Chapter 8 : DNA Repair and Recombination

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

DNA Repair and Recombination, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap08-2.gif


Investigations using filamentous fungi have made major contributions to the understanding of the core biological processes of DNA repair and recombination, as certain model species provide particularly favorable opportunities for insight. The Ascomycete fungi, including the filamentous fungus , conveniently provide a full set of the products of a single meiosis packaged in spores inside a single ascus. The study of DNA repair began with the discovery of photoreactivation and UV-sensitive mutants in bacteria, followed by isolation and characterization of mutants with sensitivity to UV, IR, and chemical mutagens in both and the yeast . The segregation patterns of parental DNA in recombinant chromosomes from yeasts and filamentous fungi as considered stimulated Whitehouse and Holliday to formulate models of meiotic recombination, and aspects of both models remain valid to this day. Research into DNA repair and recombination can now proceed apace by deletion of each annotated gene with a predicted role in these processes, enabling to move beyond understanding individual repair systems to an understanding of more complex networks. Epigenetic control of DNA metabolism undoubtedly plays a part in DNA repair and recombination. The isolation of mutants sensitive to mutagens remains as an indispensable tool if a comprehensive understanding of DNA repair and recombination is developed. The filamentous fungi have greater genetic complexity than yeast and are more similar to complex organisms such as mammals. The filamentous fungi will continue to provide efficient model systems for such investigation.

Citation: Yeadon P, Inoue H, Bowring F, Suzuki K, Catcheside D. 2010. DNA Repair and Recombination, p 96-112. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch8

Key Concept Ranking

DNA Synthesis
Genetic Elements
Base Excision Repair
Nucleotide Excision Repair
Genetic Recombination
DNA Repair
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Pathways (major, thick arrows; minor, narrow dashed arrows) for integration of exogenous DNA into chromosomal DNA. Exogenous DNA is integrated into the chromosomes by two major pathways, dependent and dependent. The -dependent pathway has three branches. Two branches yield homologous integration (HI); one is dependent, and the other is independent. The third branch is independent but, like the major -dependent pathway, leads to nonhomologous integration (NHI). Both dependent and -independent NHI pathways require , and . The genes in parentheses represent homologs.

Citation: Yeadon P, Inoue H, Bowring F, Suzuki K, Catcheside D. 2010. DNA Repair and Recombination, p 96-112. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Epistatic and synthetic lethal relationships of mutagen-sensitive mutations in . A solid line indicates a synthetic lethal relationship, and a dotted line indicates an epistatic relationship. Arrows indicate which mutation is epistatic.

Citation: Yeadon P, Inoue H, Bowring F, Suzuki K, Catcheside D. 2010. DNA Repair and Recombination, p 96-112. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Models for meiotic recombination (after ). The central column depicts the generation of crossovers. All recombination is thought to be initiated by a break in both strands of the duplex (B). The 5’ ends are resected, and one of the 3’ ends invades the homologous duplex (C), where it is extended by DNA polymerase using the homolog as a template (D). The D loop formed by displacement of a strand of the invaded chromosome provides a template for repair of the second strand of the initiating chromosome (E). The ligation of ends forms two Holliday junctions that when resolved yield a crossover (F). Synthesis-dependent strand annealing is depicted on the right branch. Here, instead of ligation leading to paired Holliday junctions, the newly synthesized DNA ends are unraveled from the template to anneal one with the other (E’). The gap is closed and then ligated (F’). Only the initiating chromosome is converted, and there is no crossing-over. The left branch indicates the existence of a pathway yielding noninterfering crossovers, although details of the mechanism remain to be elucidated.

Citation: Yeadon P, Inoue H, Bowring F, Suzuki K, Catcheside D. 2010. DNA Repair and Recombination, p 96-112. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

A partial linkage map of , showing the locations of the known genes and the regions in which each gene influences recombination (arrow heads). Spheres represent the centromeres. The map is not to scale, and only part of each chromosome is shown.

Citation: Yeadon P, Inoue H, Bowring F, Suzuki K, Catcheside D. 2010. DNA Repair and Recombination, p 96-112. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allers, T., and, M. Lichten. 2001. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:4757.
2. Angel, T.,, B. Austin, and, D. G. Catcheside. 1970. Regulation of recombination at the his-3 locus in Neurospora crassa. Aust. J. Biol. Sci. 23:12291240.
3. Au, K. G.,, K. Welsh, and, P. Modrich. 1992. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267:1214212148.
4. Baker, B. S.,, A. T. Carpenter,, M. S. Esposito,, R. E. Esposito, and, L. Sandler. 1976. The genetic control of meiosis. Annu. Rev. Genet. 10:53134.
5. Bateson, W.,, E. R. Saunders, and, R. C. Punnett. 1905. Experimental studies in the physiology of heredity. Rep. Evol. Comm. Roy. Soc. 2:155, 8089.
6. Baudat, F., and, B. de Massy. 2007. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res. 15:565577.
7. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. E. A. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. Kalkman,, R. O’Rourke,, F. J. Bowring,, P. J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
8. Borner, G. V.,, N. Kleckner, and, N. Hunter. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:2945.
9. Borts, R. H.,, S. R. Chambers, and, M. F. F. Abdullah. 2000. The many faces of mismatch repair in meiosis. Mutat. Res. 451:129150.
10. Bowring, F. J., and, D. E. A. Catcheside. 1991. The initiation site for recombination cog is at the 3’ end of the his-3 gene in Neurospora crassa. Mol. Gen. Genet. 229:273277.
11. Bowring, F. J., and, D. E. A. Catcheside. 1996. Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa. Genetics 143:129136.
12. Bowring, F. J., and, D. E. A. Catcheside. 1998. Analysis of conversion tracts associated with recombination events at the am locus of Neurospora crassa. Curr. Genet. 294:4349.
13. Bowring, F. J.,, P. J. Yeadon,, R. G. Stainer, and, D. E. A. Catcheside. 2006. Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr. Genet. 50:115123.
14. Case, M. E., and, N. H. Giles. 1958a. Recombination mechanisms at the pan-2 locus in Neurospora crassa. Cold Spring Harbor Symp. Quant. Biol. 23:119135.
15. Case, M. E., and, N. H. Giles. 1958b. Evidence from tetrad analysis for both normal and aberrant recombination between allelic mutants in Neurospora crassa. Proc. Natl. Acad. Sci. USA 44:378390.
16. Case, M. E., and, N. H. Giles. 1964. Allelic recombination in Neurospora: tetrad analysis of a three-point cross within the pan-2 locus. Genetics 49:529540.
17. Catcheside, D. E. A. 1970. Control of recombination within the nitrate-2 locus of Neurospora crassa: an unlinked dominant gene which reduces prototroph yield. Aust. J. Biol. Sci. 23:855865.
18. Catcheside, D. E. A. 1981. Genes in Neurospora that suppress recombination when they are heterozygous. Genetics 98:5576.
19. Catcheside, D. G. 1966. A second gene controlling allelic recombination in Neurospora crassa. Aust. J. Biol. Sci. 23:855865.
20. Catcheside, D. G. 1974. Fungal genetics. Annu. Rev. Genet. 8:279300.
21. Catcheside, D. G. 1977. The Genetics of Recombination. Edward Arnold, London, United Kingdom.
22. Catcheside, D. G., and, T. Angel. 1974. A histidine-3 mutant, in Neurospora crassa, due to an interchange. Aust. J. Biol. Sci. 27:219229.
23. Catcheside, D. G., and, B. Austin. 1969. The control of allelic recombination at Histidine loci in Neurospora crassa. Aust. J. Biol. Sci. 56:685690.
24. Catcheside, D. G., and, B. Austin. 1971. Common regulation of recombination at the amination-1 and histidine-2 loci in Neurospora crassa. Aust. J. Biol. Sci. 24:107115.
25. Catcheside, D. G., and, D. Corcoran. 1973. Control of nonallelic recombination in Neurospora crassa. Aust. J. Biol. Sci. 26:13371353.
26. Catlett, N. L.,, B. Lee,, O. C. Yoder, and, B. G. Turgeon. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Newslett. 50:911.
27. Celerin, M.,, S. T. Merino,, J. E. Stone,, A. M. Menzie, and, M. E. Zolan. 2000. Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J. 19:27392750.
28. Chambers, S. R.,, N. Hunter,, E. J. Louis, and, R. H. Borts. 1996. The mismatch repair system reduces meiotic homologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16:61106120.
29. Cheng, R.,, T. I. Baker,, C. E. Cords, and, R. J. Radloff. 1993. mei-3, a recombination and repair gene of Neurospora crassa, encodes a RecA-like protein. Mutat. Res. 294:223234.
30. Colot, H. V.,, G. Park,, G. E. Turner,, C. Ringelberg,, C. M. Crew,, L. Litvinkova,, R. L. Weiss,, K. A. Borkovich, and, J. C. Dunlap. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103:1035210357.
31. Conway, S.,, F. J. Bowring,, P. J. Yeadon, and, D. E. A. Catcheside. 2006. Neurospora msh4 ortholog confirmed by split-marker deletion. Fungal Genet. Newsl. 53:58.
32. Creighton, H. B., and, B. McClintock. 1931. A correlation of cytological and genetical crossing-over in Zea mays. Proc. Natl. Acad. Sci. USA 17:492497.
33. Cromie, G. A., and, G. R. Smith. 2007. Branching out: meiotic recombination and its regulation. Trends Cell Biol. 17:448455.
34. de los Santos, T.,, N. Hunter,, C. Lee,, B. Larkin,, J. Loidl, and, N. M. Hollingsworth. 2003. The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:8194.
35. de Serres, F. J. 1980. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. II. Comparison of dose-response curves for inactivation and mutation induced by UV. Mutat. Res. 71:181191.
36. de Serres, F. J.,, H. Inoue, and, M. F. Schupbach. 1980. Muta-genesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. I. Development of isogenic strains and spontaneous mutability. Mutat. Res. 71:5365.
37. Driscoll, R.,, A. Hadson, and, S. P. Jackson. 2007. Yeast Rtt109 promotes genome stability by acetylating Histone H3 on Lysine 56. Science 315:649652.
38. Emerson, S., and, C. C. C. Yu-Sun. 1967. Gene conversion in the Pasadena strain of Ascobolus immersus. Genetics 55:3947.
39. Fergusson, D. O., and, W. K. Holloman. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93:54195424.
40. Fogel, S., and, D. D. Hurst. 1967. Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57:445481.
41. Fogel, S., and, R. K. Mortimer. 1970. Fidelity of gene conversion in yeast. Mol. Gen. Genet. 122:165182.
42. Fogel, S.,, R. K. Mortimer,, K. Lusnak, and, F. Tavares. 1979. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harbor Symp. Quant. Biol. 43:13251341.
43. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaff,, W. FitzHugh,, L. -J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Lanakief,, D. Bell-Pederson,, M. A. Nelson,, W. M. Werner,, C. P. Selitrenikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, T. N. Stange,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Maucell,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. C. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
44. Game, J. C. 1993. DNA double-strand breaks and the RAD50RAD57 genes in Saccharomyces. Semin. Cancer Biol. 4:7383.
45. Game, J. C. 2000. The Saccharomyces repair genes at the end of the century. Mutat. Res. 451:277293.
46. Girard, J., and, J.-L. Rossignol. 1974. The suppression of gene conversion and crossing over in Ascobolus immersus: evidence for modifiers acting in the heterozygous state. Genetics 76:221243.
47. Goldman, G. H., and, E. Kafer. 2004. Aspergillus nidulans as a model system to characterize the DNA damage response in eukaryotes. Fungal Genet. Biol. 41:428442.
48. Grafstrom, R. H., and, R. H. Hoess. 1987. Cloning of mutH and identification of the gene product. Gene 22:245253.
49. Grilley, M.,, J. Griffith, and, P. Modrich. 1989. Bidirectional excision in methyl-directed mismatch repair. J. Biol. Chem. 268:1183011837.
50. Grimm, C.,, J. Bahler, and, J. Kohli. 1994. M26 recombinational hotspot and physical conversion tract analysis in the ade6 gene of Schizosaccharomyces pombe. Genetics 135:4151.
51. Gutz, H. 1971. Site specific induction of gene conversion in Schizosaccharomyces pombe. Genetics 69:317337.
52. Haber, J. E. 1999. DNA repair: gatekeepers of recombination. Nature 398:665667.
53. Handa, N.,, Y. Noguchi,, Y. Sakuraba,, P. Ballario,, G. Macino,, N. Fujimoto,, C. Ishii, and, H. Inoue. 2000. Characterization of the Neurospora crassa mus-25 mutant: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae Rad54 protein. Mol. Gen. Genet. 264:154163.
54. Hatakeyama, S.,, C. Ishii, and, H. Inoue. 1995. Identification and expression of the Neurospora crassa mei-3 gene which encodes a protein homologous to Rad51 of Saccharomyces cerevisiae. Mol. Gen. Genet. 249:439446.
55. Hatakeyama, S.,, Y. Ito,, A. Shimane,, C. Ishii, and, H. Inoue. 1998. Cloning and characterization of the yeast RAD1 homolog gene (mus-38) from Neurospora crassa; evidence for involvement in nucleotide excision repair. Curr. Genet. 33:276283.
56. Helmi, S., and, B. C. Lamb. 1983. The interactions of three widely separated loci controlling conversion properties of w locus in Ascobolus immersus. Genetics 104:2340.
57. Hill, R. F. 1958. A radiation-sensitive mutant of Escherichia coli. Biochim. Biophys. Acta 30:636637.
58. Hilliker, A. J.,, G. Harauz,, A. G. Reaume,, M. Gray,, S. H. Clark, and, A. Chovnick. 1994. Meiotic conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics 137:10191026.
59. Hoege, C.,, B. Pfander,, G. L. Moldvan,, G. Pyrowolakis, and, S. Fentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135141.
60. Hoffmann, E. R., and, R. H. Borts. 2004. Meiotic recombination intermediates and mismatch repair proteins. Cytogenet. Genome Res. 107:34.
61. Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. Camb. 5:282304.
62. Hollingsworth, N. M.,, L. Ponte, and, C. Halsey. 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9:17281739.
63. Howell, W. M., and, B. C. Lamb. 1984. Two locally acting genetic controls of gene conversion, ccf-5 and ccf-6, in Ascobolus immersus. Genet. Res. 43:107121.
64. Hryciw, T.,, M. Tang,, T. Fontanie, and, W. Xiao. 2002. MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol. Genet. Genomics 266:848857.
65. Hunter, N., and, R. H. Borts. 1997. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing over during meiosis. Genes Dev. 11:15731582.
66. Inoue, H., and, A. L. Schroeder. 1988. A new mutagen-sensitive mutant in Neurospora, mus-16. Mutat. Res. 194:916.
67. Inoue, H.,, T. M. Ong, and, F. J. de Serres. 1981. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. IV. Comparison of dose-response curves for MNNG, 4NQO and ICR170 induced inactivation and mutation induction. Mutat. Res. 80:2741.
68. Ishibashi, K.,, K. Suzuki,, Y. Ando,, C. Takakura, and, H. Inoue. 2006. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc. Natl. Acad. Sci. USA 103:1487114876.
69. Ishii, C.,, K. Nakamura, and, H. Inoue. 1991. A novel pheno-type of an excision-repair mutant in Neurospora crassa: mutagen sensitivity of the mus-18 mutant is specific to UV. Mol. Gen. Genet. 228:3339.
70. Ishii, C.,, K. Nakamura, and, H. Inoue. 1998. A new UV-sensitive mutant that suggests a second excision repair pathway in Neurospora crassa. Mutat. Res. 408:171182.
71. Janssens, F. A. 1909. Spermatogénèse dans les Batraciens. V. La théorie de la chiasmatypie. Nouvelle interprétation des cinèses de maturation. Cellule 25:387411.
72. Jessop, A. P., and, D. G. Catcheside. 1965. Interallelic recombination at the his-1 locus in Neurospora crassa and its genetic control. Heredity 20:237256.
73. Kafer, E. 1981. Mutagen sensitivities and mutator effects of MMS-sensitive mutants in Neurospora. Mutat. Res. 80:4364.
74. Kafer, E., and, G. S. May. 1998. Toward repair pathways in Aspergillus nidulans, p. 477–502. In J. A. Nickoloff and, M. F. Hoekstra (ed.), DNA Damage and Repair, vol. 1. DNA repair in Prokaryotes and Lower Eukaryotes. Humana Press, Totowa, NJ.
75. Kato, A.,, Y. Akamatsu,, Y. Sakuraba, and, H. Inoue. 2004. The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr. Genet. 45:3744.
76. Kato, A., and, H. Inoue. 2006. Growth defect and mutator phenotypes of RecQ-deficient Neurospora crassa mutants separately result from homologous recombination and nonhomologous end joining during repair of DNA double-strand breaks. Genetics 172:113125.
77. Kawabata, T.,, K. Suzuki, and, H. Inoue. 2005. Genetic relationship between genes participating in translesion synthesis and two DNA repair genes mus-46 and mus-47, homologs of Saccharomyces cerevisiae UBC13 and MMS2. Genes Genet. Syst. 80:493.
78. Kawabata, T.,, A. Kato,, K. Suzuki, and, H. Inoue. 2007. Neurospora crassa RAD5 homologue, mus-41, inactivation results in higher sensitivity to mutagens but has little effect on PCNA-ubiquitylation in response to UV-irradiation. Curr. Genet. 52:125135.
79. Kazama, Y.,, C. Ishii,, A. L. Schroeder,, H. Shimada,, M. Wakabayashi, and, H. Inoue. 2008. The Neurospora crassa UVS-3 epistasis group encodes homologues of the ATR/ATRIP checkpoint control system. DNA Repair 7:213229.
80. Keeney, S., and, M. J. Neale. 2006. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem. Soc. Trans. 34:523525.
81. Kelner, A. 1949. Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury. Proc. Natl. Acad. Sci. USA 35:7379.
82. Kitani, Y.,, L. S. Olive, and, A. S. El-Ani. 1962. Genetics of Sordaria fimicola. V. Aberrant segregation at the g locus. Am. J. Bot. 49:697706.
83. Koh, L. Y., and, D. E. A. Catcheside. 2007. Mutation of msh-2 in Neurospora crassa does not reduce the incidence of recombinants with multiple patches of donor chromosome sequence. Fungal Genet. Biol. 44:575584.
84. Krejci, L.,, S. van Komen,, Y. Li,, J. Villemain,, M. S. Reddy,, H. Klein,, T. Ellenberger, and, P. Sung. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305309.
85. Lamb, B. C., and, S. Helmi. 1978. A new type of genetic control of gene conversion, from Ascobolus immersus. Genet. Res. 32:6778.
86. Lamb, B. C., and, G. Shabbir. 2002. The control of gene conversion properties and corresponding-site interference: the effects of conversion control factor 5 on conversion at locus w9 in Ascobolus immersus. Hereditas 137:4151.
87. Lindegren, C. C. 1953. Gene conversion in Saccharomyces. J. Genet. 51:625637.
88. Lissouba, P., and, G. Rizet. 1960. Sur l’existence d’une génétique polarisée ne subissant que des échanges non réciproques. C. R. Hebd. Séanc. Acad. Sci. Paris 250:34083410.
89. Lissouba, P.,, J. Mousseau,, G. Rizet, and, J. L. Rossignol. 1962. Fine structure of genes in the ascomycete Ascobolus immersus. Adv. Genet. 11:343380.
90. Lynn, A.,, R. Soucek, and, G. V. Borner. 2007. ZMM proteins during meiosis: crossover artists at work. Chromosome Res. 15:591605.
91. Malavazi, I.,, J. F. Lima,, M. R. von Zeska Kress Fagundes,, V. P. Efimov,, M. H. de Souza Goldman, and, G. H. Goldman. 2005. The Aspergillus nidulans sldIRAD50 gene interacts with bimEAPC1, a homologue of an anaphase-promoting complex subunit. Mol. Microbiol. 57:222237.
92. Malavazi, I.,, C. P. Semighini,, M. R. von Zeska Kress,, S. D. Harris, and, G. H. Goldman. 2006. Regulation of hyphal morphogenesis and the DNA damage response by the Aspergillus nidulans ATM homolog AtmA. Genetics 173:99109.
93. Mankovich, J. A.,, C. A. McIntyre, and, G. C. Walker. 1989. Nucleotide sequence of the Salmonella typhimurium mutL gene required for mismatch repair: homology of mutL to HexB of Streptococcus pneumoniae and to PMS1 in the yeast Saccharomyces cerevisiae. J. Bacteriol. 171:53255331.
94. Mitchell, M. B. 1955. Aberrant recombination of pyridoxine mutants of Neurospora. Proc. Natl. Acad. Sci. USA 41:671684.
95. Mizutani, O.,, Y. Kudo,, A. Saito,, T. Matsuura,, H. Inoue,, K. Abe, and, K. Gomi. 2008. A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet. Biol. 45:878889.
96. Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25:229253.
97. Morgan, T. H. 1910. Sex limited inheritance in Drosophila. Science 32:120122.
98. Morgan, T. H. 1911. An attempt to analyse the constitution of the chromosomes on the basis of sex limited inheritance in Drosophila. J. Exp. Zool. 11:365414.
99. Morgan, T. H., and, E. Cattell. 1912. Data for the study of sex-linked inheritance in Drosophila. J. Exp. Zool. 13:79101.
100. Munz, P. 1994. An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 137:701707.
101. Murray, N. E. 1960. Complementation and recombination between methionine-2 alleles in Neurospora crassa. Heredity 15:207217.
102. Murray, N. E. 1963. Polarized recombination and fine structure within the me-2 gene of Neurospora crassa. Genetics 48:11631183.
103. Murray, N. E. 1968. Polarized intragenic recombination in chromosome rearrangements of Neurospora. Genetics 58:181191.
104. Nassif, N.,, J. Penney,, S. Pal,, W. R. Engels, and, G. B. Gloor. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element induced gap repair. Mol. Cell. Biol. 14:16131625.
105. Nayak, T.,, E. Szewczyk,, C. E. Oakley,, A. Osmani,, L. Ukil,, S. L. Murray,, M. J. Hynes,, S. A. Osmani, and, B. R. Oakley. 2006. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:15571566.
106. Newmeyer, D., and, D. R. Galeazzi. 1977. The instability of Neurospora duplication Dp(IL->IR)H4250 and its genetic control. Genetics 85:461487.
107. Newmeyer, D., and, D. R. Galleazzi. 1978. A meiotic UV-sensitive mutant which causes deletion of duplications in Neurospora. Genetics 89:245269.
108. Newmeyer, D., and, D. R. Galeazzi. 1981. A meiotic UV-sensitive mutant that causes deletion of duplication in Neurospora. Genetics 89:245269.
109. Neyton, S.,, F. Lespinasse,, P. B. Moens,, R. Paul,, P. Gaudray,, V. Paquis-Flucklinger, and, S. Santucci-Darmanin. 2004. Association between MSH4 (MutS homologue 4) and the DNA strand-exchange RAD51 and DMC1 proteins during mammalian meiosis. Mol. Hum. Reprod. 10:917924.
110. Nicolas, A., and, J.-L. Rossignol. 1989. Intermediates in homologous recombination revealed by marker effects in Ascobolus. Genome 31:528535.
111. Nicolas, A.,, D. Treco,, N. P. Schultes, and, J. W. Szostak. 1989. Identification of an initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338:3539.
112. Ninomiya, Y.,, K. Suzuki,, C. Ishii, and, H. Inoue. 2004. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101:1224812253.
113. Novak, J. E.,, P. B. Ross-Macdonald, and, G. S. Roeder. 2001. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158:10131025.
114. Olive, L. S. 1959. Aberrant tetrads in Sordaria fimicola. Proc. Natl. Acad. Sci. USA 45:727732.
115. Pâques, F., and, J. E. Haber. 1999. Multiple pathways of recombination induced by double strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349404.
116. Pâques, F.,, W. Y. Leung, and, J. E. Haber. 1998. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell. Biol. 18:20452054.
117. Pickard, A.,, L. Braccini,, G. Macino, and, C. Cogoni. 2003. The QDE-3 homologue RecQ-2 co-operates with QDE-3 in DNA repair in Neurospora crassa. Curr. Genet. 42:220227.
118. Pritchard, R. H. 1955. The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9:343371.
119. Raper, J. R.,, M. G. Baxter, and, R. B. Middleton. 1958. The genetic structure of the incompatibility factors in Schizophyllum commune. Proc. Natl. Acad. Sci. USA 44:889900.
120. Raper, J. R.,, M. G. Baxter, and, A. H. Ellingboe. 1960. The genetic structure of the incompatibility factors in Schizophyllum commune. The A factor. Proc. Natl. Acad. Sci. USA 46:833842.
121. Rasmussen, J. P.,, F. J. Bowring,, P. J. Yeadon, and, D. E. A. Catcheside. 2002. Targeting vectors for gene diversification by meiotic recombination in Neurospora crassa. Plasmid 47:1825.
122. Rijkers, T.,, J. van den Ouweland,, B. Morolli,, A. G. Rolink,, W. M. Baarends,, P. P. H. van Sloun,, P. H. M. Lohman, and, A. Pastink. 1998. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18:64236429.
123. Ross-Macdonald, P., and, G. S. Roeder. 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:10691080.
124. Rudolph, C.,, C. Kunz,, S. Parisi,, E. Lehmann,, E. Hartsuiker,, B. Fartmann,, W. Kraemer,, J. Kohli, and, O. Fleck. 1999. The msh2 gene of Schizosaccharomyces pombe is involved in mismatch repair, mating type switching, and meiotic chromosome organization. Mol. Cell. Biol. 19:241250.
125. Sakai, W.,, C. Ishii, and, H. Inoue. 2002. The upr-1 gene encodes a catalytic subunit of the DNA polymerase ζ which is involved in damage-induced mutagenesis in Neurospora crassa. Mol. Genet. Genomics 267:401408.
126. Sakai, W.,, Y. Wada,, Y. Naoi,, C. Ishii, and, H. Inoue. 2003. Isolation and characterization of the Neurospora crassa REV1 and REV7 homologs: evidence for involvement in damage-induced mutagenesis. DNA Repair 2:337346.
127. Sato, M.,, T. Niki,, T. Tokou,, K. Suzuki,, M. Fujimura, and, A. Ichiishi. 2008. Genetic analysis of the Neurospora crassa RAD14 homolog mus-43 and the RAD10 homolog mus-44 reveals that they belong to the mus-38 pathway of nucleotide excision repair systems. Genes Genet. Syst. 83:111.
128. Schneider, J.,, P. Bajwa,, F. C. Johnson,, S. R. Bhaumik, and, A. Shilatifard. 2006. Rtt109 is required for proper H3K56 acetylation—a chromatin mark associated with the elongating RNA polymerase II. J. Biol. Chem. 281:3727037274.
129. Schroeder, A. L. 1970. Ultraviolet-sensitive mutants of Neurospora. I. Genetic basis and effect on recombination. Mol. Gen. Genet. 107:291304.
130. Schroeder, A. L.,, H. Inoue, and, M. S. Sachs. 1998. DNA repair in Neurospora, p. 503–538. In J. A. Nickoloff and, M. F. Hoekstra (ed.), DNA Damage and Repair, vol. 1. DNA Repair in Prokaryotes and Lower Eukaryotes. Humana Press, Totowa, NJ.
131. Selker, E. U. 1990. Premeiotic instability in Neurospora. Annu. Rev. Genet. 24:579613.
132. Shinohara, A., and, T. Ogawa. 1995. Homologous recombination and the roles of double-strand breaks. Trends Biochem. Sci. 20:387391.
133. Shiu, P. K. T., and, R. L. Metzenberg. 2002. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:14831495.
134. Siddiqi, O. H. 1962. The fine structure of the paba-1 region of Aspergillus nidulans. Genet. Res. Camb. 3:6989.
135. Simchen, G. 1967. Genetic control of recombination and the incompatibility system in Schizophyllum commune. Genet. Res. Camb. 9:195210.
136. Smith, B. R. 1966. Genetic controls of recombination. Heredity 21:481498.
137. Smith, B. R. 1968. A genetic control of recombination in Neurospora crassa. Heredity 23:162163.
138. Smith, G. R.,, M. N. Boddy,, P. Shanahan, and, P. Russell. 2003. Fission yeast Mus81•Eme1 Holliday junction resolvase is required for meiotic crossing over but not for gene conversion. Genetics 165:22892293.
139. Soshi, T.,, Y. Sakuraba,, E. Kafer, and, H. Inoue. 1996. The mus-8 gene of Neurospora crassa encodes a structural and functional homolog of Rad6 protein of Saccharomyces cerevisiae. Curr. Genet. 30:224231.
140. Stadler, D. R. 1958. Gene conversion of cysteine mutants in Neurospora. Genetics 44:647655.
141. Stadler, D. R., and, A. M. Towe. 1963. Recombination of allelic cysteine mutants in Neurospora. Genetics 48:13231344.
142. Stamberg, J. 1968. Two independent gene systems controlling recombination in Schizophyllum commune. Mol. Gen. Genet. 102:221228.
143. Storlazzi, A.,, S. Tessé,, S. Gargano,, F. James,, N. Kleckner, and, D. Zickler. 2003. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling and reductional division. Genes Dev. 17:26752687.
144. Strand, M.,, T. A. Prolla,, R. M. Liskay, and, T. D. Petes. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274276.
145. Strathern, J. N.,, B. K. Shafer, and, C. B. McGill. 1995. DNA synthesis errors associated with double-strand-break repair. Genetics 140:965972.
146. Strickland, W. N. 1958. An analysis of interference in Aspergillus nidulans. Proc. R. Soc. Lond. B, 149:82101.
147. Sturtevant, A. H. 1913. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14:4359.
148. Su, S. S.,, R. S. Lahue,, K. G. Au, and, P. Modrich. 1988. Mispair specificity of methyl-directed mismatch correction in vitro. J. Biol. Chem. 263:68296835.
149. Sun, H.,, D. Treco, and, J. W. Szostak. 1991. Extensive 3’-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:11551161.
150. Suzuki, K.,, A. Kato,, Y. Sakuraba, and, H. Inoue. 2005. Srs2 and RecQhomologs cooperate in mei-3-mediated homologous recombination repair of Neurospora crassa. Nucleic Acids Res. 33:18481858.
151. Szostak, J. W.,, T. L. Orr-Weaver,, R. J. Rothstein, and, F. W. Stahl. 1983. The double strand break repair model for recombination. Cell 33:2535.
152. Tomita, H.,, T. Soshi, and, H. Inoue. 1993. The Neurospora uvs-2 gene encodes a protein which has homology to yeast Rad18 with unique zinc finger motifs. Mol. Gen. Genet. 238:225233.
153. Veaute, X.,, J. Jeusset,, C. Soustelle,, S. C. Kowalezykowski,, E. LeCam, and, F. Fabre. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309312.
154. Villalba, F.,, J. Collemare,, P. Landraud,, K. Lambou,, V. Brozek,, B. Cirer,, D. Morin,, C. Bruel,, R. Beffa, and, M. Lebrun. 2008. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet. Biol. 45:6875.
155. Watanabe, K.,, Y. Sakuraba, and, H. Inoue. 1997. Genetic and molecular characterization of Neurospora crassa mus-23: a gene involved in recombinational repair. Mol. Gen. Genet. 256:436445.
156. Whitehouse, H. L. K. 1963. A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature 199:10341040.
157. Williamson, M. S.,, J. C. Game, and, S. Fogel. 1985. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110:609646.
158. Yajima, H.,, M. Takao,, S. Yasuhira,, J. H. Zhao,, C. Ishii,, H. Inoue, and, A. Yasui. 1995. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 14:23932399.
159. Yeadon, P. J., and, D. E. A. Catcheside. 1995. The chromosomal region which includes the recombinator cog in Neurospora crassa is highly polymorphic. Curr. Genet. 28:155163.
160. Yeadon, P. J., and, D. E. A. Catcheside. 1998. Long, interrupted conversion tracts initiated by cog in Neurospora crassa. Genetics 148:113122.
161. Yeadon, P. J., and, D. E. A. Catcheside. 1999. Polymorphism around cog extends into adjacent structural genes. Curr. Genet. 35:631637.
162. Yeadon, P. J.,, F. J. Bowring, and, D. E. A. Catcheside. 2004a. Alleles of the hotspot cog are co-dominant in effect on recombination in the his-3 region of Neurospora. Genetics 167:11431153.
163. Yeadon, P. J.,, F. J. Bowring, and, D. E. A. Catcheside. 2004b. Sequence heterology and gene conversion at his-3 of Neurospora crassa. Curr. Genet. 45:289301.
164. Yeadon, P. J.,, L. Y. Koh,, F. J. Bowring,, J. P. Rasmussen, and, D. E. A. Catcheside. 2002. Recombination at his-3 in Neurospora declines exponentially with distance from the initiator, cog. Genetics 162:747753.
165. Yeadon, P. J.,, J. P. Rasmussen, and, D. E. A. Catcheside. 2001. Recombination events in Neurospora crassa may cross a translocation breakpoint by a template-switching mechanism. Genetics 159:571579.
166. Yokoyama, M.,, H. Inoue,, C. Ishii, and, Y. Murakami. 2007. The novel gene mus7+ is involved in the repair of replication-associated DNA damage in fission yeast. DNA Repair 6:770780.
167. Zalevsky, J.,, A. J. MacQueen,, J. B. Duffy,, K. J. Kemphues, and, A. M. Villeneuve. 1999. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics 153:12711283.


Generic image for table

DNA repair pathways

Citation: Yeadon P, Inoue H, Bowring F, Suzuki K, Catcheside D. 2010. DNA Repair and Recombination, p 96-112. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error