1887

Chapter 12 : Mycoviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mycoviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap12-2.gif

Abstract:

This chapter provides an overview of viruses associated with filamentous fungi while highlighting recent developments in mycovirus molecular biology that illustrate the potential utility of mycoviruses for fundamental research and practical applications. Hypoviruses were originally classified as double-stranded RNA (dsRNA) viruses due to the prominence of dsRNA found in extracts of infected . While the six taxonomic families described in this chapter accommodate the majority of mycoviruses, a growing list of recently characterized mycoviruses remains unclassified. Mycovirus infections share several features that are distinctive from plant and animal viruses. Perhaps the most significant difference is that the life cycle of mycoviruses is not punctuated by an extracellular transmission phase. The major taxonomic classes of mycoviruses are represented among the viruses that are associated with the hypovirulence phenotype, which also includes a number of interesting unclassified mycoviruses. Antiviral defense mechanisms currently identified in fungi include a self/nonself recognition system that presents barriers to the major mode of mycovirus transmission and an RNA recognition system that targets mycovirus RNA for destruction. The concept of engineering mycoviruses to manipulate the phenotypic traits of the fungal host has, in fact, been reduced to practice. Mycoviruses are now known to be widely distributed throughout the kingdom Fungi. Advances made with the hypovirus-experimental system have demonstrated that, similar to viruses of plants and animals, mycoviruses have utility for elucidating host function and manipulating host phenotype.

Citation: Nuss D. 2010. Mycoviruses, p 145-152. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch12

Key Concept Ranking

Plant Pathogenic Fungi
0.41506013
0.41506013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Hypovirus CHV1-EP713 genome organization, expression strategy, and reverse genetics. (A) The coding strand RNA of prototypic hypovirus CHV1-EP713 consists of 12,712 nucleotides (nt), excluding the poly(A) tail. The 5’-proximal coding domain, open reading frame A (622 codons), encodes two polypeptides, p29 and p40, that are released from a polyprotein, p69, by an autocatalytic event mediated by p29. Expression of open reading frame B (3,165 codons) also involves an auto-proteolytic event in which a 48-kDa polypeptide, p48, is released from the N-terminal portion of the encoded polyprotein. Adapted with permission from . (B) Diagram illustrating the basic elements of the transformation (left) and transfection (right) protocols. Parallel horizontal bars (=) indicate hypovirus dsRNA. Adapted with permission from .

Citation: Nuss D. 2010. Mycoviruses, p 145-152. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch12
1. Buck, K. W., and, C. M. Brasir. 2002. Viruses of the Dutch elm disease fungus, p. 165–190. In S. Tavantzis (ed.), Molecular Biology of Double-stranded RNA: Concepts and Applications in Agriculture, Forestry and Medicine. CRC Press, Boca Raton, FL.
2. Buck, K. W.,, R. Esteban, and, B. I. Hillman. 2005. Family Narnaviridae, p. 751–756. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
3. Caten, C. E. 1972. Vegetative incompatibility and cytoplasmic infection of fungi. J. Gen. Microbiol. 72:221229.
4. Cerutti, H., and, J. A. Casas-Mollano. 2005. On the origin and function of RNA-mediated silencing: from protists to man. Curr. Genet. 50:8199.
5. Chen, B.,, M. G. Craven,, G. H. Choi, and, D. L. Nuss. 1994a. cDNA-derived hypovirus RNA in transformed chestnut blight fungus is spliced and trimmed of vector nucleotides. Virology 202:441448.
6. Chen, B.,, G. H. Choi, and, D. L. Nuss. 1994b. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264:17621764.
7. Chen, B.,, L. M. Geletka, and, D. L. Nuss. 2000. Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. J. Virol.74:75627567.
8. Choi, G. H.,, B. Chen, and, D. L. Nuss. 1995. Virus-mediated or transgenic suppression of a G protein α subunit and attenuation of fungal virulence. Proc. Natl. Acad. Sci. USA 92:305309.
9. Choi, G. H.,, D. M. Pawlyk, and, D. L. Nuss. 1991. The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183:747752.
10. Choi, G. H., and, D. L. Nuss. 1992. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800803.
11. Choudhary S.,, H.-C. Lee,, M. Maiti,, Q. He,, P. Cheng,, Q. Lui, and, Y. Lui. 2007. A double-stranded-RNA response program important for RNA interference efficiency. Mol. Cell. Biol. 27:39954005.
12. Churchill, A. C. L.,, L. M. Ciufetti,, D. R. Hansen,, H. D. Van Etten, and, N. K. Van Alfen. 1990. Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids. Curr. Genet. 17:2531.
13. Cortesi, P., and, M. G. Milgroom. 1998. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl. Environ. Microbiol. 64:29882994.
14. Dawe, A. L.,, V. C. McMains,, M. Panglao,, S. Kasahara,, B. Chen, and, D. L. Nuss. 2003. An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magna-porthe grisea. Microbiology 149:23732384.
15. Dawe, V. H., and, C. W. Kuhn. 1983. Isolation and characterization of a double-stranded DNA mycovirus infecting the aquatic fungus Rhizidiomyces. Virology 130:2128.
16. Deng, F.,, T. D. Allen, and, D. L. Nuss. 2007. Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 6:235244.
17. Deng, F.,, R. Xu, and, G. J. Boland. 2003. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 93:14071414.
18. Fahima, T.,, P. Kazmierczak,, D. R. Hansen,, P. Pfeiffer, and, N. K. Van Alfen. 1993. Membrane-associated replication of an unencapsidated double-strand RNA of the fungus, Cryphonectria parasitica. Virology 195:8189.
19. Gao, S., and, D. L. Nuss. 1996. Distinct roles for two G-protein alpha subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc. Natl. Acad. Sci. USA 93:1412214127.
20. Ghabrial, S. A.,, K. W. Buck,, B. I. Hillman, and, R. G. Milne. 2005a. Family Partitiviridae, p. 581–590. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
21. Ghabrial, S. A.,, D. Jiang, and, J. R. Caston. 2005b. Family Chrysoviridae, p. 591–595. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
22. Glass, N. L., and, I. Kaneko. 2003. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell 2:18.
23. Hammond, T. M.,, M. D. Andrewski,, M. J. Roossinck, and, N. P. Keller. 2008. Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot. Cell 7:350357.
24. Hillman, B. I., and, N. Suzuki. 2004. Viruses of the chestnut blight fungus. Adv. Virus Res. 63:423473.
25. Hollings, M. 1962. Viruses associated with die-back disease of cultivated mushrooms. Nature 196:962965.
26. Jiang, D., and, S. A. Ghabrial. 2004. Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. J. Gen. Virol. 85:21112121.
27. Kwon, S.-J.,, W.-S. Lim,, S.-H. Park,, M.-R. Park, and, K.-H. Kim. 2007. Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus DK-21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex-like viruses. Mol. Cells 23:304315.
28. Lakshman, D. K.,, J. Jian, and, S. M. Tavantzis. 1998. A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shiki-mate pathway. Proc. Natl. Acad. Sci. USA 95:64256429.
29. Lan, X.,, Z. Yao,, Y. Zhou,, J. Shang,, H. Lin,, D. L. Nuss, and, B. Chen. 2008. Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency. Curr. Genet. 53:5966.
30. Larson, T. G.,, G. H. Choi, and, D. L. Nuss. 1992. Regulatory pathways governing modulation of fungal gene expression by a virulence-attenuating mycovirus. EMBO J. 11:45394548.
31. Li, L.,, S. J. Wright., S. Krystofova,, G. Park, and, K. A. Borkovich. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423452.
32. Marquez, L. M.,, R. S. Redman,, R. J. Rodriguez, and, M. J. Roossinck. 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513515.
33. Mertens, P. P. C.,, C. Z. Wei, and, B. I. Hillman. 2005. Genus Mycoreovirus, p. 556–560. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
34. Milgroom, M. G., and, P. Cortesi. 2004. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol. 42:311338.
35. Moleleki, N.,, S. W. van Heerden,, M. J. Wingfield,, B. D. Wingfield, and, O. Preisig. 2003. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl. Environ. Microbiol. 69:39523956.
36. Nakayashiki, H.,, N. Kadotani, and, S. Mayama. 2006. Evolution and diversification of RNA silencing proteins in fungi. J. Mol. Evol. 63:127135.
37. Nolan, T.,, L. Braccini,, G. Azzalin,, A. De Toni,, G. Macino, and, C. Cogoni. 2005. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res. 33:15641573.
38. Nuss, D. L. 2005. Hypovirulence: mycoviruses at the fungal-plant interface. Nat. Rev. Microbiol. 3:632642.
39. Nuss, D. L.,, B. Chen,, L. M. Geletka,, T. B. Parsley, and, N. Suzuki. 2002. Engineering hypoviruses for fundamental and practical applications, p. 145–163. In S. Tavantis (ed.), Molecular Biology of Double-stranded RNA: Concepts and Applications in Agriculture. CRC Press, Boca Raton, FL.
40. Nuss, D. L.,, B. I. Hillman,, D. Rigling, and, N. Suzuki. 2005. Family Hypoviridae, p. 597–601. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
41. Nuss, D. L., and, Y. Koltin. 1990. Significance of dsRNA genetic elements in plant pathogenic fungi. Annu. Rev. Phytopathol. 28:3758.
42. Osaki, H.,, H. Nakamura,, A. Saski,, N. Matsumoto, and, K. Yoshida. 2006. An endornavirus from a hypovirulent strain of the violet root rot fungus Helicobasidium mompa. Virus Res. 118:143149.
43. Park, S.-M.,, E.-S. Choi,, M.-J. Kim,, B.-J. Cha,, M.-S. Yang, and, D.-H. Kim. 2004. Characterization of HOG1 homologue CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51:12671277.
44. Rao, J. R.,, D. W. A. Nelson, and, S. McClean. 2007. The enigma of double-stranded RNA (dsRNA) associated with mushroom virus X (MVX). Curr. Issues Mol. Biol. 9:103122.
45. Sasaki, A.,, M. Onoue,, S. Kanematsu,, K. Suzaki,, M. Miyanishi,, N. Suzuki,, D. L. Nuss, and, K. Yoshida. 2002. Extending chestnut blight hypovirus host range within Diaporthales by biolistic delivery of viral cDNA. Mol. Plant-Microbe Interact. 15:780789.
46. Segers, G. C.,, R. van Wezel,, X. Zhang,, Y. Hong, and, D. L. Nuss. 2006. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot. Cell 5:896904.
47. Segers, G. C.,, X. Zhang,, F. Deng,, Q. Sun, and, D. L. Nuss. 2007. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc. Natl. Acad. Sci. USA 104:1290212906.
48. Shapira, R.,, G. H. Choi, and, D. L. Nuss. 1991. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10:731739.
49. Sun, L.,, D. L. Nuss, and, N. Suzuki. 2006. Synergism between a mycoreovirus and a hypovirus mediated by the pa-pain-like protease p29 of the prototypic hypovirus CHV1-EP713. J. Gen. Virol. 87:37033714.
50. Voinnet, O. 2005. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6:206220.
51. Wei, C. Z.,, H. Osaki,, T. Iwanami,, N. Matsumoto, and, Y. Ohtsu. 2003. Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellina necatrix. J. Gen. Virol. 84:24312437.
52. Wickner, R. B.,, C. C. Wang, and, J. L. Patterson. 2005. Family Totiviridae, p. 571–580. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
53. Wright, P. J., and, P. A. Revill. 2005. Family Barnaviridae, p. 1125–1128. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom.
54. Zhang, X., and, D. L. Nuss. 2008. A host dicer is required for defective viral RNA production and recombinant viral vector RNA instability for a positive sense RNA virus. Proc. Natl. Acad. Sci. USA 105:1674916754.
55. Zhang, X.,, G. C. Segers,, Q. Sun,, F. Deng, and, D. L. Nuss. 2008. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J. Virol. 82:26132619.

Tables

Generic image for table
TABLE 1

Primary mycovirus taxonomic families

Citation: Nuss D. 2010. Mycoviruses, p 145-152. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch12
Generic image for table
TABLE 2

Examples of mycovirus-mediated alteration in fungal host phenotype

Citation: Nuss D. 2010. Mycoviruses, p 145-152. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error