1887

Chapter 6 : Mitotic Cell Cycle Control

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mitotic Cell Cycle Control, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap06-2.gif

Abstract:

This chapter focuses on the current understanding of how control of the mitotic phase of the cell cycle is achieved in filamentous fungi. Survival of filamentous fungi requires exploration by rapid polarized growth to find nutritional requirements, as well as the production of large numbers of asexual and/or sexual spores that can lie dormant until suitable conditions trigger germination. In fungi, the mitotic microtubule organizing center is the spindle pole body, while in mammalian cells the centrosomes perform this function. As suggested by the fact that filamentous fungi often maintain many nuclei in a common cytoplasm, cytokinesis does not accompany every nuclear division. The process of cytokinesis during filamentous growth is generally achieved by the formation of a cross wall called a septum at a specific point in hyphae. The chapter talks about the biochemical activities that regulate mitotic entry, which are conserved in different filamentous fungi. It discusses some of the genes identified in the extragenic suppressor screens and highlights one particular extragenic suppressor screen. This screen, performed by Berl Oakley’s lab, was for extragenic suppressors of the β-tubulin mutant and led to the discovery of , which encoded a new type of tubulin now known by its universal name, γ-tubulin. The chapter also discusses in detail how NIMA regulates changes in mitotic nuclear transport. Filamentous fungi provide rich and varied experimental opportunities to further our understanding of mitosis and its regulation. Until relatively recently, has been the workhorse of the filamentous fungi for studies of mitosis.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6

Key Concept Ranking

Spindle Pole Bodies
0.5009036
Microtubule Organizing Centers
0.48822695
Mitotic Phases
0.41157004
0.5009036
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic showing mammalian open mitosis and fungal closed mitosis. The NE breaks down during open mitosis so that microtubules nucleated from the cytoplasmic centrosomes can attach to kinetochores. During closed mitosis the spindle pole bodies are in the NE and nucleate spindle microtubules that attach to kinetochores within nuclei.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Regulation of Cdk1/cyclin B by tyrosine dephosphorylation. Cdk1/cyclin B activation requires dephosphorylation carried out by the Cdc25 phosphatase.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mitotic entry requires both Cdk1/cyclin B and NIMA kinase activities in . Active Cdk1/cyclin B cannot enter the nucleus without NIMA activity. NIMA needs Cdk1/cyclin B-dependent phosphorylations to become fully active. Activation of both Cdk1/cyclin B and NIMA allows them to enter the nucleus and phosphorylate their nuclear substrates, thereby triggering mitosis.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The APC regulates mitotic exit by triggering sister chromatid segregation. Cdc20 binds to and activates the APC. This allows the APC to ubiquitinate securin, targeting it for degradation by the proteasome. Securin degradation relieves inhibition of separase, which then degrades the Scc1 component of the securin ring complex. Spindle defects activate the SAC, which prevents Cdc20 binding to APC.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic of interphase and mitotic nuclei. NPCs are embedded within the NE. During interphase, Nups occupy the central channel of NPCs, restricting diffusion. In mitosis, the NPCs partially disassemble such that the central channel is now open and the NE is permeable. This facilitates nuclear entry of tubulin, allowing spindle formation from the spindle pole bodies.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Septation is not always linked to nuclear division in . (A) A germling containing eight nuclei, which underwent its first asymmetric septation following the third mitosis. (B) Diagram of a conidiophore that has formed by growth of a multinucleate cell containing a stalk and vesicle. This cell originally formed by growth of a specialized aerial hypha termed the vesicle from the foot cell, in which multiple nuclear divisions occur without septation. Cytokinesis is linked to nuclear division during the formation of metulae and phialides as well as when uninucleate conidiospores form by budding from the phialide. Cytokinesis occurs through septation in hyphae, but by budding to form metulae, phialides and conidia.

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Schematic showing how development of a clamp and specialized septa help maintain the dikaryotic state of basidiomycete hyphae (adapted from ).

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch06
1. Adams, T. H.,, M. T. Boylan, and, W. E. Timberlake. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353362.
2. Adams, T. H.,, J. K. Wieser, and, J. H. Yu. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:3554.
3. Aist, J. R., and, N. R. Morris. 1999. Mitosis in filamentous fungi: how we got where we are. Fungal Genet. Biol. 27:125.
4. al-Khodairy, F., and, A. M. Carr. 1992. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 11:13431350.
5. al-Khodairy, F.,, E. Fotou,, K. S. Sheldrick,, D. J. Griffiths,, A. R. Lehmann, and, A. M. Carr. 1994. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol. Biol. Cell 5:147160.
6. Amon, A.,, U. Surana,, I. Muroff, and, K. Nasmyth. 1992. Regulation of p34cdc28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 355:368371.
7. Bachewich, C.,, K. Masker, and, S. Osmani. 2005. The polo-like kinase PLKA is required for initiation and progression through mitosis in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 55:572587.
8. Bayram, O.,, S. Krappmann,, M. Ni,, J. W. Bok,, K. Helmstaedt,, O. Valerius,, S. Braus-Stromeyer,, N. J. Kwon,, N. P. Keller,, J. H. Yu, and, G. H. Braus. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:15041506.
9. Bergen, L. G., and, N. R. Morris. 1983. Kinetics of the nuclear division cycle of Aspergillus nidulans. J. Bacteriol. 156:155160.
10. Bergen, L. G.,, A. Upshall, and, N. R. Morris. 1984. S-phase, G2, and nuclear division mutants of Aspergillus nidulans. J. Bacteriol. 159:114119.
11. Berman, J. 2006. Morphogenesis and cell cycle progression in Candida albicans. Curr. Opin. Microbiol. 9:595601.
12. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
13. Bourett, T. M.,, J. A. Sweigard,, K. J. Czymmek,, A. Carroll, and, R. J. Howard. 2002. Reef coral fluorescent proteins for visualizing fungal pathogens. Fungal Genet. Biol. 37:211220.
14. Bruno, K. S.,, J. L. Morrell,, J. E. Hamer, and, C. J. Staiger. 2001. SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Mol. Microbiol. 42:312.
15. Bruschi, G. C.,, C. C. de Souza,, M. R. Fagundes,, M. A. Dani,, M. H. Goldman,, N. R. Morris,, L. Liu, and, G. H. Goldman. 2001. Sensitivity to camptothecin in Aspergillus nidulans identifies a novel gene, scaA+, related to the cellular DNA damage response. Mol. Genet. Genomics 265:264275.
16. Bussink, H. J., and, S. A. Osmani. 1998. A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO J. 17:39904003.
17. Canovas, D., and, A. Andrianopoulos. 2007. Penicillium marneffei, a unique thermally dimorphic fungal pathogen, p. 213–225. In K. Kavanagh (ed.), New Insights in Medical Mycology, 1st ed. Springer-Verlag, Berlin, Germany.
18. Castillo-Lluva, S.,, I. Alvarez-Tabares,, I. Weber,, G. Steinberg, and, J. Perez-Martin. 2007. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/ Pho85 family. J. Cell Sci. 120:15841595.
19. Chen, Y., and, R. Y. Poon. 2008. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front. Biosci. 13:50165029.
20. Chen, Y.,, D. J. Riley,, L. Zheng,, P. L. Chen, and, W. H. Lee. 2002. Phosphorylation of the mitotic regulator protein hec1 by nek2 kinase is essential for faithful chromosome segregation. J. Biol. Chem. 277:4940849416.
21. Clemente-Blanco, A.,, A. Gonzalez-Novo,, F. Machin,, D. Caballero-Lima,, L. Aragon,, M. Sanchez,, C. R. de Aldana,, J. Jimenez, and, J. Correa-Bordes. 2006. The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. J. Cell Sci. 119:11301143.
22. Clutterbuck, A. J. 1970. Synchronous nuclear division and septation in Aspergillus nidulans. J. Gen. Microbiol. 60:133135.
23. Cohen-Fix, O., and, D. Koshland. 1997. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc. Natl. Acad. Sci. USA 94:1436114366.
24. Colot, H. V.,, G. Park,, G. E. Turner,, C. Ringelberg,, C. M. Crew,, L. Litvinkova,, R. L. Weiss,, K. A. Borkovich, and, J. C. Dunlap. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103:1035210357.
25. Cortez, D.,, S. Guntuku,, J. Qin, and, S. J. Elledge. 2001. ATR and ATRIP: partners in checkpoint signaling. Science 294:17131716.
26. Czymmek, K. J.,, T. M. Bourett,, Y. Shao,, T. M. DeZwaan,, J. A. Sweigard, and, R. J. Howard. 2005. Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea treated with anti-microtubule and anti-microfilament agents. Proto-plasma 225:2332.
27. D’Amours, D., and, S. P. Jackson. 2002. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3:317327.
28. Davies, J. R.,, A. H. Osmani,, C. P. De Souza,, C. Bachewich, and, S. A. Osmani. 2004. Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans. Eukaryot. Cell 3:14331444.
29. Dean, R. A.,, N. J. Talbot,, D. J. Ebbole,, M. L. Farman,, T. K. Mitchell,, M. J. Orbach,, M. Thon,, R. Kulkarni,, J. R. Xu,, H. Pan,, N. D. Read,, Y. H. Lee,, I. Carbone,, D. Brown,, Y. Y. Oh,, N. Donofrio,, J. S. Jeong,, D. M. Soanes,, S. Djonovic,, E. Kolomiets,, C. Rehmeyer,, W. Li,, M. Harding,, S. Kim,, M. H. Lebrun,, H. Bohnert,, S. Coughlan,, J. Butler,, S. Calvo,, L. J. Ma,, R. Nicol,, S. Purcell,, C. Nusbaum,, J. E. Galagan, and, B. W. Birren. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980986.
30. De Souza, C. P.,, S. B. Hashmi,, K. P. Horn, and, S. A. Osmani. 2006. A point mutation in the Aspergillus nidulans sonB Nup98 nuclear pore complex gene causes conditional DNA damage sensitivity. Genetics 174:18811893.
31. De Souza, C. P.,, K. P. Horn,, K. Masker, and, S. A. Osmani. 2003. The SONBNUP98 nucleoporin interacts with the NIMA kinase in Aspergillus nidulans. Genetics 165:10711081.
32. De Souza, C. P.,, A. H. Osmani,, S. B. Hashmi, and, S. A. Osmani. 2004. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr. Biol. 14:19731984.
33. De Souza, C. P.,, A. H. Osmani,, L. P. Wu,, J. L. Spotts, and, S. A. Osmani. 2000. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102:293302.
34. De Souza, C. P., and, S. A. Osmani. 2007. Mitosis, not just open or closed. Eukaryot. Cell 6:15211527.
35. De Souza, C. P.,, X. Ye, and, S. A. Osmani. 1999. Checkpoint defects leading to premature mitosis also cause endoreplication of DNA in Aspergillus nidulans. Mol. Biol. Cell 10:36613674.
36. Dietrich, F. S.,, S. Voegeli,, S. Brachat,, A. Lerch,, K. Gates,, S. Steiner,, C. Mohr,, R. Pohlmann,, P. Luedi,, S. Choi,, R. A. Wing,, A. Flavier,, T. D. Gaffney, and, P. Philippsen. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304307.
37. Doonan, J. H., and, N. R. Morris. 1989. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell 57:987996.
38. Dou, X.,, D. Wu,, W. An,, J. Davies,, S. B. Hashmi,, L. Ukil, and, S. A. Osmani. 2003. The PHOA and PHOB cyclin-dependent kinases perform an essential function in Aspergillus nidulans. Genetics 165:11051115.
39. Efimov, V. P., and, N. R. Morris. 1998. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis. Genetics 149:101116.
40. Engle, D. B.,, S. A. Osmani,, A. H. Osmani,, S. Rosborough,, X. Xiang, and, N. R. Morris. 1990. A negative regulator of mitosis in Aspergillus is a putative membrane-spanning protein. J. Biol. Chem. 265:1613216137.
41. Fiddy, C., and, A. P. Trinci. 1976. Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J. Gen. Microbiol. 97:169184.
42. Fischer, R.,, N. Takeshita, and, J. H. Doonan. 2008. Cytoskeleton, polarized growth, and the cell cycle in Aspergillus nidulans, p. 223–260. In G. H. Goldman and, S. A. Osmani (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods, 1st ed. CRC Press, Boca Raton, FL.
43. Flor-Parra, I.,, S. Castillo-Lluva, and, J. Perez-Martin. 2007. Polar growth in the infectious hyphae of the phytopathogen Ustilago maydis depends on a virulence-specific cyclin. Plant Cell 19:32803296.
44. Fox, H.,, P. C. Hickey,, J. M. Fernandez-Abalos,, P. Lunness,, N. D. Read, and, J. H. Doonan. 2002. Dynamic distribution of BIMGPP1 in living hyphae of Aspergillus indicates a novel role in septum formation. Mol. Microbiol. 45:12191230.
45. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. P. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
46. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. d’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
47. Garcia-Muse, T.,, G. Steinberg, and, J. Perez-Martin. 2003. Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot. Cell 2:494500.
48. Garcia-Muse, T.,, G. Steinberg, and, J. Perez-Martin. 2004. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. J. Cell Sci. 117:487506.
49. Gladfelter, A. S. 2006. Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Curr. Opin. Microbiol. 9:547552.
50. Gladfelter, A. S.,, A. K. Hungerbuehler, and, P. Philippsen. 2006. Asynchronous nuclear division cycles in multinucleated cells. J. Cell Biol. 172:347362.
51. Gladfelter, A. S.,, N. Sustreanu,, A. K. Hungerbuehler,, S. Voegeli,, V. Galati, and, P. Philippsen. 2007. The anaphase-promoting complex/cyclosome is required for anaphase progression in multinucleated Ashbya gossypii cells. Eukaryot. Cell 6:182197.
52. Goldman, G. H., and, E. Kafer. 2004. Aspergillus nidulans as a model system to characterize the DNA damage response in eukaryotes. Fungal Genet. Biol. 41:428442.
53. Goldman, G. H.,, S. L. McGuire, and, S. D. Harris. 2002. The DNA damage response in filamentous fungi. Fungal Genet. Biol. 35:183195.
54. Gould, K. L., and, V. Simanis. 1997. The control of septum formation in fission yeast. Genes Dev. 11:29392951.
55. Gow, N. A.,, A. J. Brown, and, F. C. Odds. 2002. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5:366371.
56. Grallert, A., and, I. M. Hagan. 2002. Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB. EMBO J. 21:30963107.
57. Grallert, A.,, A. Krapp,, S. Bagley,, V. Simanis, and, I. M. Hagan. 2004. Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. Genes Dev. 18:10071021.
58. Gruber, S.,, C. H. Haering, and, K. Nasmyth. 2003. Chromosomal cohesin forms a ring. Cell 112:765777.
59. Harris, S. D. 2006. Mitosis in filamentous fungi, p. 37–51. In U. Kues and, R. Fischer (ed.), Growth, Differentiation and Sexuality. Springer, Berlin, Germany.
60. Harris, S. D. 1997. The duplication cycle in Aspergillus nidulans. Fungal Genet. Biol. 22:112.
61. Harris, S. D. 2001. Septum formation in Aspergillus nidulans. Curr. Opin. Microbiol. 4:736739.
62. Harris, S. D. 2008. Hyphal morphogenesis in Aspergillus nidulans, p. 211–222. In G. H. Goldman and, S. A. Osmani (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods, 1st ed. CRC Press, Boca Raton, FL.
63. Harris, S. D., and, P. R. Kraus. 1998. Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics 148:10551067.
64. Harris, S. D.,, J. L. Morrell, and, J. E. Hamer. 1994. Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136:517532.
65. Heath, I. B. 1980. Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Int. Rev. Cytol. 64:180.
66. Helfer, H., and, A. S. Gladfelter. 2006. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol. Biol. Cell 17:44944512.
67. Hofmann, A. F., and, S. D. Harris. 2000. The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response. Genetics 154:15771586.
68. Holt, C. L., and, G. S. May. 1996. An extragenic suppressor of the mitosis-defective bimD6 mutation of Aspergillus nidulans codes for a chromosome scaffold protein. Genetics 142:777787.
69. Horio, T., and, B. R. Oakley. 2005. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell 16:918926.
70. Iwasa, M.,, S. Tanabe, and, T. Kamada. 1998. The two nuclei in the dikaryon of the homobasidiomycete Coprinus cinereus change position after each conjugate division. Fungal Genet. Biol. 23:110116.
71. James, S. W.,, P. M. Mirabito,, P. C. Scacheri, and, N. R. Morris. 1995. The Aspergillus nidulans bimE (blocked-inmitosis) gene encodes multiple cell cycle functions involved in mitotic checkpoint control and mitosis. J. Cell Sci. 108:34853499.
72. Jin, P.,, Y. Gu, and, D. O. Morgan. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134:963970.
73. Job, D.,, O. Valiron, and, B. Oakley. 2003. Microtubule nucleation. Curr. Opin. Cell Biol. 15:111117.
74. Jung, M. K.,, N. Prigozhina,, C. E. Oakley,, E. Nogales, and, B. R. Oakley. 2001. Alanine-scanning mutagenesis of Aspergillus g-tubulin yields diverse and novel phenotypes. Mol. Biol. Cell 12:21192136.
75. Kamper, J.,, R. Kahmann,, M. Bolker,, L. J. Ma,, T. Brefort,, B. J. Saville,, F. Banuett,, J. W. Kronstad,, S. E. Gold,, O. Muller,, M. H. Perlin,, H. A. Wosten,, R. de Vries,, J. RuizHerrera,, C. G. Reynaga-Pena,, K. Snetselaar,, M. McCann,, J. Perez-Martin,, M. Feldbrugge,, C. W. Basse,, G. Steinberg,, J. I. Ibeas,, W. Holloman,, P. Guzman,, M. Farman,, J. E. Stajich,, R. Sentandreu,, J. M. Gonzalez-Prieto,, J. C. Kennell,, L. Molina,, J. Schirawski,, A. Mendoza-Mendoza,, D. Greilinger,, K. Munch,, N. Rossel,, M. Scherer,, M. Vranes,, O. Ladendorf,, V. Vincon,, U. Fuchs,, B. Sandrock,, S. Meng,, E. C. Ho,, M. J. Cahill,, K. J. Boyce,, J. Klose,, S. J. Klosterman,, H. J. Deelstra,, L. Ortiz-Castellanos,, W. Li,, P. Sanchez-Alonso,, P. H. Schreier,, I. Hauser-Hahn,, M. Vaupel,, E. Koopmann,, G. Friedrich,, H. Voss,, T. Schluter,, J. Margolis,, D. Platt,, C. Swimmer,, A. Gnirke,, F. Chen,, V. Vysotskaia,, G. Mannhaupt,, U. Guldener,, M. Munsterkotter,, D. Haase,, M. Oesterheld,, H. W. Mewes,, E. W. Mauceli,, D. DeCaprio,, C. M. Wade,, J. Butler,, S. Young,, D. B. Jaffe,, S. Calvo,, C. Nusbaum,, J. Galagan, and, B. W. Birren. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97101.
76. Kazama, Y.,, C. Ishii,, A. L. Schroeder,, H. Shimada,, M. Wakabayashi, and, H. Inoue. 2008. The Neurospora crassa UVS-3 epistasis group encodes homologues of the ATR/ ATRIP checkpoint control system. DNA Repair (Amsterdam) 7:213229.
77. Kim, J. M.,, L. Lu,, R. Shao,, J. Chin, and, B. Liu. 2006. Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics 173:685696.
78. Kraus, P. R., and, S. D. Harris. 2001. The Aspergillus nidulans snt genes are required for the regulation of septum formation and cell cycle checkpoints. Genetics 159:557569.
79. Krien, M. J.,, S. J. Bugg,, M. Palatsides,, G. Asouline,, M. Morimyo, and, M. J. O’Connell. 1998. A NIMA homologue promotes chromatin condensation in fission yeast. J. Cell Sci. 111:967976.
80. Krien, M. J.,, R. R. West,, U. P. John,, K. Koniaras,, J. R. McIntosh, and, M. J. O’Connell. 2002. The fission yeast NIMA kinase Fin1p is required for spindle function and nuclear envelope integrity. EMBO J. 21:17131722.
81. Lavin, M. F. 2007. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26:77497758.
82. Lies, C. C.,, J. Cheng,, S. W. James,, N. R. Morris,, M. J. O’Connell, and, P. M. Mirabito. 1998. BIMAAPC3, a component of the Aspergillus anaphase promoting complex/ cyclosome, is required for a G2 checkpoint blocking entry into mitosis in the absence of NIMA function. J. Cell Sci. 111:14531465.
83. Liu, B., and, N. R. Morris. 2000. A spindle pole body-associated protein, SNAD, affects septation and conidiation in Aspergillus nidulans. Mol. Gen. Genet. 263:375387.
84. Liu, B.,, X. Xiang, and, Y. R. Lee. 2003. The requirement of the LC8 dynein light chain for nuclear migration and septum positioning is temperature dependent in Aspergillus nidulans. Mol. Microbiol. 47:291301.
85. Liu, H. L.,, C. P. De Souza,, A. H. Osmani, and, S. A. Osmani. 2009. The three fungal transmembrane nuclear pore complex proteins of Aspergillus nidulans are dispensable in the presence of an intact An-Nup84-120 complex. Mol. Biol. Cell 20:616630.
86. Lu, K. P., and, T. Hunter. 1995. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81:413424.
87. Lu, K. P., and, A. R. Means. 1994. Expression of the non-catalytic domain of the NIMA kinase causes a G2 arrest in Aspergillus nidulans. EMBO J. 13:21032113.
88. Makhnevych, T.,, C. P. Lusk,, A. M. Anderson,, J. D. Aitchison, and, R. W. Wozniak. 2003. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115:813823.
89. Malavazi, I.,, J. F. Lima,, P. A. de Castro,, M. Savoldi,, M. H. Souza Goldman, and, G. H. Goldman. 2008. Genetic interactions of the Aspergillus nidulans atmA ATM homolog with different components of the DNA damage response pathway. Genetics 178:675691.
90. Malavazi, I.,, J. F. Lima,, M. R. von Zeska Kress Fagundes,, V. P. Efimov,, M. H. de Souza Goldman, and, G. H. Goldman. 2005. The Aspergillus nidulans sldI RAD50 gene interacts with bimE APC1, a homologue of an anaphase-promoting complex. Mol. Microbiol. 57:222237.
91. Malavazi, I.,, C. P. Semighini,, M. R. Kress,, S. D. Harris, and, G. H. Goldman. 2006. Regulation of hyphal morphogenesis and the DNA damage response by the Aspergillus nidulans ATM homolog AtmA. Genetics 173:99109.
92. May, G. S.,, C. A. McGoldrick,, C. L. Holt, and, S. H. Denison. 1992. The bimB3 mutation of Aspergillus nidulans uncouples DNA replication from the completion of mitosis. J. Biol. Chem. 267:1573715743.
93. McGuire, S. L.,, D. L. Roe,, B. W. Carter,, R. L. Carter,, S. P. Grace,, P. L. Hays,, G. A. Lang,, J. L. Mamaril,, A. T. McElvaine,, A. M. Payne,, M. D. Schrader,, S. E. Wahrle, and, C. D. Young. 2000. Extragenic suppressors of the nimX2 cdc2 mutation of Aspergillus nidulans affect nuclear division, septation and conidiation. Genetics 156:15731584.
94. Momany, M., and, I. Taylor. 2000. Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation. Microbiology 146(Pt. 12):32793284.
95. Morris, N. R. 1976a. A temperature-sensitive mutant of Aspergillus nidulans reversible blocked in nuclear division. Exp. Cell Res. 98:204210.
96. Morris, N. R. 1976b. Mitotic mutants of Aspergillus nidulans. Genet. Res. 26:237254.
97. Morrow, D. M.,, D. A. Tagle,, Y. Shiloh,, F. S. Collins, and, P. Hieter. 1995. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82:831840.
98. Murray, A. W.,, M. J. Solomon, and, M. W. Kirschner. 1989. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339:280286.
99. Musacchio, A., and, E. D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8:379393.
100. Nesher, I.,, S. Barhoom, and, A. Sharon. 2008. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biol. 6:9.
101. Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2:2132.
102. Oakley, B. R. 2004. Tubulins in Aspergillus nidulans. Fungal Genet. Biol. 41:420427.
103. Oakley, B. R., and, N. R. Morris. 1983. A mutation in Aspergillus nidulans that blocks the transition from interphase to prophase. J. Cell Biol. 96:11551158.
104. Oakley, C. E., and, B. R. Oakley. 1989. Identification of gtubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662664.
105. O’Connell, M. J.,, A. H. Osmani,, N. R. Morris, and, S. A. Osmani. 1992. An extra copy of nimEcyclinB elevates preMPF levels and partially suppresses mutation of nimTcdc25 in Aspergillus nidulans. EMBO J. 11:21392149.
106. O’Connell, M. J.,, M. J. Krien, and, T. Hunter. 2003. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 13:221228.
107. O’Connell, M. J.,, C. Norbury, and, P. Nurse. 1994. Premature chromatin condensation upon accumulation of NIMA. EMBO J. 13:49264937.
108. O’Donnell, K. L., and, J. T. McLaughlin. 1984. Postmeiotic mitosis, basidiospore development, and septation in Ustilago maydis. Mycologia 76:486502.
109. O’Regan, L.,, J. Blot, and, A. M. Fry. 2007. Mitotic regulation by NIMA-related kinases. Cell Div. 2:25.
110. Orr, E., and, R. F. Rosenberger. 1976a. Determination of the execution points of mutations in the nuclear replication cycle of Aspergillus nidulans. J. Bacteriol. 126:903906.
111. Orr, E., and, R. F. Rosenberger. 1976b. Initial characterization of Aspergillus nidulans mutants blocked in the nuclear replication cycle. J. Bacteriol. 126:895902.
112. Osmani, A. H.,, J. Davies,, H. L. Liu,, A. Nile, and, S. A. Osmani. 2006. Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol. Biol. Cell 17:49464961.
113. Osmani, A. H.,, J. Davies,, C. E. Oakley,, B. R. Oakley, and, S. A. Osmani. 2003. TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol. Biol. Cell 14:31693179.
114. Osmani, A. H.,, S. L. McGuire, and, S. A. Osmani. 1991a. Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67:283291.
115. Osmani, A. H.,, K. O’Donnell,, R. T. Pu, and, S. A. Osmani. 1991b. Activation of the nim A protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint. EMBO J. 10:26692679.
116. Osmani, A. H.,, N. van Peij,, M. Mischke,, M. J. O’Connell, and, S. A. Osmani. 1994. A single p34cdc2 protein kinase (nimXcdc2) is required at G1 and G2 in Aspergillus nidulans. J. Cell Sci. 107:15191528.
117. Osmani, S. A.,, D. B. Engle,, J. H. Doonan, and, N. R. Morris. 1988a. Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 52:241251.
118. Osmani, S. A.,, G. S. May, and, N. R. Morris. 1987. Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J. Cell Biol. 104:14951504.
119. Osmani, S. A., and, P. M. Mirabito. 2004. The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans. Fungal Genet. Biol. 41:401410.
120. Osmani, S. A.,, R. T. Pu, and, N. R. Morris. 1988b. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53:237244.
121. Ovechkina, Y.,, P. Maddox,, C. E. Oakley,, X. Xiang,, S. A. Osmani,, E. D. Salmon, and, B. R. Oakley. 2003. Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol. Biol. Cell 14:21922200.
122. Perez-Martin, J.,, S. Castillo-Lluva,, C. Sgarlata,, I. Flor-Parra,, N. Mielnichuk,, J. Torreblanca, and, N. Carbo. 2006. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol. Genet. Genomics 276:211229.
123. Peters, J.,, R. W. King,, C. Hoog, and, M. W. Kirschner. 1996. Identification of BIME as a subunit of the anaphase-promoting complex. Science 274:11991201.
124. Petronczki, M.,, P. Lenart, and, J. M. Peters. 2008. Polo on the rise—from mitotic entry to cytokinesis with Plk1. Dev. Cell 14:646659.
125. Pitt, C. W.,, E. Moreau,, P. A. Lunness, and, J. H. Doonan. 2004. The pot1+ homologue in Aspergillus nidulans is required for ordering mitotic events. J. Cell Sci. 117:199209.
126. Pontecorvo, G. 1953. The genetics of Aspergillus nidulans, p. 141–238. In M. Demerec (ed.), Advances in Genetics. Academic Press, New York, NY.
127. Pontecorvo, G., and, E. Kafer. 1958. Genetic analysis based on mitotic recombination. Adv. Genet. 9:71104.
128. Potapova, T. A.,, J. R. Daum,, B. D. Pittman,, J. R. Hudson,, T. N. Jones,, D. L. Satinover,, P. T. Stukenberg, and, G. J. Gorbsky. 2006. The reversibility of mitotic exit in vertebrate cells. Nature 440:954958.
129. Pregueiro, A. M.,, Q. Liu,, C. L. Baker,, J. C. Dunlap, and, J. J. Loros. 2006. The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. Science 313:644649.
130. Prigozhina, N. L.,, C. E. Oakley,, A. M. Lewis,, T. Nayak,, S. A. Osmani, and, B. R. Oakley. 2004. gamma-Tubulin plays an essential role in the coordination of mitotic events. Mol. Biol. Cell 15:13741386.
131. Pu, R. T.,, G. Xu,, L. Wu,, J. Vierula,, K. O’Donnell,, X. Ye, and, S. A. Osmani. 1995. Isolation of a functional homolog of the cell cycle specific NIMA protein kinase and functional analysis of conserved residues. J. Biol. Chem. 271:1811018116.
132. Pu, R. T., and, S. A. Osmani. 1995. Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit. EMBO J. 14:9951003.
133. Quarmby, L. M., and, M. R. Mahjoub. 2005. Caught Nek-ing: cilia and centrioles. J. Cell Sci. 118:51615169.
134. Rhind, N.,, B. Furnari, and, P. Russell. 1997. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11:504511.
135. Robinow, C. F., and, C. E. Caten. 1969. Mitosis in Aspergillus nidulans. J. Cell Sci. 5:403431.
136. Rosenberger, R. F., and, M. Kessel. 1967. Synchrony of nuclear replication in individual hyphae of Aspergillus nidulans. J. Bacteriol. 94:14641469.
137. Santamaria, D.,, C. Barriere,, A. Cerqueira,, S. Hunt,, C. Tardy,, K. Newton,, J. F. Caceres,, P. Dubus,, M. Malumbres, and, M. Barbacid. 2007. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:811815.
138. Scherer, M.,, K. Heimel,, V. Starke, and, J. Kamper. 2006. The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:23882401.
139. Schier, N., and, R. Fischer. 2002. The Aspergillus nidulans cyclin PclA accumulates in the nucleus and interacts with the central cell cycle regulator NimXCdc2. FEBS Lett. 523:143146.
140. Semighini, C. P.,, M. R. von Zeska Kress Fagundes,, J. C. Ferreira,, R. C. Pascon,, M. H. Souza Goldman, and, G. H. Goldman. 2003. Different roles of the Mre11 complex in the DNA damage response in Aspergillus nidulans. Mol. Microbiol. 48:16931709.
141. Serna, L., and, D. Stadler. 1978. Nuclear division cycle in germinating conidia of Neurospora crassa. J. Bacteriol. 136:341351.
142. Sgarlata, C., and, J. Perez-Martin. 2005a. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis. J. Cell Sci. 118:36073622.
143. Sgarlata, C., and, J. Perez-Martin. 2005b. The cdc25 phosphatase is essential for the G2/M phase transition in the basidiomycete yeast Ustilago maydis. Mol. Microbiol. 58:14821496.
144. Shanfield, B., and, E. Kafer. 1969. UV-sensitive mutants increasing mitotic crossing-over in Aspergillus nidulans. Mutat. Res. 7:485487.
145. Solnica-Krezel, L.,, T. G. Burland, and, W. F. Dove. 1991. Variable pathways for developmental changes of mitosis and cytokinesis in Physarum polycephalum. J. Cell Biol. 113:591604.
146. Son, S., and, S. A. Osmani. 2009. Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, Fcp1. Eukaryot. Cell 8:573585.
147. Sorger, P. K., and, A. W. Murray. 1992. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 355:365367.
148. Steinberg, G. 2007. On the move: endosomes in fungal growth and pathogenicity. Nat. Rev. Microbiol. 5:309316.
149. Straube, A.,, I. Weber, and, G. Steinberg. 2005. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J. 24:16741685.
150. Suelmann, R.,, N. Sievers, and, R. Fischer. 1997. Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol. Microbiol. 25:757769.
151. Tanaka, K. 1973. Intranuclear microtubule organizing center in early prophase nuclei of the plasmodium of the slime mold, Physarum polycephalum. J. Cell Biol. 57:220224.
152. Theisen, U.,, A. Straube, and, G. Steinberg. 2008. Dynamic rearrangement of nucleoporins during fungal “open” mitosis. Mol. Biol. Cell 19:12301240.
153. Timberlake, W. E. 1990. Molecular genetics of Aspergillus development. Annu. Rev. Genet. 24:536.
154. Toya, M.,, M. Sato,, U. Haselmann,, K. Asakawa,, D. Brunner,, C. Antony, and, T. Toda. 2007. g-tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast. Nat. Cell Biol. 9:646653.
155. Tran, E. J., and, S. R. Wente. 2006. Dynamic nuclear pore complexes: life on the edge. Cell 125:10411053.
156. Uhlmann, F.,, F. Lottspeich, and, K. Nasmyth. 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:3742.
157. Ukil, L.,, A. Varadaraj,, M. Govindaraghavan,, H. L. Liu, and, S. A. Osmani. 2008. Copy number suppressors of the Aspergillus nidulans nimA1 mitotic kinase display distinctive and highly dynamic cell cycle-regulated locations. Eukaryot. Cell 7:20872099.
158. Upshall, A., and, I. D. Mortimore. 1984. Isolation of aneuploid-generating mutants of Aspergillus nidulans, one of which is defective in interphase of the cell cycle. Genetics 108:107121.
159. van Heemst, D.,, F. James,, S. Poggeler,, V. Berteaux-Lecellier, and, D. Zickler. 1999. Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs. Cell 98:261271.
160. van Heemst, D.,, E. Kafer,, T. John,, C. Heyting,, M. van Aalderen, and, D. Zickler. 2001. BimD/SPO76 is at the interface of cell cycle progression, chromosome morphogenesis, and recombination. Proc. Natl. Acad. Sci. USA 98:62676272.
161. Veneault-Fourrey, C.,, M. Barooah,, M. Egan,, G. Wakley, and, N. J. Talbot. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580583.
162. Whiteway, M., and, C. Bachewich. 2007. Morphogenesis in Candida albicans. Annu. Rev. Microbiol. 61:529553.
163. Wolfe, B. A., and, K. L. Gould. 2005. Split decisions: coordinating cytokinesis in yeast. Trends Cell Biol. 15:1018.
164. Wolkow, T. D.,, S. D. Harris, and, J. E. Hamer. 1996. Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J. Cell Sci. 109:21792188.
165. Wu, D.,, X. Dou,, S. B. Hashmi, and, S. A. Osmani. 2004. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J. Biol. Chem. 279:3769337703.
166. Wu, L.,, S. A. Osmani, and, P. M. Mirabito. 1998. A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J. Cell Biol. 141:15751587.
167. Xiang, X., and, R. Fischer. 2004. Nuclear migration and positioning in filamentous fungi. Fungal Genet. Biol. 41:411419.
168. Xiang, X.,, A. H. Osmani,, S. A. Osmani,, M. Xin, and, N. R. Morris. 1995. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6:297310.
169. Xiang, X., and, M. Plamann. 2003. Cytoskeleton and motor proteins in filamentous fungi. Curr. Opin. Microbiol. 6:628633.
170. Ye, X. S.,, R. R. Fincher,, A. Tang,, K. O’Donnell, and, S. A. Osmani. 1996. Two S-phase checkpoint systems, one involving the function of both BIME and Tyr15 phosphorylation of p34cdc2, inhibit NIMA and prevent premature mitosis. EMBO J. 15:35993610.
171. Ye, X. S.,, R. R. Fincher,, A. Tang,, A. H. Osmani, and, S. A. Osmani. 1998. Regulation of the anaphase-promoting complex/cyclosome by BIMAAPC3 and proteolysis of NIMA. Mol. Biol. Cell 9:30193030.
172. Ye, X. S.,, R. R. Fincher,, A. Tang, and, S. A. Osmani. 1997. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. EMBO J. 15:101112.
173. Ye, X. S.,, S. L. Lee,, T. D. Wolkow,, S. L. McGuire,, J. E. Hamer,, G. C. Wood, and, S. A. Osmani. 1999. Interaction between developmental and cell cycle regulators is required for morphogenesis in Aspergillus nidulans. EMBO J. 18:69947001.
174. Ye, X. S.,, G. Xu,, P. T. Pu,, R. R. Fincher,, S. L. McGuire,, A. H. Osmani, and, S. A. Osmani. 1995. The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordination of two mitosis promoting kinases. EMBO J. 14:986994.
175. Zhang, Y.,, J. Zhou, and, C. U. Lim. 2006. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res. 16:4554.

Tables

Generic image for table
TABLE 1

Cytokinesis and nuclear division in different cell types

Citation: De Souza C, Osmani S. 2010. Mitotic Cell Cycle Control, p 63-80. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error