Chapter 7 : Meiosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Meiosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap07-2.gif


This chapter discusses the hallmarks of meiosis, crossover (chiasma) distribution, genes necessary for meiosis, and the transcriptional program of meiosis, with a focus on recent studies. A recent review, as a model fungus for studies in cytogenetics and sexual biology at Stanford, is highly recommended as a complement to this chapter. Filamentous fungi display the interesting characteristic of maintaining haploid nuclei throughout mycelial development until nuclear fusion (karyogamy), which begins meiosis. Filamentous fungi have several advantages for the study of meiosis. First, the meiotic program and chromosome behavior in filamentous fungi are similar to those of more complex organisms. The genetic and cytological tractability of fungal systems allows genes to be well characterized, shedding light on the functions of conserved proteins. Second, unique aspects of development in filamentous fungi provide ideal conditions for analysis of certain meiotic events. Third, the chromosomes of some filamentous fungi are particularly accessible for meiotic study, within intact cells or by surface spreads of meiotic nuclei. Studies of mutants in filamentous fungi have made substantial contributions to the analysis of the two core features of meiosis: the structure of meiotic chromosomes and the role of interhomolog crossovers in meiotic chromosome structure and behavior. Regulation of meiosis at the epigenetic level, manipulation of recombination hot spots, and targeted disruption of cohesion complex components are also exciting targets for future analyses of the meiotic process in filamentous fungi.

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7

Key Concept Ranking

Random Amplified Polymorphic DNA
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Progression and timing of meiosis in . Meiosis in is synchronous and begins directly after karyogamy (K). Homologs pair, condense, and synapse, and all meiotic cells are in pachytene 6 h postkaryogamy. After a further 2 to 3 h, homologs separate in the first meiotic division. Twelve hours after karyogamy, the second division has occurred, resulting in four meiotic products. Six hours subsequently, nuclei have migrated into basidiopores. Reproduced from the ( ), with the permission of the publisher.

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Electron microscopy of SC formation in . (A) At karyogamy, haploid nuclei fuse, and chromosomes are relatively uncondensed. Two nucleoli (dark structures indicated by an arrow) are apparent. (B) During leptotene, chromosomes condense and homologs start to pair. (C) During zygotene, chromosomes condense further and are paired along their length (note the pair in the upper right-hand corner of the image). The SC begins to form (arrow). (D) In pachytene, chromosomes are fully condensed, and homolog pairs are fully synapsed along their lengths. Scale bar, 1 μm. Reproduced from ( ), with the permission of the publisher.

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Formation of a crossover and its role in meiotic segregation. (A) The arrangement of sister chromatids and homologs, shown end-on. Sister chromatids (one pair in black and one pair in gray) are held together with cohesin (black ring). Homolog association is stabilized in many organisms by the SC (dark gray). This arrangement allows a sister from one homolog to interact with either sister from the second homolog. (B) Initiation of recombination. Spo11, a conserved protein, makes a DNA double-strand break, which is then resected in the 5’-to-3’ direction (C). To simplify, only one chromatid from each homolog is shown. Note that in panels B through I, both DNA strands are shown for the two chromatids. In panels J through M, all four chromatids are shown, each of which have two DNA strands (not shown), constituting eight strands in a pair of homologs. (D) The single strand invades a nonsister duplex, displacing a loop. The invading strand extends by replication, using the opposing duplex as template. The displaced loop may or may not be captured by the second single strand. If not captured, the invading strand and loop retract, and no crossover results. If captured, the second single strand expands, using the loop as a template (E). The invading strand is recaptured by the original sister, forming a double Holliday junction (F), which can then migrate (F and G). To resolve the junction, the DNA is nicked as shown by the arrows (G and H), forming a crossover (I). Note that the ends of the chromatids have exchanged, as represented by the different colors; this is a single crossover. (J) Crossovers are represented at the chromosomal level. Sister chromatids within homologs are shown, and chromosomes are compacted at this stage. Two crossovers are shown, as is typical in . Although the two crossovers are illustrated here as formed between the same chromatids, note that, due to the orientation illustrated in panel A, crossovers can and do form with either chromatid of the opposing homolog. Sister chromatids are held together by cohesin (rings), and this, combined with the crossover, is what holds homologs together while under tension at kinetochores. (K) Upon release of arm, but not centromere-associated, cohesin, homologs immediately begin to separate; this is the first meiotic division. For the second meiotic division, centromeric cohesin is released, allowing sister separation (L) and formation of the four meiotic products (M).

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Variation in number of chiasmata per bivalent in fungi. (A) Meiotic bivalent from with 12 chiasmata diagrammed in prophase (left) and metaphase (right). (B) Meiotic bivalent from with two chiasmata diagrammed in prophase (left) and metaphase (right). Each chiasma results from a reciprocal exchange involving one chromatid from each homolog.

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Time course of Rad51 association with meiotic chromosomes. Chromosome spreads were stained with DAPI (4’,6-diamino-2-phenylindole) (top panels) and antibody against Rad51 (bottom panel), which was detected using fluorescein isothiocyanate-labeled antirabbit antibody. (A) Preleptotene image taken 1 h after karyogamy (K + 1). (B) Leptotene image taken at K + 2. (C) Zygotene image taken at K + 4. (D) Pachytene image taken at K + 6. (E) Diplotene image taken at K + 8. Arrows in panel E show ribosomal DNA, which does not synapse, within the nucleolus. Scale bars represent 2 μm for all images. All panels except panel A are reproduced from ( ), with the permission of the publisher.

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

The mutation suppressed synapsis defects of . Surface spreads of meiotic chromosomes were stained with silver nitrate and photographed using transmission electron microscopy. (A) ; (B) ; (C) double mutant. Scale bars represent 2 μm for all images. All images are reproduced from ), with the permission of the publisher.

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acharya, S. N.,, A. M. Many,, A. P. Schroeder,, F. M. Kennedy,, O. P. Savytskyy,, J. T. Grubb,, J. A. Vincent,, E. A. Friedle,, M. Celerin,, D. S. Maillet,, H. J. Palmerini,, M. A. Greischar,, G. Moncalian,, R. S. Williams,, J. A. Tainer, and, M. E. Zolan. 2008. Coprinus cinereus rad50 mutants reveal an essential structural role for Rad50 in axial element and synaptonemal complex formation, homolog pairing and meiotic recombination. Genetics 180:18891907.
2. Alani, E.,, R. Padmore, and, N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419436.
3. Allers, T., and, M. Lichten. 2001. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:4757.
4. Arora, C.,, K. Kee,, S. Maleki, and, S. Keeney. 2004. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol. Cell 13:549559.
5. Barton, A. B.,, M. R. Pekosz,, R. S. Kurvathi, and, D. B. Kaback. 2008. Meiotic recombination at the ends of chromosomes in Saccharomyces cerevisiae. Genetics 179:12211235.
6. Baudat, F., and, B. de Massy. 2007. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res. 15:565577.
7. Bellani, M. A.,, P. J. Romanienko,, D. A. Cairatti, and, R. D. Camerini-Otero. 2005. SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes. J. Cell Sci. 118:32333245.
8. Bishop, D. K., and, D. Zickler. 2004. Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:915.
9. Borde, V. 2007. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res. 15:551563.
10. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
11. Borner, G. V.,, N. Kleckner, and, N. Hunter. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:2945.
12. Boveri, T. 1887. Über Differenzierung der Zellkerne während der Fürchung des Eis von Ascaris megalocephala. Anat. Anz. 2:688693.
13. Breakspear, A., and, M. Momany. 2007. The first fifty microarray studies in filamentous fungi. Microbiology 153:715.
14. Burt, A.,, D. A. Carter,, G. L. Koenig,, T. J. White, and, J. W. Taylor. 1996. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc. Natl. Acad. Sci. USA 93:770773.
15. Carpenter, A. T. C. 1975. Electron microscopy of meiosis in Drosophila melanogaster females. 2. Recombination nodule— recombination-associated structure at pachytene. Proc. Natl. Acad. Sci. USA 72:31863189.
16. Celerin, M.,, S. T. Merino,, J. E. Stone,, A. M. Menzie, and, M. E. Zolan. 2000. Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J. 19:27392750.
17. Chu, S.,, J. DeRisi,, M. Eisen,, J. Mulholland,, D. Botstein,, P. O. Brown, and, I. Herskowitz. 1998. The transcriptional program of sporulation in budding yeast. Science 282:699705.
18. Cromie, G. A.,, R. W. Hyppa,, A. F. Taylor,, K. Zakharyevich,, N. Hunter, and, G. R. Smith. 2006. Single Holliday junctions are intermediates of meiotic recombination. Cell 127:11671178.
19. Cummings, W. J.,, M. Celerin,, J. Crodian,, L. K. Brunick, and, M. E. Zolan. 1999. Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr. Genet. 36:371382.
20. Cummings, W. J., and, M. E. Zolan. 1998. Functions of DNA repair genes during meiosis. Curr. Top. Dev. Biol. 37:117140.
21. Donaldson, M. E., and, B. J. Saville. 2008. Bioinformatic identification of Ustilago maydis meiosis genes. Fungal Genet. Biol. 45:S47S53.
22. Egelmitani, M.,, L. W. Olson, and, R. Egel. 1982. Meiosis in Aspergillus nidulans—another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas 97:179187.
23. Eisen, M. B.,, P. T. Spellman,, P. O. Brown, and, D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:1486314868.
24. Enyenihi, A. H., and, W. S. Saunders. 2003. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163:4754.
25. Farman, M. L. 2002. Meiotic deletion at the BUF1 locus of the fungus Magnaporthe grisea is controlled by interaction with the homologous chromosome. Genetics 160:137148.
26. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, United Kingdom.
27. Fletcher, H. L. 1981. A search for synaptonemal complexes in Ustilago maydis. J. Cell Sci. 50:171180.
28. Fogwill, M. 1958. Differences in crossing-over and chromosome size in the sex cells of Lilium and Fritillaria. Chromosoma 9:493504.
29. Forche, A.,, K. Alby,, D. Schaefer,, A. D. Johnson,, J. Berman, and, R. J. Bennett. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6:e110.
30. Forsburg, S. L. 2002. Only connect: linking meiotic DNA replication to chromosome dynamics. Mol. Cell 9:703711.
31. Gerecke, E. E., and, M. E. Zolan. 2000. An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Genetics 154:11251139.
32. Gillies, C. B. 1972. Reconstruction of the Neurospora crassa pachytene karyotype from serial sections of synaptonemal complexes. Chromosoma 36:119130.
33. Goldman, G. H.,, S. L. McGuire, and, S. D. Harris. 2002. The DNA damage response in filamentous fungi. Fungal Genet. Biol. 35:183195.
34. Gregan, J.,, P. K. Rabitsch,, B. Sakem,, O. Csutak,, V. Latypov,, E. Lehmann,, J. Kohli, and, K. Nasmyth. 2005. Novel genes required for segregation are identified meiotic chromosome by a high-throughput knockout screen in fission yeast. Curr. Biol. 15:16631669.
35. Gregory, T. R.,, J. A. Nicol,, H. Tamm,, B. Kullman,, K. Kullman,, I. J. Leitch,, B. G. Murray,, D. F. Kapraun,, J. Greil-huber, and, M. D. Bennett. 2007. Eukaryotic genome size databases. Nucleic Acids Res. 35:D332D338.
36. Haering, C. H.,, A. M. Farcas,, P. Arumugam,, J. Metson, and, K. Nasmyth. 2008. The cohesin ring concatenates sister DNA molecules. Nature 454:297301.
37. Harigaya, Y.,, H. Tanaka,, S. Yamanaka,, K. Tanaka,, Y. Watanabe,, C. Tsutsumi,, Y. Chikashige,, Y. Hiraoka,, A. Yamashita, and, M. Yamamoto. 2006. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442:4550.
38. Henderson, K. A., and, S. Keeney. 2005. Synaptonemal complex formation: where does it start? Bioessays 27:995998.
39. Hollingsworth, N. M. 2008. Deconstructing meiosis one kinase at a time: polo pushes past pachytene. Genes Dev. 22:25962600.
40. Holm, P. B.,, S. W. Rasmussen,, D. Zickler,, B. C. Lu, and, J. Sage. 1981. Chromosome pairing, recombination nodules and chiasma formation in the basidiomycete Coprinus cinereus. Carlsberg Res. Commun. 46:305346.
41. Honigberg, S. M., and, K. Purnapatre. 2003. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J. Cell Sci. 116:21372147.
42. Hsueh, Y. P.,, A. Idnurm, and, J. Heitman. 2006. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PloS Genet. 2:17021714.
43. Iyengar, G. A.,, P. C. Deka,, S. C. Kundu, and, S. K. Sen. 1977. DNA syntheses in course of meiotic development in Neurospora crassa. Genet. Res. 29:18.
44. Johzuka, K., and, H. Ogawa. 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139:15211532.
45. Jordan, P. W.,, F. Klein, and, D. R. F. Leach. 2007. Novel roles for selected genes in meiotic DNA processing. PloS Genet. 3:23682380.
46. Juneau, K.,, C. Palm,, M. Miranda, and, R. W. Davis. 2007. High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc. Natl. Acad. Sci. USA 104:15221527.
47. Kanda, T.,, H. Arakawa,, Y. Yasuda, and, T. Takemaru. 1990. Basidiospore formation in a mutant of incompatibility factors and in mutants that arrest at meta-anaphase I in Coprinus cinereus. Exp. Mycol. 14:218226.
48. Kanda, T.,, A. Goto,, K. Sawa,, H. Arakawa,, Y. Yasuda, and, T. Takemaru. 1989. Isolation and characterization of recessive sporeless mutants in the basidiomycete Coprinus cinereus. Mol. Gen. Genet. 216:526529.
49. Keeney, S. 2007. Spo11 and the formation of DNA double-strand breaks in meiosis, p. 81–123. In R. Egel and, D. H. Lankenau (ed.), Recombination and Meiosis. Springer-Verlag, Berlin, Germany.
50. Keeney, S.,, C. N. Giroux, and, N. Kleckner. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375384.
51. Kimura, M. 1956. A model of a genetic system which leads to closer linkage by natural selection. Evolution 10:278287.
52. Kitajima, T. S.,, S. A. Kawashima, and, Y. Watanabe. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510517.
53. Kues, U. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64:316353.
54. Kugou, K.,, H. Sasanuma,, K. Matsumoto,, K. Shirahige, and, K. Ohta. 2007. Mre11 mediates gene regulation in yeast spore development. Genes Genet. Syst. 82:2133.
55. Leslie, J. F., and, N. B. Raju. 1985. Recessive mutations from natural populations of Neurospora crassa that are expressed in the sexual diplophase. Genetics 111:759777.
56. Lobuglio, K. F.,, J. I. Pitt, and, J. W. Taylor. 1993. Phylogenetic analysis of 2 ribosomal DNA regions indicates multiple independent losses of a sexual talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592604.
57. Loidl, J. 1995. Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae. Genetics 139:15111520.
58. Loidl, J., and, G. H. Jones. 1986. Synaptonemal complex spreading in Allium. 1. Triploid a-Sphaerocephalon. Chromosoma 93:420428.
59. Maguire, M. P. 1966. The relationship of crossing over to chromosome synapsis in a short paracentric inversion. Genetics 53:10711077.
60. Maguire, M. P., and, R. W. Riess. 1994. The relationship of homologous synapsis and crossing over in a maize inversion. Genetics 137:281288.
61. Malik, S.,, A. W. Pightling,, L. M. Stefaniak,, A. M. Schurko, and, J. M. Logsdon. 2008. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE 3:e2879.
62. Manton, I., and, W. A. Sledge. 1954. Observations on the cytology and taxonomy of the pteridophyte flora of Ceylon. Phil. Trans. R. Soc. B 238:127185.
63. Martin-Castellanos, C.,, M. Blanco,, A. E. Rozalen,, L. Perez-Hidalgo,, A. I. Garcia,, F. Conde,, J. Mata,, C. Ellermeier,, L. Davis,, P. San-Segundo,, G. R. Smith, and, S. Moreno. 2005. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr. Biol. 15:20562062.
64. Mata, J.,, R. Lyne,, G. Burns, and, J. Bahler. 2002. The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet. 32:143147.
65. Merino, S. T.,, W. J. Cummings,, S. N. Acharya, and, M. E. Zolan. 2000. Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc. Natl. Acad. Sci. USA 97:1047710482.
66. Moses, M. J. 1956. Chromosomal structures in crayfish spermatocytes. J. Biophys. Biochem. Cytol. 2:215218.
67. Muraguchi, H.,, Y. Ito,, T. Kamada, and, S. O. Yanagi. 2003. A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms. Fungal Genet. Biol. 40:93102.
68. Nei, M. 1967. Modification of linkage intensity by natural selection. Genetics 57:625641.
69. Nowrousian, M.,, C. Ringelberg,, J. C. Dunlap,, J. L. Loros, and, U. Kuck. 2005. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol. Genet. Genomics 273:137149.
70. O’Gorman, C. M.,, H. T. Fuller, and, P. S. Dyer. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471475
71. Olson, L. W.,, U. Eden,, M. Egelmitani, and, R. Egel. 1978. Asynaptic meiosis in fission yeast. Hereditas 89:189199.
72. Padmore, R.,, L. Cao, and, N. Kleckner. 1991. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:12391256.
73. Page, S. L., and, R. S. Hawley. 2004. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20:525558.
74. Pal, C., and, L. D. Hurst. 2003. Evidence for co-evolution of gene order and recombination rate. Nat. Genet. 33:392395.
75. Pawlowski, W. P.,, M. J. Sheehan, and, A. Ronceret. 2007. In the beginning: the initiation of meiosis. Bioessays 29:511514.
76. Petes, T. D., and, P. J. Pukkila. 1995. Meiotic sister chromatid recombination. Adv. Genet. 33:4162.
77. Primig, M.,, R. M. Williams,, E. A. Winzeler,, G. G. Tevzadze,, A. R. Conway,, S. Y. Hwang,, R. W. Davis, and, R. E. Esposito. 2000. The core meiotic transcriptome in budding yeasts. Nat. Genet. 26:415423.
78. Pukkila, P. J. 1994. Meiosis in mycelial fungi, p. 267–281. In J. G. H. Wessels and, F. Meinhardt (ed.), The Mycota, vol. I. Springer, Berlin, Germany.
79. Pukkila, P. J., and, B. C. Lu. 1985. Silver staining of meiotic chromosomes in the fungus, Coprinus cinereus. Chromosoma 91:108112.
80. Pukkila, P. J.,, K. B. Shannon, and, C. Skrzynia. 1995. Independent synaptic behavior of sister chromatids in Coprinus cinereus. Can. J. Bot. 73:S215S220.
81. Pukkila, P. J.,, B. M. Yashar,, D. M. Binninger. 1984. Analysis of meiotic development in Coprinus cinereus. Symp. Soc. Exp. Biol. 38:177194.
82. Qi, W. H.,, K. Chil, and, F. Trail. 2006. Microarray analysis of transcript accumulation during perithecium development in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Mol. Genet. Genomics 276:87100.
83. Rabitsch, K. P.,, A. Toth,, M. Galova,, A. Schleiffer,, G. Schaffner,, E. Aigner,, C. Rupp,, A. M. Penkner,, A. C. Moreno-Borchart,, M. Primig,, R. E. Esposito,, F. Klein,, M. Knop, and, K. Nasmyth. 2001. A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr. Biol. 11:10011009.
84. Raju, N. B. 1980. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 23:208223.
85. Raju, N. B. 1992. Genetic control of the sexual cycle in Neurospora. Mycol. Res. 96:241262.
86. Raju, N. B. 2009. Neurospora as a model fungus for studies in cytogenetics and sexual biology at Stanford. J. Biosci. 34:139159.
87. Raju, N. B., and, B. C. Lu. 1970. Meiosis in Coprinus. 3. Timing of meiotic events in C. lagopus (sensu Buller). Can. J. Bot. 48:21832186.
88. Redhead, S. A.,, R. Vilgalys,, J. M. Moncalvo,, J. Johnson, and, J. S. Hopple. 2001. Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon 50:203241.
89. Revenkova, E., and, R. Jessberger. 2005. Keeping sister chromatids together: cohesins in meiosis. Reproduction 130:783790.
90. Ross, L. O.,, R. Maxfield, and, D. Dawson. 1996. Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. Proc. Natl. Acad. Sci. USA 93:49794983.
91. Seitz, L. C.,, K. L. Tang,, W. J. Cummings, and, M. E. Zolan. 1996. The rad9 gene of Coprinus cinereus encodes a proline-rich protein required for meiotic chromosome condensation and synapsis. Genetics 142:11051117.
92. Snowden, T.,, S. Acharya,, C. Butz,, M. Berardini, and, R. Fishel. 2004. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol. Cell 15:437451.
93. Snowden, T.,, K. S. Shim,, C. Schmutte,, S. Acharya, and, R. Fishel. 2008. hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery. J. Biol. Chem. 283:145154.
94. Storlazzi, A.,, S. Tesse,, S. Gargano,, F. James,, N. Kleckner, and, D. Zickler. 2003. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev. 17:26752687.
95. Storlazzi, A.,, S. Tesse,, G. Ruprich-Robert,, S. Gargano,, S. Poggeler,, N. Kleckner, and, D. Zickler. 2008. Coupling meiotic chromosome axis integrity to recombination. Genes Dev. 22:796809.
96. Strom, L.,, H. B. Lindroos,, K. Shirahige, and, C. Sjogren. 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16:10031015.
97. Taylor, J.,, D. Jacobson, and, M. Fisher. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phytopathol. 37:197246.
98. Tesse, S.,, A. Storlazzi,, N. Kleckner,, S. Gargano, and, D. Zickler. 2003. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc. Natl. Acad. Sci. USA 100:1286512870.
99. Tzung, K. W.,, R. M. Williams,, S. Scherer,, N. Federspiel,, T. Jones,, N. Hansen,, V. Bivolarevic,, L. Huizar,, C. Komp,, R. Surzycki,, R. Tamse,, R. W. Davis, and, N. Agabian. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98:32493253.
100. Uetz, P.,, L. Giot,, G. Cagney,, T. A. Mansfield,, R. S. Judson,, J. R. Knight,, D. Lockshon,, V. Narayan,, M. Srinivasan,, P. Pochart,, A. Qureshi-Emili,, Y. Li,, B. Godwin,, D. Conover,, T. Kalbfleisch,, G. Vijayadamodar,, M. Yang,, M. Johnston,, S. Fields, and, J. M. Rothberg. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623627.
101. Unal, E.,, A. Arbel-Eden,, U. Sattler,, R. Shroff,, M. Lichten,, J. E. Haber, and, D. Koshland. 2004. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16:9911002.
102. van Heemst, D.,, K. Swart,, E. F. Holub,, R. van Dijk,, H. H. Offenberg,, T. Goosen,, H. W. van den Broek, and, C. Heyting. 1997. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol. Gen. Genet. 254:654664.
103. Wallace, H.,, B. M. N. Wallace, and, G. M. I. Badawy. 1997. Lampbrush chromosomes and chiasmata of sex-reversed crested newts. Chromosoma 106:526533.
104. Wang, X. X., and, W. Dai. 2005. Shugoshin, a guardian for sister chromatid segregation. Exp. Cell Res. 310:19.
105. Watanabe, Y., and, T. S. Kitajima. 2005. Shugoshin protects cohesin complexes at centromeres. Phil. Trans. R. Soc. Lond. B. 360:515521.
106. Watanabe, Y., and, P. Nurse. 1999. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461464.
107. Watrin, E., and, J. M. Peters. 2006. Cohesin and DNA damage repair. Exp. Cell Res. 312:26872693.
108. Watson, I. D., and, H. G. Callan. 1963. The form of bivalent chromosomes in newt oocytes at the first metaphase of meiosis. Q. J. Microsc. Sci. 104:281295.
109. White, M. J. D. 1973. Animal Cytology and Evolution. Cambridge University Press, London, United Kingdom.
110. Winzeler, E. A.,, D. R. Richards,, A. R. Conway,, A. L. Goldstein,, S. Kalman,, M. J. McCullough,, J. H. McCusker,, D. A. Stevens,, L. Wodicka,, D. J. Lockhart, and, R. W. Davis. 1998. Direct allelic variation scanning of the yeast genome. Science 281:11941197.
111. Young, J. A.,, R. W. Hyppa, and, G. R. Smith. 2004. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167:593605.
112. Zahiri, A. R.,, M. R. Babu, and, B. J. Saville. 2005. Differential gene expression during teliospore germination in Ustilago maydis. Mol. Genet. Genomics 273:394403.
113. Zickler, D. 1977. Development of synaptonemal complex and recombination nodules during meiotic prophase in 7 bivalents of fungus Sordaria macrospora auersw. Chromosoma 61:289316.
114. Zickler, D. 2006. Meiosis in mycelial fungi, p. 415–438. In U. Kues and, R. Fischer (ed.), The Mycota, vol. 1. Springer, Berlin, Germany.
115. Zickler, D., and, N. Kleckner. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33:603754.
116. Zickler, D.,, P. J. F. Moreau,, A. D. Huynh, and, A. M. Slezec. 1992. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora. Genetics 132:135148.


Generic image for table

Some core meiotic genes and their functions and conservation among fungi

Citation: Burns C, Pukkila P, Zolan M. 2010. Meiosis, p 81-95. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error