Chapter 9 : Chromatin Structure and Modification

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Chromatin Structure and Modification, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap09-2.gif


Histones and chromatin modifiers are quite conserved, but there is some variation, even among the fungi. This chapter discusses what is known about chromatin structure in the filamentous fungi. The information is compared to what is known for other eukaryotes and exciting areas for future research are highlighted. In budding yeast, transcription of the core histones is tightly regulated and is primarily restricted to the S phase of the cell cycle. Posttranslational modification of histone proteins by acetylation and methylation was first described in 1964. Acetylated histones supported higher rates of RNA synthesis than did unacetylated histones, suggesting that posttranslational modification of the histone proteins could produce functionally distinct chromatin domains. Histone modifications can be loosely grouped into "active marks," which facilitate processes such as transcription, recombination, and DNA repair, and "repressive marks," which tend to inhibit these processes. Changes in chromatin structure from a closed to an open conformation may result from transcription. The chromatin remodelers that catalyze the dramatic changes in nucleosome organization at the promoters are also described in the chapter. The investigation of chromatin structure and function in the filamentous fungi has been fruitful, but much remains unknown. It will be interesting to determine how histone variants, chromatin remodeling, and chromatin modifications impact additional biological processes in filamentous fungi. The complete genome sequences available for many fungi allow high-resolution mapping of the distributions of modified histones, histone variants, and nonhistone chromatin proteins, which should provide some clues to their functions.

Citation: Lewis Z, Selker E. 2010. Chromatin Structure and Modification, p 113-123. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch9

Key Concept Ranking

RNA Polymerase II
Histone Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Covalent modifications of the H3 and H4 N-terminal tails. The amino acid sequence of the N-terminal tails of H3 and H4 is shown. Some of the modified residues are shown in larger font, and modification of these residues by acetylation (A), methylation (M), or phosphorylation (P) is indicated above the respective amino acids. The modifications highlighted by an asterisk have been characterized in filamentous fungi.

Citation: Lewis Z, Selker E. 2010. Chromatin Structure and Modification, p 113-123. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Chromatin modification profile for LGVII. The base composition of LGVII is shown as the moving average of %GC at the top of the plot. The distribution of DNA methylation (5mC), H3 trimethyl K9 (H3K9me3), HETEROCHROMATIN PROTEIN-1 (HP1), and H3 dimethyl K4 (H3K4me2) is shown for LGVII. The positions of predicted open reading frames (genes) and repeats are also indicated. The scale bar on the top left indicates 0.5 Mb.

Citation: Lewis Z, Selker E. 2010. Chromatin Structure and Modification, p 113-123. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adhvaryu, K. K.,, S. A. Morris,, B. D. Strahl, and, E. U. Selker. 2005. Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot. Cell 4:14551464.
2. Allfrey, V. G.,, R. Faulkner, and, A. E. Mirsky. 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51:786794.
3. Baidyaroy, D.,, G. Brosch,, J. H. Ahn,, S. Graessle,, S. Wegener,, N. J. Tonukari,, O. Caballero,, P. Loidl, and, J. D. Walton. 2001. A gene related to yeast HOS2 histone deacetylase affects extracellular depolymerase expression and virulence in a plant pathogenic fungus. Plant Cell 13:16091624.
4. Baidyaroy, D.,, G. Brosch,, S. Graessle,, P. Trojer, and, J. D. Walton. 2002. Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi. Eukaryot. Cell 1:538547.
5. Bannister, A. J.,, P. Zegerman,, J. F. Partridge,, E. A. Miska,, J. O. Thomas,, R. C. Allshire, and, T. Kouzarides. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120124.
6. Barra, J. L.,, A. M. Holmes,, A. Gregoire,, J. L. Rossignol, and, G. Faugeron. 2005. Novel relationships among DNA methylation, histone modifications and gene expression in Ascobolus. Mol. Microbiol. 57:180195.
7. Barra, J. L.,, L. Rhounim,, J. L. Rossignol, and, G. Faugeron. 2000. Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol. Cell. Biol. 20:6169.
8. Bedford, M. T. 2007. Arginine methylation at a glance. J. Cell Sci. 120:42434246.
9. Bedford, M. T., and, S. Richard. 2005. Arginine methylation an emerging regulator of protein function. Mol. Cell 18:263272.
10. Belden, W. J.,, J. J. Loros, and, J. C. Dunlap. 2007. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25:587600.
11. Berger, H.,, A. Basheer,, S. Bock,, Y. Reyes-Dominguez,, T. Dalik,, F. Altmann, and, J. Strauss. 2008. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol. Microbiol. 69:13851398.
12. Bhaumik, S. R.,, E. Smith, and, A. Shilatifard. 2007. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14:10081016.
13. Black, B. E., and, E. A. Bassett. 2008. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol. 20:91100.
14. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
15. Brosch, G.,, M. Dangl,, S. Graessle,, A. Loidl,, P. Trojer,, E. M. Brandtner,, K. Mair,, J. D. Walton,, D. Baidyaroy, and, P. Loidl. 2001. An inhibitor-resistant histone deacetylase in the plant pathogenic fungus Cochliobolus carbonum. Biochemistry 40:1285512863.
16. Brosch, G.,, P. Loidl, and, S. Graessle. 2008. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol. Rev. 32:409439.
17. Cairns, B. R. 2007. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14:989996.
18. Carmen, A. A.,, P. R. Griffin,, J. R. Calaycay,, S. E. Rundlett,, Y. Suka, and, M. Grunstein. 1999. Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc. Natl. Acad. Sci. USA 96:1235612361.
19. Carrozza, M. J.,, B. Li,, L. Florens,, T. Suganuma,, S. K. Swanson,, K. K. Lee,, W. J. Shia,, S. Anderson,, J. Yates,, M. P. Washburn, and, J. L. Workman. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581592.
20. Chicas, A.,, E. C. Forrest,, S. Sepich,, C. Cogoni, and, G. Macino. 2005. Small interfering RNAs that trigger post-transcriptional gene silencing are not required for the his-tone H3 Lys9 methylation necessary for transgenic tandem repeat stabilization in Neurospora crassa. Mol. Cell. Biol. 25:37933801.
21. Colot, V.,, L. Maloisel, and, J. L. Rossignol. 1996. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86:855864.
22. Colot, V., and, J. L. Rossignol. 1999. Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402411.
23. Dali-Youcef, N.,, M. Lagouge,, S. Froelich,, C. Koehl,, K. Schoonjans, and, J. Auwerx. 2007. Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann. Med. 39:335345.
24. de Ruijter, A. J.,, A. H. van Gennip,, H. N. Caron,, S. Kemp, and, A. B. van Kuilenburg. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370:737749.
25. Eirin-Lopez, J., and, J. Ausio. 2007. H2A. Z-Mediated genome-wide chromatin specialization. Curr. Genomics 8:5966.
26. Folco, H. D.,, M. Freitag,, A. Ramon,, E. D. Temporini,, M. E. Alvarez,, I. Garcia,, C. Scazzocchio,, E. U. Selker, and, A. L. Rosa. 2003. Histone H1 Is required for proper regulation of pyruvate decarboxylase gene expression in Neurospora crassa. Eukaryot. Cell 2:341350.
27. Freedman, T., and, P. J. Pukkila. 1993. De novo methylation of repeated sequences in Coprinus cinereus. Genetics 135:357366.
28. Freitag, M.,, P. C. Hickey,, T. K. Khlafallah,, N. D. Read, and, E. U. Selker. 2004. HP1 is essential for DNA methylation in neurospora. Mol. Cell 13:427434.
29. Freitag, M.,, R. L. Williams,, G. O. Kothe, and, E. U. Selker. 2002. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc. Natl. Acad. Sci. 99:88028807.
30. Froehlich, A. C.,, Y. Liu,, J. J. Loros, and, J. C. Dunlap. 2002. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815819.
31. Galagan, J. E., and, E. U. Selker. 2004. RIP: the evolutionary cost of genome defense. Trends Genet. 20:417423.
32. Garcia, I.,, R. Gonzalez,, D. Gomez, and, C. Scazzocchio. 2004. Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. Eukaryot. Cell 3:144156.
33. Goll, M. G., and, T. H. Bestor. 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74:481514.
34. Graessle, S.,, M. Dangl,, H. Haas,, K. Mair,, P. Trojer,, E. M. Brandtner,, J. D. Walton,, P. Loidl, and, G. Brosch. 2000. Characterization of two putative histone deacetylase genes from Aspergillus nidulans. Biochim. Biophys. Acta 1492:120126.
35. Green, E. M.,, A. J. Antczak,, A. O. Bailey,, A. A. Franco,, K. J. Wu,, J. R. Yates III, and, P. D. Kaufman. 2005. Replication-independent histone deposition by the HIR complex and Asf1. Curr. Biol. 15:20442049.
36. Grewal, S. I., and, S. Jia. 2007. Heterochromatin revisited. Nat. Rev. Genet. 8:3546.
37. Grimaldi, B.,, P. Coiro,, P. Filetici,, E. Berge,, J. R. Dobosy,, M. Freitag,, E. U. Selker, and, P. Ballario. 2006. The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol. Biol. Cell 17:45764583.
38. Gunjan, A.,, J. Paik, and, A. Verreault. 2005. Regulation of histone synthesis and nucleosome assembly. Biochimie 87:625635.
39. Hays, S. M.,, J. Swanson, and, E. U. Selker. 2002. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa. Genetics 160:961973.
40. Henderson, I. R., and, S. E. Jacobsen. 2007. Epigenetic inheritance in plants. Nature 447:418424.
41. Henikoff, S., and, K. Ahmad. 2005. Assembly of variant his-tones into chromatin. Annu. Rev. Cell Dev. Biol. 21:133153.
42. Henikoff, S.,, T. Furuyama, and, K. Ahmad. 2004. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20:320326.
43. Honda, S., and, E. U. Selker. 2008. Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol. Cell. Biol. 28:60446055.
44. Ishii, S.,, A. Koshiyama,, F. N. Hamada,, T. Y. Nara,, K. Iwabata,, K. Sakaguchi, and, S. H. Namekawa. 2008. Interaction between Lim15/Dmc1 and the homologue of the large subunit of CAF-1: a molecular link between recombination and chromatin assembly during meiosis. FEBS J. 275:20322041.
45. Izzo, A.,, K. Kamieniarz, and, R. Schneider. 2008. The histone H1 family: specific members, specific functions? Biol. Chem. 389:333343.
46. Jenuwein, T., and, C. D. Allis. 2001. Translating the histone code. Science 293:10741080.
47. Keogh, M. C.,, S. K. Kurdistani,, S. A. Morris,, S. H. Ahn,, V. Podolny,, S. R. Collins,, M. Schuldiner,, K. Chin,, T. Punna,, N. J. Thompson,, C. Boone,, A. Emili,, J. S. Weissman,, T. R. Hughes,, B. D. Strahl,, M. Grunstein,, J. F. Greenblatt,, S. Buratowski, and, N. J. Krogan. 2005. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593605.
48. Klose, R. J., and, A. P. Bird. 2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31:8997.
49. Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128:693705.
50. Kouzminova, E., and, E. U. Selker. 2001. dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J. 20:43094323.
51. Krude, T., and, C. Keller. 2001. Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle. Cell. Mol. Life Sci. 58:665672.
52. Lachner, M.,, D. O’Carroll,, S. Rea,, K. Mechtler, and, T. Jenuwein. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116120.
53. Lall, S. 2007. Primers on chromatin. Nat. Struct. Mol. Biol. 14:11101115.
54. Latham, J. A., and, S. Y. Dent. 2007. Cross-regulation of his-tone modifications. Nat. Struct. Mol. Biol. 14:10171024.
55. Lee, D. W.,, M. Freitag,, E. U. Selker, and, R. Aramayo. 2008. A cytosine methyltransferase homologue is essential for sexual development in Aspergillus nidulans. PLoS ONE 3:e2531.
56. Lewis, Z. A.,, S. Honda,, T. K. Khlafallah,, J. K. Jeffress,, M. Freitag,, F. Mohn,, D. Schubeler, and, E. U. Selker. 2009. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 19:427437.
57. Luger, K.,, A. W. Mader,, R. K. Richmond,, D. F. Sargent, and, T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251260.
58. Malagnac, F.,, A. Gregoire,, C. Goyon,, J. L. Rossignol, and, G. Faugeron. 1999. Masc2, a gene from Ascobolus encoding a protein with a DNA-methyltransferase activity in vitro, is dispensable for in vivo methylation. Mol. Microbiol. 31:331338.
59. Malagnac, F.,, B. Wendel,, C. Goyon,, G. Faugeron,, D. Zickler,, J. L. Rossignol,, M. Noyer-Weidner,, P. Vollmayr,, T. A. Trautner, and, J. Walter. 1997. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91:281290.
60. Mathieu, M.,, S. Fillinger, and, B. Felenbok. 2000. In vivo studies of upstream regulatory cis-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol. Microbiol. 36:123131.
61. Miao, V. P.,, M. Freitag, and, E. U. Selker. 2000. Short TpA-rich segments of the zeta-eta region induce DNA methylation in Neurospora crassa. J. Mol. Biol. 300:249273.
62. Mooibroek, H.,, A. G. Kuipers,, J. H. Sietsma,, P. J. Punt, and, J. G. Wessels. 1990. Introduction of hygromycin B resistance into Schizophyllum commune: preferential methylation of donor DNA. Mol. Gen. Genet. 222:4148.
63. Muro-Pastor, M. I.,, R. Gonzalez,, J. Strauss,, F. Narendja, and, C. Scazzocchio. 1999. The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J. 18:15841597.
64. Nakayashiki, H.,, K. Ikeda,, Y. Hashimoto,, Y. Tosa, and, S. Mayama. 2001. Methylation is not the main force repressing the retrotransposon MAGGY in Magnaporthe grisea. Nucleic Acids Res. 29:12781284.
65. Narendja, F. M.,, M. A. Davis, and, M. J. Hynes. 1999. AnCF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNase I-hypersensitive site in the 5’ region of the amdS gene. Mol. Cell. Biol. 19:65236531.
66. Palmer, J. M.,, R. M. Perrin,, T. R. Dagenais, and, N. P. Keller. 2008. H3K9 methylation regulates growth and development in Aspergillus fumigatus. Eukaryot. Cell 7:20522060.
67. Peng, J. C., and, G. H. Karpen. 2008. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 18:204211.
68. Ramon, A.,, M. I. Muro-Pastor,, C. Scazzocchio, and, R. Gonzalez. 2000. Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol. Microbiol. 35:223233.
69. Reichmann, M.,, A. Jamnischek,, G. Weinzierl,, O. Ladendorf,, S. Huber,, R. Kahmann, and, J. Kamper. 2002. The histone deacetylase Hda1 from Ustilago maydis is essential for teliospore development. Mol. Microbiol. 46:11691182.
70. Reyes-Dominguez, Y.,, F. Narendja,, H. Berger,, A. Gallmetzer,, R. Fernandez-Martin,, I. Garcia,, C. Scazzocchio, and, J. Strauss. 2008. Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot. Cell 7:656663.
71. Rossignol, J. L., and, G. Faugeron. 1995. MIP: an epigenetic gene silencing process in Ascobolus immersus. Curr. Top. Microbiol. Immunol. 197:179191.
72. Rountree, M. R., and, E. U. Selker. 1997. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11:23832395.
73. Roze, L. V.,, A. E. Arthur,, S. Y. Hong,, A. Chanda, and, J. E. Linz. 2007. The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol. Microbiol. 66:713726.
74. Rusche, L. N.,, A. L. Kirchmaier, and, J. Rine. 2003. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72:481516.
75. Schnitzler, G. R. 2008. Control of nucleosome positions by DNA sequence and remodeling machines. Cell Biochem. Biophys. 51:6780.
76. Selker, E. U. 1997. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13:296301.
77. Selker, E. U. 1998. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95:94309435.
78. Selker, E. U.,, M. Freitag,, G. O. Kothe,, B. S. Margolin,, M. R. Rountree,, C. D. Allis, and, H. Tamaru. 2002. Induction and maintenance of nonsymmetrical DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 99(Suppl. 4):1648516490.
79. Selker, E. U.,, D. Y. Fritz, and, M. J. Singer. 1993a. Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation in Neurospora. Science 262:17241728.
80. Selker, E. U.,, G. A. Richardson,, P. W. Garrett-Engele,, M. J. Singer, and, V. Miao. 1993b. Dissection of the signal for DNA methylation in the zeta-eta region of Neurospora. Cold Spring Harbor Symp. Quant. Biol. 58:323329.
81. Selker, E. U., and, J. N. Stevens. 1985. DNA methylation at asymmetric sites is associated with numerous transition mutations. Proc. Natl. Acad. Sci. USA 82:81148118.
82. Selker, E. U., and, J. N. Stevens. 1987. Signal for DNA methylation associated with tandem duplication in Neurospora crassa. Mol. Cell. Biol. 7:10321038.
83. Selker, E. U.,, N. A. Tountas,, S. H. Cross,, B. S. Margolin,, J. G. Murphy,, A. P. Bird, and, M. Freitag. 2003. The methylated component of the Neurospora crassa genome. Nature 422:893897.
84. Shwab, E. K.,, J. W. Bok,, M. Tribus,, J. Galehr,, S. Graessle, and, N. P. Keller. 2007. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell 6:16561664.
85. Singer, M. J.,, B. A. Marcotte, and, E. U. Selker. 1995. DNA methylation associated with repeat-induced point mutation in Neurospora crassa. Mol. Cell. Biol. 15:55865597.
86. Smith, C. L., and, C. L. Peterson. 2005. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65:115148.
87. Suzuki, M. M., and, A. Bird. 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9:465476.
88. Tagami, H.,, D. Ray-Gallet,, G. Almouzni, and, Y. Nakatani. 2004. Histone H3.1 and H3.3 complexes mediate nucleo-some assembly pathways dependent or independent of DNA synthesis. Cell 116:5161.
89. Takayama, Y., and, K. Takahashi. 2007. Differential regulation of repeated histone genes during the fission yeast cell cycle. Nucleic Acids Res. 35:32233237.
90. Tamaru, H., and, E. U. Selker. 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277283.
91. Tamaru, H., and, E. U. Selker. 2003. Synthesis of signals for de novo DNA methylation in Neurospora crassa. Mol. Cell. Biol. 23:23792394.
92. Tamaru, H.,, X. Zhang,, D. McMillen,, P. B. Singh,, J. Nakayama,, S. I. Grewal,, C. D. Allis,, X. Cheng, and, E. U. Selker. 2003. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34:7579.
93. Taverna, S. D.,, H. Li,, A. J. Ruthenburg,, C. D. Allis, and, D. J. Patel. 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:10251040.
94. Torreblanca, J.,, S. Stumpferl, and, C. W. Basse. 2003. His-tone deacetylase Hda1 acts as repressor of the Ustilago maydis biotrophic marker gene mig1. Fungal Genet. Biol. 38:2232.
95. Tribus, M.,, J. Galehr,, P. Trojer,, G. Brosch,, P. Loidl,, F. Marx,, H. Haas, and, S. Graessle. 2005. HdaA, a major class 2 his-tone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Eukaryot. Cell 4:17361745.
96. Trojer, P.,, E. M. Brandtner,, G. Brosch,, P. Loidl,, J. Galehr,, R. Linzmaier,, H. Haas,, K. Mair,, M. Tribus, and, S. Graessle. 2003. Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res. 31:39713981.
97. Trojer, P.,, M. Dangl,, I. Bauer,, S. Graessle,, P. Loidl, and, G. Brosch. 2004. Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity. Biochemistry 43:1083410843.
98. Weake, V. M., and, J. L. Workman. 2008. Histone ubiquiti-nation: triggering gene activity. Mol. Cell 29:653663.
99. Zhang, X.,, Z. Yang,, S. I. Khan,, J. R. Horton,, H. Tamaru,, E. U. Selker, and, X. Cheng. 2003. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell 12:177185.
100. Zilberman, D.,, D. Coleman-Derr,, T. Ballinger, and, S. Henikoff. 2008. Histone H2A. Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125129.
101. Zlatanova, J., and, A. Thakar. 2008. H2A.Z: view from the top. Structure 16:166179.


Generic image for table

Histone genes in and

Citation: Lewis Z, Selker E. 2010. Chromatin Structure and Modification, p 113-123. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error