Cardenas, and, J. Heitman. 1999. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neofor-mans. Mol. Cell. Biol. 19:41014112.
20. Cutler, N. S.,, X. Pan,, J. Heitman, and, M. E. Cardenas. 2001. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol. Biol. Cell12:41034113.
21. Dementhon, K.,, M. Paoletti,, B. Pinan-Lucarre,, N. Loubradou-Bourges,, M. Sabourin,, S. J. Saupe, and, C. Clave. 2003. Rapamycin mimics the incompatibility reaction in the fungus Podospora anserina. Eukaryot. Cell 2:238246.
22. Dixon, K. P.,, J. R. Xu,, N. Smirnoff, and, N. J. Talbot. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:20452058.
23. Dongo, A.,, N. Bataille-Simoneau,, C. Campion,, T. Guillemette,, B. Hamon,, B. Iacomi-Vasilescu,, L. Katz, and, P. Simoneau. 2009. The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Appl. Environ. Microbiol. 75:127134.
24. Du, C.,, R. Calderone,, J. Richert, and, D. Li. 2005. Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect. Immun. 73:865871.
25. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell, et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
26. Goswami, R. S.,, J. R. Xu,, F. Trail,, K. Hilburn, and, H. C. Kistler. 2006. Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Microbiology 152:18771890.
27. Hulko, M.,, F. Berndt,, M. Gruber,, J. U. Linder,, V. Truffault,, A. Schultz,, J. Martin,, J. E. Schultz,, A. N. Lupas, and, M. Coles. 2006. The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126:929940.
28. Ito, S.,, Y. Matsui,, A. Toh-e,, T. Harashima, and, H. Inoue. 1997. Isolation and characterization of the krev-1 gene, a novel member of ras superfamily in Neurospora crassa: involvement in sexual cycle progression. Mol. Gen. Genet. 255:429437.
29. Jaffe, A. B., and, A. Hall. 2005. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21:247269.
30. Jones, C. A.,, S. E. Greer-Phillips, and, K. A. Borkovich. 2007. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol. Biol. Cell 18:21232136.
31. Kaffarnik, F.,, P. Muller,, M. Leibundgut,, R. Kahmann, and, M. Feldbrugge. 2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J. 22:58175826.
32. Kanetis, L.,, H. Forster,, C. A. Jones,, K. A. Borkovich, and, J. E. Adaskaveg. 2008. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Phytopathology 98:205214.
33. Kasahara, S.,, P. Wang, and, D. L. Nuss. 2000. Identification of bdm-1, a gene involved in G protein β-subunit function and α-subunit accumulation. Proc. Natl. Acad. Sci. USA 97:412417.
34. Kays, A. M., and, K. A. Borkovich. 2004. Severe impairment of growth and differentiation in a Neurospora crassa mutant lacking all heterotrimeric Gα proteins. Genetics 166:12291240.
35. Klosterman, S. J.,, A. D. Martinez-Espinoza,, D. L. Andrews,, J. R. Seay, and, S. E. Gold. 2008. Ubc2, an ortholog of the yeast Ste50p adaptor, possesses a basidiomycete-specific carboxy terminal extension essential for pathogenicity independent of pheromone response. Mol. Plant-Microbe Interact. 21:110121.
36. Kojima, K.,, T. Kikuchi,, Y. Takano,, E. Oshiro, and, T. Okuno. 2002. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol. Plant-Microbe Interact. 15:12681276.
37. Kozubowski, L.,, S. C. Le, and, J. Heitman. 2009. Signalling pathways in the pathogenesis of Cryptococcus. Cell. Micro-biol. 11:370380.
38. Kraus, P. R., and, J. Heitman. 2003. Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem. Biophys. Res. Commun. 311:11511157.
39. Krystofova, S., and, K. A. Borkovich. 2005. The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa. Eukaryot. Cell 4:365378.
40. Krystofova, S., and, K. A. Borkovich. 2006. The predicted G-protein-coupled receptor GPR-1 is required for female sexual development in the multicellular fungus Neurospora crassa. Eukaryot. Cell 5:15031516.
41. Kulkarni, R.,, M. Thon,, H. Pan, and, R. Dean. 2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6:R24.
42. Lee, N.,, C. A. D’Souza, and, J. W. Kronstad. 2003. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu. Rev. Phytopathol. 41:399427.
43. Lee, N., and, J. W. Kronstad. 2002. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell 1:954966.
44. Lee, S. C., and, Y. H. Lee. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8:698704.
45. Li, L., and, K. A. Borkovich. 2006. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot. Cell 5:12871300.
46. Li, L.,, S. J. Wright,, S. Krystofova,, G. Park, and, K. A. Borkovich. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423452.
47. Liu, H.,, A. Suresh,, F. S. Willard,, D. P. Siderovski,, S. Lu, and, N. I. Naqvi. 2007. Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26:690700.
48. Maeda, T.,, S. M. Wurgler-Murphy, and, H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242245.
49. Martinez-Rocha, A. L.,, M. I. G. Roncero,, A. Lopez-Ramirez,, M. Marine,, J. Guarro,, G. Martinez-Cadena, and, A. Di Pietro. 2008. Rho1 has distinct functions in morpho-genesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cell. Microbiol. 10:13391351.
50. Mehrabi, R.,, S. Ding, and, J. R. Xu. 2008. MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot. Cell 7:791799.
51. Momany, M. 2005. Growth control and polarization. Med. Mycol. 43(Suppl. 1):S23S25.
52. Morgan, B. A.,, G. R. Banks,, W. M. Toone,, D. Raitt,, S. Kuge, and, L. H. Johnston. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16:10351044.
53. Motoyama, T.,, T. Ohira,, K. Kadokura,, A. Ichiishi,, M. Fujimura,, I. Yamaguchi, and, T. Kudo. 2005. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr. Genet. 47:298306.
54. Muller, F.,, D. Kruger,, E. Sattlegger,, B. Hoffmann,, P. Ballario,, M. Kanaan, and, I. B. Barthelmess. 1995. The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility. Mol. Gen. Genet. 248:162173.
55. Muller, P.,, J. D. Katzenberger,, G. Loubradou, and, R. Kahmann. 2003. Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot. Cell 2:609617.
56. Muthuvijayan, V., and, M. R. Marten. 2004. In silico reconstruction of nutrient-sensing signal transduction pathways in Aspergillus nidulans. In Silico Biol. 4:605631.
57. Nichols, C. B.,, Z. H. Perfect, and, J. A. Alspaugh. 2007. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neofor-mans. Mol. Microbiol. 63:11181130.
58. Ochiai, N.,, M. Fujimura,, T. Motoyama,, A. Ichiishi,, R. Usami,, K. Horikoshi, and, I. Yamaguchi. 2001. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag. Sci. 57:437442.
59. Palmer, D. A.,, J. K. Thompson,, L. Li,, A. Prat, and, P. Wang. 2006. Gib2, a novel Gβ-like/RACK1 homolog, functions as a Gβ subunit in cAMP signaling and is essential in Cryptococcus neoformans. J. Biol. Chem. 281:3259632605.
60. Park, G.,, S. Pan, and, K. A. Borkovich. 2008. Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa. Eukaryot. Cell 7:21132122.
61. Park, G.,, C. Xue,, X. Zhao,, Y. Kim,, M. Orbach, and, J. R. Xu. 2006. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:28222835.
62. Penalva, M. A.,, J. Tilburn,, E. Bignell, and, H. N. Arst, Jr. 2008. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 16:291300.
63. Pinan-Lucarre, B.,, I. Iraqui, and, C. Clave. 2006. Podospora anserina target of rapamycin. Curr. Genet. 50:2331.
64. Pommer, E., and, G. Lorenz. 1995. Dicarboximide fungicides. In H. Lyr (ed.), Modern Selective Fungicides-Properties, Applications, Mechanisms of Action. Gustav Fischer Verlag, New York, NY.
65. Posas, F.,, S. M. Wurgler-Murphy,, T. Maeda,, E. A. Witten,, T. C. Thai, and, H. Saito. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865875.
66. Rasmussen, C. G., and, N. L. Glass. 2005. A rho-type GTPase, rho-4, is required for septation in Neurospora crassa. Eukaryot. Cell 4:19131925.
67. Rohde, J. R.,, R. Bastidas,, R. Puria, and, M. E. Cardenas. 2008. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr. Opin. Microbiol. 11:153160.
68. Rollins, J. A. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant-Microbe Interact. 16:785795.
69. Rossman, K. L.,, C. J. Der, and, J. Sondek. 2005. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell. Biol. 6:167180.
70. Rui, O., and, M. Hahn. 2007. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol. Plant Pathol. 8:173184.
71. Schink, K. O., and, M. Bolker. 2008. Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific GEF in Ustilago maydis. Mol. Biol. Cell 20:10811088.
72. Segers, G. C.,, J. C. Regier, and, D. L. Nuss. 2004. Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Gα subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 3:14541463.
73. Segmuller, N.,, U. Ellendorf,, B. Tudzynski, and, P. Tudzynski. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6:211221.
74. Selitrennikoff, C. P.,, L. Alex,, T. K. Miller,, K. V. Clemons,, M. I. Simon, and, D. A. Stevens. 2001. COS-l, a putative two-component histidine kinase of Candida albicans, is an in vivo virulence factor. Med. Mycol. 39:6974.
75. Seo, J. A., and, J. H. Yu. 2006. The phosducin-like protein PhnA is required for Gβγ-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans. Eukaryot. Cell 5:400410.
76. Shimizu, K.,, J. K. Hicks,, T. P. Huang, and, N. P. Keller. 2003. Pka, Ras and RGS protein interactions regulate activity of aflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics 165:10951104.
77. Silverman-Gavrila, L. B., and, R. R. Lew. 2002. An IP3-activated Ca2+ channel regulates fungal tip growth. J. Cell Sci. 115:50135025.
78. Singh, P.,, N. Chauhan,, A. Ghosh,, F. Dixon, and, R. Calderone. 2004. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72:23902394.
79. Som, T., and, V. S. Kolaparthi. 1994. Developmental decisions in Aspergillus nidulans are modulated by Ras activity. Mol. Cell. Biol. 14:53335348.
80. Steinbach, W. J.,, R. A. Cramer, Jr.,, B. Z Perfect,, Y. G. Asfaw,, T. C. Sauer,, L. K. Najvar,, W. R. Kirkpatrick,, T. F. Patterson,, D. K. Benjamin, Jr.,, J. Heitman, and, J. R. Perfect. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5:10911103.
81. Sudbery, P. E. 2008. Regulation of polarised growth in fungi. Fungal Biol. Rev. 22:4455.
82. Taylor, B. L., and, I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479506.
83. Teichert, S.,, M. Wottawa,, B. Schonig, and, B. Tudzynski. 2006. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot. Cell 5:18071819.
84. Thomas, G., and, M. N. Hall. 1997. TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9:782787.
85. Torosantucci, A.,, P. Chiani,, F. De Bernardis,, A. Cassone,, J. A. Calera, and, R. Calderone. 2002. Deletion of the two-component histidine kinase gene (CHK1) of Candida albi-cans contributes to enhanced growth inhibition and killing by human neutrophils in vitro. Infect. Immun. 70:985987.
86. Vallim, M. A.,, C. B. Nichols,, L. Fernandes,, K. L. Cramer, and, J. A. Alspaugh. 2005. A Rac homolog functions downstream of Ras1 to control hyphal differentiation and high-temperature growth in the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell 4:10661078.
87. Viaud, M.,, S. Fillinger,, W. Liu,, J. S. Polepalli,, P. Le Pecheur,, A. R. Kunduru,, P. Leroux, and, L. Legendre. 2006. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol. Plant-Microbe Interact. 19:10421050.
88. Vogt, N., and, S. Seiler. 2008. The RHO1-specific GTPase-activating protein LRG1 regulates polar tip growth in parallel to Ndr kinase signaling in Neurospora. Mol. Biol. Cell 19:45544569.
89. Wang, P.,, J. R. Perfect, and, J. Heitman. 2000. The G-protein β subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol. Cell. Biol. 20:352362.
90. Warwar, V.,, S. Oved, and, M. B. Dickman. 2000. Antisense expression of the calmodulin gene from Colletotrichum trifolii impairs prepenetration development. FEMS Microbiol. Lett. 191:213219.
91. Weeks, G., and, G. B. Spiegelman. 2003. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell. Signal. 15:901909.
92. Wendland, J., and, P. Philippsen. 2000. Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. J. Cell Sci. 113:16111621.
93. Wendland, J., and, P. Philippsen. 2001. Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157:601610.
94. Wolanin, P. M.,, P. A. Thomason, and, J. B. Stock. 2002. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 3:REVIEWS3013.
95. Wormley, F. L., Jr.,, G. Heinrich,, J. L. Miller,, J. R. Perfect, and, G. M. Cox. 2005. Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect. Immun. 73:50225030.
96. Xue, C.,, Y. S. Bahn,, G. M. Cox, and, J. Heitman. 2006. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neofor-mans. Mol. Biol. Cell 17:667679.
97. Xue, C.,, Y. P. Hsueh, and, J. Heitman. 2008. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol. Rev. 32:10101032.
98. Yamada-Okabe, T.,, T. Mio,, N. Ono,, Y. Kashima,, M. Matsui,, M. Arisawa, and, H. Yamada-Okabe. 1999. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J. Bacteriol. 181:72437247.
99. Yang, Q.,, S. I. Poole, and, K. A. Borkovich. 2002. A G-protein β subunit required for sexual and vegetative development and maintenance of normal Gα protein levels in Neurospora crassa. Eukaryot. Cell 1:378390.
100. Yoshimi, A.,, K. Kojima,, Y. Takano, and, C. Tanaka. 2005. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot. Cell 4:18201828.
101. You, B. J.,, M. Choquer, and, K. R. Chung. 2007. The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. Mol. Plant-Microbe Interact. 20:11491160.
102. Yu, J. H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44:145154.
103. Zelter, A.,, M. Bencina,, B. J. Bowman,, O. Yarden, and, N. D. Read. 2004. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet. Biol. 41:827841.
104. Zhang, Y.,, R. Lamm,, C. Pillonel,, S. Lam, and, J.-R. Xu. 2002. Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl. Environ. Microbiol. 68:532538.
105. Zhao, X.,, R. Mehrabi, and, J. R. Xu. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6:17011714.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error