Chapter 14 : Vacuoles in Filamentous Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Vacuoles in Filamentous Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap14-2.gif


Using the ectomycorrhizal fungus Pisolithus tinctorius, four zones of vacuolar morphology from the growing hyphal tip were observed: (i) the apical zone, which has few or no vacuoles; (ii) the subapical zone with small ovoid-spherical vacuoles; (iii) the nuclear zone, where tubular vacuoles predominate; and (iv) the basal zone, where large spherical vacuoles are most common. This vacuolar structure is the product of live-cell imaging in microscopes utilizing fluorescent dyes that accumulate in vacuoles and green fluorescent protein (GFP)or red fluorescent protein (RFP)-tagged proteins targeted to vacuoles or vacuolar membranes. For biochemical studies in vitro, vacuoles can be isolated from filamentous fungi as a pure organellar fraction of round vesicles, approximately 0. 2 to 2 μ in diameter. For filamentous fungi, the study of formation and biogenesis of the vacuole is a nascent research area. Fungal vacuoles serve as storage reservoirs for high levels of phosphorus and nitrogen in the form of basic amino acids and polyphosphate (polyPi), respectively. The vacuolar system is highly variable in appearance at different locations within the mycelium and in response to different growth conditions. Several labs are introducing new approaches to study the dynamic behavior of the vacuolar system of filamentous fungi. Homologs of genes with known functions in vacuolar biogenesis, autophagy, and ion transport are excellent candidates for identifying the genes involved in these processes in filamentous fungi. Investigations performed in recent years demonstrate that the vacuole is a dynamic organelle with many important roles in metabolism, growth, and development.

Citation: Bowman E, Bowman B. 2010. Vacuoles in Filamentous Fungi, p 179-190. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch14

Key Concept Ranking

Fluorescence Lifetime Imaging Microscopy
Confocal Laser Scanning Microscopy
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Visualizing the vacuole with RFP and GFP. RFP (dsRED) or GFP was fused to proteins predicted to be in the membrane of the vacuole, using the plasmids pMF272 or pMF334 constructed by M. Freitag (Oregon State University, Corvallis). By transformation into , the recombinant genes were targeted to the locus. Images were obtained by confocal microscopy (B. Bowman and E. J. Bowman, unpublished results). (A) RFP dsRED was fused to the N terminus of the CAX protein. (B) RFP dsRED was fused to the N terminus of the VAM-3 protein. In panels A and B the region shown is approximately 100 μm behind the hyphal tip. The vacuolar system consists of tubules and small vesicles. (C) GFP was fused to the C terminus of the A subunit of the V-ATPase (encoded by ). The region shown is approximately 2 mm behind the hyphal tip. In this older part of the hypha, the fluorescence is localized to the membrane of a large vacuole and to many small vesicles. In this strain the vacuole appears as a network of tubules and small vesicles nearer the hyphal tip (not shown), as in panels A and B. The bar represents 10 μm, and the scale is the same for all panels.

Citation: Bowman E, Bowman B. 2010. Vacuoles in Filamentous Fungi, p 179-190. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Electron micrograph of the V-ATPase in vacuolar membranes. Vacuolar membranes were isolated from , negatively stained, and examined by transmission electron microscopy as described previously ( ). A few of the V-ATPases are indicated by arrows. The globular head is 12 nm wide and is attached to the membrane by a 3-nm-wide stalk.

Citation: Bowman E, Bowman B. 2010. Vacuoles in Filamentous Fungi, p 179-190. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Two models of the V-ATPase. As shown on the left, the V-ATPase is composed of 14 different types of subunits, some of which are present in multiple copies. The diagram is modified from the model of the V-ATPase in ). The model on the right shows the major functional domains. The rotor portion of the enzyme is composed of subunits D, F, d, c, c’, and c”. The A and B subunits form the ATP binding sites and constitute the motor domain. It is not known for certain which subunits form the stator domain.

Citation: Bowman E, Bowman B. 2010. Vacuoles in Filamentous Fungi, p 179-190. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abreu, S. 2003. The roles of the organellar calcium transport proteins nca-2, nca-3, cax, and pmr1 in cell morphology and growth. Master’s thesis. University of California, Santa Cruz.
2. Allaway, W. G.,, A. E. Ashford,, T. B. Heath, and, A. R. Hardham. 1997. Vacuolar reticulum in oomycete hyphal tips: an additional component of the Ca2+ regulatory system? Fungal Genet. Biol. 22:209220.
3. Ashford, A. E.,, P. A. Vesk,, D. A. Orlovich,, A.-L. Markovina, and, W. G. Allaway. 1999. Dispersed polyphosphate in fungal vacuoles in Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas. Fungal Genet. Biol. 28:2133.
4. Baars, T. L.,, S. Petri,, C. Peters, and, A. Mayer. 2007. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol. Biol. Cell 18:38733882.
5. Bowman, B. J.,, R. A. Allen,, M. A. Weschser, and, E. J. Bowman. 1988a. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J. Biol. Chem. 263:1400214007.
6. Bowman, B. J., and, E. J. Bowman. 2002. Mutations in subunit c of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J. Biol. Chem. 277:39653972.
7. Bowman, B. J.,, M. E. McCall,, R. Baertsch, and, E. J. Bowman. 2006. A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J. Biol. Chem. 281:3188531893.
8. Bowman, E. J., and, B. J. Bowman. 1997. Purification of vacuolar membranes, mitochondria, and plasma membranes from Neurospora crassa and modes of discriminating among the different H+-ATPases, p. 861–872. In L. Packer and, S. Fleischer (ed.), Biomembranes. Academic Press, Inc., San Diego, CA.
9. Bowman, E. J., and, B. J. Bowman. 2000. Cellular role of the V-ATPase in Neurospora crassa: analysis of mutants resistant to concanamycin or lacking the catalytic subunit A. J. Exp. Biol. 203:97106.
10. Bowman, E. J., and, B. J. Bowman. 2005. V-ATPases as drug targets. J. Bioenerg. Biomembr. 37:431435.
11. Bowman, E. J.,, L. A. Graham,, T. H. Stevens, and, B. J. Bowman. 2004. The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J. Biol. Chem. 279:3313133138.
12. Bowman, E. J.,, R. Kendle, and, B. J. Bowman. 2000. Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H+-ATPase, causes severe morphological changes in Neurospora crassa. J. Biol. Chem. 275:167176.
13. Bowman, E. J.,, F. J. O’Neill, and, B. J. Bowman. 1997. Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J. Biol. Chem. 272:1477614786.
14. Bowman, E. J.,, A. Siebers, and, K. Altendorf. 1988b. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 85:79727976.
15. Bowman, E. J.,, K. Tenney, and, B. J. Bowman. 1988c. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J. Biol. Chem. 263:1399414001.
16. Boyce, K. J.,, M. Kretschmer, and, J. W. Kronstad. 2006. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis. Eukaryot. Cell 5:13991409.
17. Boyd, M. R.,, C. Farina,, P. Belfiore,, S. Gagliardi,, J. W. Kim,, Y. Hayakawa,, J. A. Beutler,, T. C. McKee,, B. J. Bowman, and, E. J. Bowman. 2001. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-ATPases. J. Pharmacol. Exp. Ther. 297:114120.
18. Chavez, C.,, E. J. Bowman,, J. C. Reidling,, K. H. Haw, and, B. J. Bowman. 2006. Analysis of strains with mutations in six genes encoding subunits of the V-ATPase. Eukaryotes differ in the composition of the V0 sector of the enzyme. J. Biol. Chem. 281:2705227062.
19. Cole, L.,, G. J. Hyde, and, A. E. Ashford. 1997. Uptake and compartmentalisation of fluorescent probes by Pisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Proto-plasma 199:1829.
20. Cole, L.,, D. A. Orlovich, and, A. E. Ashford. 1998. Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet. Biol. 24:86100.
21. Cramer, C. L., and, R. H. Davis. 1984. Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J. Biol. Chem. 259:51525157.
22. Cramer, C. L.,, J. L. Ristow,, T. J. Paulus, and, R. H. Davis. 1983. Methods for mycelial breakage and isolation of mitochondria and vacuoles of Neurospora. Anal. Biochem. 129:384392.
23. Darrah, P. R.,, M. Tlalka,, A. Ashford,, S. C. Watkinson, and, M. D. Fricker. 2006. The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryot. Cell 5:11111125.
24. Dröse, S.,, K. U. Bindseil,, E. J. Bowman,, A. Siebers,, A. Zeeck, and, K. Altendorf. 1993. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32:39023906.
25. Dschida, W. J., and, B. J. Bowman. 1992. Structure of the vacuolar ATPase from Neurospora crassa as determined by electron microscopy. J. Biol. Chem. 267:1878318789.
26. Eilam, Y.,, H. Lavi, and, N. Grossowicz. 1985. Cytoplasmic Ca2+ homeostasis maintained by a vacuolar Ca2+ transport system in the yeast Saccharomyces cerevisiae. J. Gen. Micro-biol. 131:623629.
27. Ferea, T. L., and, B. J. Bowman. 1996. The vacuolar ATPase of Neurospora crassa is indispensable: inactivation of the vma-1 gene by repeat-induced point mutation. Genetics 143:147154.
28. Forgac, M. 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8:917929.
29. Frederick, G. D.,, P. Rombouts, and, F. P. Buxton. 1993. Cloning and characterization of pepC, a gene encoding a serine protease from Aspergillus niger. Gene 125:5764.
30. Glass, N. L., and, I. Kaneko. 2003. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell 2:18.
31. Hickey, P. C., and, N. D. Read. 2003. Biology of Living Fungi. British Mycological Society, Stevenage, United Kingdom.
32. Hickey, P. C.,, S. R. Swift,, M. G. Roca, and, N. D. Read. 2004. Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods Microbiol. 34:6387.
33. Hunt, I. E., and, B. J. Bowman. 1997. The intriguing evolution of the “b” and “G” subunits in F-type and V-type ATPases: isolation of the vma-10 gene from Neurospora crassa. J. Bioenerg. Biomembr. 29:533540.
34. Hyde, G. J.,, D. Davies,, L. Cole, and, A. E. Ashford. 2002. Regulators of GTP-binding proteins cause morphological changes in the vacuole system of the filamentous fungus, Pisolithus tinctorius. Cell Motil. Cytoskeleton 51:133146.
35. Hyde, G. J.,, D. Davies,, L. Perasso,, L. Cole, and, A. E. Ashford. 1999. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius. Cell Motil. Cytoskeleton 42:114124.
36. Kane, P. M. 2006. The where, when and how of organelle acidification by the yeast vacuolar H+-ATPase. Mol. Biol. Rev. 70:177191.
37. Kikuma, T.,, M. Ohneda,, M. Arioka, and, K. Kitamoto. 2006. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot. Cell 5:13281336.
38. Klionsky, D. J.,, A. M. Cuervo, and, P. O. Seglen. 2007. Methods for monitoring autophagy from yeast to human. Autophagy 3:181206.
39. Klionsky, D. J.,, P. K. Herman, and, S. D. Emr. 1990. The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54:266292.
40. Levine, B., and, D. J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6:463477.
41. Mandel, M.,, Y. Moriyama,, J. D. Hulmes,, Y. C. Pan,, H. Nelson, and, N. Nelson. 1988. Cloning of cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc. Natl. Acad. Sci. USA 85:55215524.
42. Manolson, M. F.,, B. Wu,, D. Proteau,, B. E. Taillon,, B. T. Roberts,, M. A. Hoyt, and, E. W. Jones. 1994. STV1 gene encodes functional homologue of 95-kDa yeast vacuo-lar H+-ATPase subunit Vph1p. J. Biol. Chem. 269:1406414074.
43. Miller, A. J.,, G. Vogg, and, D. Sanders. 1990. Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Natl. Acad. Sci. USA 87:93489352.
44. Murata, T.,, I. Yamato,, Y. Kakinuma,, A. G. Leslie, and, J. E. Walker. 2005. Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308:654659.
45. Nelson, H., and, N. Nelson. 1990. Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc. Natl. Acad. Sci. USA 87:35033507.
46. Ohneda, M.,, M. Arioka,, H. Nakajima, and, K. Kitamoto. 2002. Visualization of vacuoles in Aspergillus oryzae by expression of CPY-EGFP. Fungal Genet. Biol. 37:2938.
47. Ohsumi, K.,, M. Arioka,, H. Nakajima, and, K. Kitamoto. 2002. Cloning and characterization of a gene (avaA) from Aspergillus nidulans encoding a small GTPase involved in vacuolar biogenesis. Gene 291:7784.
48. Paoletti, M.,, M. Castroviejo,, J. Bégueret, and, C. Clavé. 2001. Identification and characterization of a gene encoding a subtilisin-like serine protease induced during the vegetative incompatibility reaction in Podospora anserina. Curr. Genet. 39:244252.
49. Pinan-Lucarré, B.,, A. Balguerie, and, C. Clavé. 2005. Accelerated cell death in Podospora autophagy mutants. Eukaryot. Cell 4:17651774.
50. Pinan-Lucarré, B.,, M. Paoletti, and, C. Clavé. 2007. Cell death by incompatibility in the fungus Podospora. Semin. Cancer Biol. 17:101111.
51. Pinan-Lucarré, B.,, M. Paoletti,, K. Dementhon,, B. Coulary-Salin, and, C. Clavé. 2003. Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol. Microbiol. 47:321333.
52. Reggiori, F., and, D. J. Klionsky. 2002. Autophagy in the eukaryotic cell. Eukaryot. Cell 1:1121.
53. Rizzo, J. M.,, M. Tarsio,, G. A. Martinez-Muñoz, and, P. M. Kane. 2007. Diploids heterozygous for a vma13Δ mutation in Saccharomyces cerevisiae highlight the importance of V0ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity. J. Biol. Chem. 282:85218532.
54. Saito, K.,, Y. Kuga-Uetake,, M. Saito, and, R. L. Peterson. 2006. Vacuolar localization of phosphorus in hyphae of Phialocephala fortinii, a dark septate fungal root endophyte. Can. J. Microbiol. 52:643650.
55. Shepherd, V. A.,, D. A. Orlovich, and, A. E. Ashford. 1993. Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J. Cell Sci. 105:11711178.
56. Shoji, J.-Y.,, M. Arioka, and, K. Kitamoto. 2006a. Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. Eukaryot. Cell 5:411421.
57. Shoji, J.-Y.,, M. Arioka, and, K. Kitamoto. 2006b. Possible involvement of pleiomorphic vacuolar networks in nutrient recycling in filamentous fungi. Autophagy 2:226227.
58. Steinberg, G., and, M. Schliwa. 1993. Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J. Cell Sci. 106:555564.
59. Stock, D.,, A. G. W. Leslie, and, J. E. Walker. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:17001705.
60. Tarutani, Y.,, K. Ohsumi,, M. Arioka,, H. Nakajima, and, K. Kitamoto. 2001. Cloning and characterization of Aspergillus nidulans vpsA gene which is involved in vacuolar biogenesis. Gene 268:2330.
61. Tatsumi, A.,, J.-Y. Shoji,, T. Kikuma,, M. Arioka, and, K. Kitamoto. 2007. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae. Biochem. Biophys. Res. Commun. 362:474479.
62. Tuszynska, S.,, D. Davies,, K. Turnau, and, A. E. Ashford. 2006. Changes in vacuolar and mitochondrial motility and tubularity in response to zinc in a Paxillus involutus isolate from a zinc-rich soil. Fungal Genet. Biol. 43:155163.
63. Uetake, Y.,, T. Kojima,, T. Ezawa, and, M. Saito. 2002. Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol. 154:761768.
64. Valkonen, M.,, E. R. Kalkman,, M. Saloheimo,, M. Penttila,, N. D. Read, and, R. R. Duncan. 2007. Spatially segregated SNARE protein interactions in living fungal cells. J. Biol. Chem. 282:2277522785.
65. van den Hombergh, J. P. T. W.,, M. D. Sollewijn Gelpke,, P. J. I. van de Vondervoort,, F. P. Buxton, and, J. Visser. 1997. Disruption of three acid proteases in Aspergillus niger. Effects on protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur. J. Biochem. 247:605613.
66. Vázquez-Laslop, N.,, K. Tenney, and, B. J. Bowman. 1996. Characterization of a vacuolar protease in Neurospora crassa and the use of gene RIPing to generate protease-deficient strains. J. Biol. Chem. 271:2194421949.
67. Venzke, D.,, I. Domgall,, T. Köcher,, J. Féthière,, S. Fischer, and, B. Böttcher. 2005. Elucidation of the stator organization in the V-ATPase of Neurospora crassa. J. Mol. Biol. 349:659669.
68. Watkinson, S. C.,, L. Boddy,, K. Burton,, P. R. Darrah,, D. Eastwood,, M. D. Fricker, and, M. Tlalka. 2005. New approaches to investigating the function of mycelial networks. Mycologist 19:1117.
69. Wechser, M. A., and, B. J. Bowman. 1995. Regulation of the expression of three housekeeping genes encoding subunits of the Neurospora crassa vacuolar ATPase. Mol. Gen. Genet. 249:317327.
70. Yamashiro, C. T.,, P. M. Kane,, D. F. Wolczyk,, R. A. Preston, and, T. H. Stevens. 1990. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol. Cell. Biol. 10:37373749.
71. Zelter, A.,, M. Bencina,, B. J. Bowman,, O. Yarden, and, N. D. Read. 2004. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet. Biol. 41:827841.
72. Zimniak, L.,, P. Dittrich,, J. P. Gogarten,, H. Kibak, and, L. Taiz. 1988. The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the β-chain of F0F1-ATPases. J. Biol. Chem. 263:91029112.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error