1887

Chapter 15 : Peroxisomes in Filamentous Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Peroxisomes in Filamentous Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap15-2.gif

Abstract:

This chapter presents an overview summarizing the current knowledge of the function of peroxisomes in filamentous fungi. Peroxisome formation among diverse eukaryotic organisms shares a common basic biogenetic process mediated by a number of conserved proteins known as peroxins. At the start of photosynthesis, peroxisome metabolism plays an important role in photorespiration, and peroxisomes have thus been described as "leaf peroxisomes". The chapter mentions the main metabolic peroxisomal functions of fungi, with emphasis on those that are particular to, and have been characterized more fully in, filamentous fungi. Plants, yeasts, and filamentous fungi display a wide spectrum of peroxisomal activities, mainly due to the existence of peroxisome-specific function. In addition to the fruiting-body constitution, peroxisomes also participate in differentiation processes taking place in the fertile portion (centrum) of these structures. strains lacking the peroxisome-targeting signal (PTS) receptors peroxisomal matrix 5 (PEX5) and PEX7 exhibit abnormal formation of asci, resulting in ascospores with uneven numbers of nuclei or spores with no nuclei. The second centrum developmental event in which peroxisomes are involved in is the transition from the prekaryogamy mitotic phase to the karyogamy and meiotic phase. In spite of the progress made in understanding peroxisome function in fungi, a detailed picture of how peroxisomes affect several other metabolic and developmental processes remains elusive. Further innovative approaches are required to fully understand the function of this organelle in fungi.

Citation: Peraza-Reyes L, Espagne E, Arnaise S, Berteaux-Lecellier* V. 2010. Peroxisomes in Filamentous Fungi, p 191-206. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch15

Key Concept Ranking

Acetyl Coenzyme A
0.48966202
Endoplasmic Reticulum
0.45698735
Plasma Membrane
0.43326226
0.48966202
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of the putative peroxisome matrix protein import pathway in filamentous fungi. The recognition of the peroxisomal matrix proteins by Pex5 and Pex7 receptors occurs in the cytosol (Pex5 and Pex7 recognize PTS1 and PTS2, respectively); the cargo-receptor complexes then dock at the peroxisomal membrane (where both import pathways converge) and are then translocated. These last processes require the importomer, which is composed of two subcomplexes linked by Pex8: the docking complex (formed by Pex14, Pex13, and Pex14/17) and the RING finger complex (formed by Pex2, Pex10, and Pex12). After cargo release in the peroxisomal matrix, Pex5 receptors are either monoubiquitinated (by Pex4) or polyubiquitinated (by Ubc4). The release of the Pex5 ubiquitinated form requires Pex1 and Pex6, AAA-type ATPases anchored in the peroxisomal membrane by Pex26. When polyubiquitinated, Pex5 receptors are then degraded by the proteasome; when monoubiquitinated, they are recycled back to engage in another round of import. The asterisk in “Pex22*” denotes that in filamentous fungus genomes a Pex22-like protein is usually present rather than a true Pex22 ortholog (see also Table 1 ).

Citation: Peraza-Reyes L, Espagne E, Arnaise S, Berteaux-Lecellier* V. 2010. Peroxisomes in Filamentous Fungi, p 191-206. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Woronin bodies. The WB is a specialized peroxisome of filamentous fungi that function in sealing the septal pores that communicate hyphal compartments. (A) WBs delimiting apical cells of paraphysae are indicated by arrows; note the recently formed WBs at the tip of the cell (arrowheads). (B) Corresponding DAPI (4’,6-diamidino-2-phenylindole)-stained micrograph. Arrows indicate the positions of the septal pores. (C) In fungi like , the WB structural lattice is reflected by the hexagonal shape that WBs adopt. In the image, two WBs (arrows) before plugging a septal pore are shown (note that the septal pore is not in the same plane as WBs and is not visible here). WBs were stained by anti-hex1 antibody, a kind gift from G. Jedd. The transmission electron micrograph in panel C was done by Jorge Sepulveda and L. Peraza-Reyes, courtesy of Wilhelm Hansberg’s laboratory (UNAM, Mexico). Scale bars, 5 μm (panels A and B) and 500 nm (panel C).

Citation: Peraza-Reyes L, Espagne E, Arnaise S, Berteaux-Lecellier* V. 2010. Peroxisomes in Filamentous Fungi, p 191-206. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Peroxisome dynamics in filamentous fungi. Peroxisomes are highly dynamic organelles in filamentous fungi. They are typically round (A), but their number, form, and distribution can vary according to specific metabolical mycelial demands (A to C); during the formation of differentiated cells, such as during ascus development (panel D: observe the accumulation of peroxisomes at the growing apex of an ascus); between different cell types (panel E: compare the peroxisome shape in paraphysae [asexual cells present in fruiting bodies], shown by an arrow, and in asci, shown by arrowheads); and during spore formation (panel F: note the high peroxi-some number resulting from the intense peroxisome proliferation occurring during ascospore formation). Images show peroxisomes of . Peroxisomes were stained by the GFP-SKL reporter system ( ); images were done in collaboration with D. Zickler. Scale bars, 5 μm.

Citation: Peraza-Reyes L, Espagne E, Arnaise S, Berteaux-Lecellier* V. 2010. Peroxisomes in Filamentous Fungi, p 191-206. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch15
1. Abba, S.,, R. Balestrini,, A. Benedetto,, H. Rottensteiner,, J. R. De Lucas, and, P. Bonfante. 2007. The role of the glyoxylate cycle in the symbiotic fungus Tuber borchii: expression analysis and subcellular localization. Curr. Genet. 52:159170.
2. Agne, B.,, N. M. Meindl,, K. Niederhoff,, H. Einwachter,, P. Rehling,, A. Sickmann,, H. E. Meyer,, W. Girzalsky, and, W. H. Kunau. 2003. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol. Cell 11:635646.
3. Agrios, G. N. 2004. Plant Pathology, 5th ed. Academic Press, San Diego, CA.
4. Aguirre, J.,, M. Rios-Momberg,, D. Hewitt, and, W. Hansberg. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13:111118.
5. Armitt, S.,, W. McCullough, and, C. F. Roberts. 1976. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J. Gen. Microbiol. 92:263282.
6. Asakura, M.,, T. Okuno, and, Y. Takano. 2006. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl. Environ. Microbiol. 72:63456354.
7. Barron, G. L. 1977. The Nematode-Destroying Fungi. Canadian Biological Publication Ltd., Guelph, Canada.
8. Berteaux-Lecellier, V.,, M. Picard,, C. Thompson-Coffe,, D. Zickler,, A. Panvier-Adoutte, and, J. M. Simonet. 1995. A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81:10431051.
9. Bhambra, G. K.,, Z. Y. Wang,, D. M. Soanes,, G. E. Wakley, and, N. J. Talbot. 2006. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol. Microbiol. 61:4660.
10. Boisnard, S.,, E. Espagne,, D. Zickler,, A. Bourdais,, A. L. Riquet, and, V. Berteaux-Lecellier. 2008. Peroxisomal ABC transporters and beta-oxidation during the life cycle of the filamentous fungus Podospora anserina. Fungal Genet. Biol. 46:5566.
11. Boisnard, S.,, D. Zickler,, M. Picard, and, V. Berteaux-Lecellier. 2003. Overexpression of a human and a fungal ABC transporter similarly suppresses the differentiation defects of a fungal peroxisomal mutant but introduces pleiotropic cellular effects. Mol. Microbiol. 49:12871296.
12. Boisson-Dernier, A.,, S. Frietsch,, T. H. Kim,, M. B. Dizon, and, J. I. Schroeder. 2008. The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. Curr. Biol. 18:6368.
13. Bolwell, G. P. 1999. Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant. Biol. 2:287294.
14. Bonnet, C.,, E. Espagne,, D. Zickler,, S. Boisnard,, A. Bourdais, and, V. Berteaux-Lecellier. 2006. The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle. Mol. Microbiol. 62:157169.
15. Brakhage, A. A. 1997. Molecular regulation of penicillin biosynthesis in Aspergillus (Emericella) nidulans. FEMS Microbiol. Lett. 148:110.
16. Burdon, R. H. 1995. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18:775794.
17. Caracuel-Rios, Z., and, N. J. Talbot. 2007. Cellular differentiation and host invasion by the rice blast fungus Magna-porthe grisea. Curr. Opin. Microbiol. 10:339345.
18. Cavalier-Smith, T. 1987. Eukaryotes with no mitochondria. Nature 326:332333.
19. Chang, J.,, A. Fagarasanu, and, R. A. Rachubinski. 2007. Peroxisomal peripheral membrane protein YlInp1p is required for peroxisome inheritance and influences the dimorphic transition in the yeast Yarrowia lipolytica. Eukaryot. Cell 6:15281537.
20. Coppin, E., and, P. Silar. 2007. Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina. Mycol. Res. 111(Pt. 8):901908.
21. Cotter, D. A.,, A. J. LaClave,, W. S. Wegener, and, D. J. Niederpruem. 1970. CO2 control of fruiting in Schizophyllum commune: noninvolvement of sustained isocitrate lyase derepression. Can. J. Microbiol. 16:605608.
22. del Rio, L. A.,, G. M. Pastori,, J. M. Palma,, L. M. Sandalio,, F. Sevilla,, F. J. Corpas,, A. Jimenez,, E. Lopez-Huertas, and, J. A. Hernandez. 1998. The activated oxygen role of peroxisomes in senescence. Plant Physiol. 116:11951200.
23. De Lucas, J. R.,, S. Valenciano,, A. I. Dominguez,, G. Turner, and, F. Laborda. 1997. Characterization of oleate-nonutilizing mutants of Aspergillus nidulans isolated by the 3-amino-1,2,4-triazole positive selection method. Arch. Microbiol. 168:504512.
24. Dijksterhuis, J.,, M. Veenhuis,, W. Harder, and, B. Nordbring-Hertz. 1994. Nematophagous fungi: physiological aspects and structure-function relationships. Adv. Microb. Physiol. 36:111143.
25. Distel, B.,, R. Erdmann,, S. J. Gould,, G. Blobel,, D. I. Crane,, J. M. Cregg,, G. Dodt,, Y. Fujiki,, J. M. Goodman,, W. W. Just,, J. A. Kiel,, W. H. Kunau,, P. B. Lazarow,, G. P. Mannaerts,, H. W. Moser,, T. Osumi,, R. A. Rachubinski,, A. Roscher,, S. Subramani,, H. F. Tabak,, T. Tsukamoto,, D. Valle,, I. van der Klei,, P. P. van Veldhoven, and, M. Veenhuis. 1996. A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135:13.
26. Emanuelsson, O.,, A. Elofsson,, G. von Heijne, and, S. Cristobal. 2003. In silico prediction of the peroxisomal proteome in fungi, plants and animals. J. Mol. Biol. 330:443456.
27. Embley, T. M.,, M. van der Giezen,, D. S. Horner,, P. L. Dyal, and, P. Foster. 2003. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Phil. Trans. R. Soc. Lond. B 358:191202.
28. Emmett, R. W., and, D. G. Parbery. 1975. Appressoria. Annu. Rev. Phytopathol. 13:147167.
29. Engh, I.,, C. Wurtz,, K. Witzel-Schlomp,, H. Y. Zhang,, B. Hoff,, M. Nowrousian,, H. Rottensteiner, and, U. Kuck. 2007. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot. Cell 6:831843.
30. Espagne, E.,, O. Lespinet,, F. Malagnac,, C. Da Silva,, O. Jail-lon,, B. M. Porcel,, A. Couloux,, J. M. Aury,, B. Segurens,, J. Poulain,, V. Anthouard,, S. Grossetete,, H. Khalili,, E. Coppin,, M. Dequard-Chablat,, M. Picard,, V. Contamine,, S. Arnaise,, A. Bourdais,, V. Berteaux-Lecellier,, D. Gautheret,, R. P. de Vries,, E. Battaglia,, P. M. Coutinho,, E. G. Danchin,, B. Henrissat,, R. E. Khoury,, A. Sainsard-Chanet,, A. Boivin,, B. Pinan-Lucarre,, C. H. Sellem,, R. Debuchy,, P. Wincker,, J. Weissenbach, and, P. Silar. 2008. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 9:R77.
31. Fagarasanu, A.,, M. Fagarasanu, and, R. A. Rachubinski. 2007. Maintaining peroxisome populations: a story of division and inheritance. Annu. Rev. Cell Dev. Biol. 23:321344.
32. Faust, P. L.,, D. Banka,, R. Siriratsivawong,, V. G. Ng, and, T. M. Wikander. 2005. Peroxisome biogenesis disorders: the role of peroxisomes and metabolic dysfunction in developing brain. J. Inherit. Metab. Dis. 28:369383.
33. Fedorov, A., and, H. Hartman. 2004. What does the microsporidian E. cuniculi tell us about the origin of the eukaryotic cell? J. Mol. Evol. 59:695702.
34. Fillinger, S.,, M. K. Chaveroche,, P. van Dijck,, R. de Vries,, G. Ruijter,, J. Thevelein, and, C. d’Enfert. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147(Pt. 7):18511862.
35. Flavell, R. B., and, J. R. Fincham. 1968. Acetate-nonutilizing mutants of Neurospora crassa. I. Mutant isolation, complementation studies, and linkage relationships. J. Bacteriol. 95:10561062.
36. Fleissner, A., and, N. L. Glass. 2007. SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot. Cell 6:8494.
37. Fleissner, A.,, S. Sarkar,, D. J. Jacobson,, M. G. Roca,, N. D. Read, and, N. L. Glass. 2005. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot. Cell 4:920930.
38. Fujiki, Y.,, Y. Matsuzono,, T. Matsuzaki, and, M. Fransen. 2006. Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim. Biophys. Acta 1763:16391646.
39. Gabaldon, T.,, B. Snel,, F. van Zimmeren,, W. Hemrika,, H. Tabak, and, M. A. Huynen. 2006. Origin and evolution of the peroxisomal proteome. Biol. Direct. 1:8.
40. Gainey, L. D.,, I. F. Connerton,, E. H. Lewis,, G. Turner, and, D. J. Ballance. 1992. Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans (acuD) and Neurospora crassa (acu-3). Curr. Genet. 21:4347.
41. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
42. Garcia-Estrada, C.,, I. Vaca,, F. Fierro,, K. Sjollema,, M. Veenhuis, and, J. F. Martin. 2008. The unprocessed preprotein form IATC103S of the isopenicillin N acyltransferase is transported inside peroxisomes and regulates its self-processing. Fungal Genet. Biol. 45:10431052.
43. Gomez, B. L., and, J. D. Nosanchuk. 2003. Melanin and fungi. Curr. Opin. Infect. Dis. 16:9196.
44. Hayashi, M., and, M. Nishimura. 2003. Entering a new era of research on plant peroxisomes. Curr. Opin. Plant Biol. 6:577582.
45. Hoepfner, D.,, M. van den Berg,, P. Philippsen,, H. F. Tabak, and, E. H. Hettema. 2001. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol. 155:979990.
46. Hoppins, S.,, L. Lackner, and, J. Nunnari. 2007. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76:751780.
47. Howard, R. J.,, M. A. Ferrari,, D. H. Roach, and, N. P. Money. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 88:1128111284.
48. Hynes, M. J.,, S. L. Murray,, G. S. Khew, and, M. A. Davis. 2008. Genetic analysis of the role of peroxisomes in the utilisation of acetate and fatty acids in Aspergillus nidulans. Genetics 178:13551369.
49. Idnurm, A., and, B. J. Howlett. 2002. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot. Cell 1:719724.
50. James, T. Y.,, F. Kauff,, C. L. Schoch,, P. B. Matheny,, V. Hofstetter,, C. J. Cox,, G. Celio,, C. Gueidan,, E. Fraker,, J. Miadlikowska,, H. T. Lumbsch,, A. Rauhut,, V. Reeb,, A. E. Arnold,, A. Amtoft,, J. E. Stajich,, K. Hosaka,, G. H. Sung,, D. Johnson,, B. O’Rourke,, M. Crockett,, M. Binder,, J. M. Curtis,, J. C. Slot,, Z. Wang,, A. W. Wilson,, A. Schussler,, J. E. Longcore,, K. O’Donnell,, S. Mozley-Standridge,, D. Porter,, P. M. Letcher,, M. J. Powell,, J. W. Taylor,, M. M. White,, G. W. Griffith,, D. R. Davies,, R. A. Humber,, J. B. Morton,, J. Sugiyama,, A. Y. Rossman,, J. D. Rogers,, D. H. Pfister,, D. Hewitt,, K. Hansen,, S. Hambleton,, R. A. Shoemaker,, J. Kohlmeyer,, B. Volkmann-Kohlmeyer,, R. A. Spotts,, M. Serdani,, P. W. Crous,, K. W. Hughes,, K. Matsuura,, E. Langer,, G. Langer,, W. A. Untereiner,, R. Lucking,, B. Budel,, D. M. Geiser,, A. Aptroot,, P. Diederich,, I. Schmitt,, M. Schultz,, R. Yahr,, D. S. Hibbett,, F. Lutzoni,, D. J. McLaughlin,, J. W. Spatafora, and, R. Vilgalys. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818822.
51. Jamet-Vierny, C.,, R. Debuchy,, M. Prigent, and, P. Silar. 2007. IDC1, a pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina. Fungal Genet. Biol. 44:12191230.
52. Jedd, G., and, N. H. Chua. 2000. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat. Cell Biol. 2:226231.
53. Jourdain, I.,, D. Sontam,, C. Johnson,, C. Dillies, and, J. S. Hyams. 2008. Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast. Traffic 9:353365.
54. Kal, A. J.,, E. H. Hettema,, M. van den Berg,, M. G. Koerkamp,, L. van Ijlst,, B. Distel, and, H. F. Tabak. 2000. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Cell Biochem. Biophys. 32(Spring):18.
55. Kamada, T.,, K. Nito,, H. Hayashi,, S. Mano,, M. Hayashi, and, M. Nishimura. 2003. Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol. 44:12751289.
56. Kawasaki, L., and, J. Aguirre. 2001. Multiple catalase genes are differentially regulated in Aspergillus nidulans. J. Bacteriol. 183:14341440.
57. Kiel, J. A.,, M. van den Berg,, R. A. Bovenberg,, I. J. van der Klei, and, M. Veenhuis. 2004. Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha. Fungal Genet. Biol. 41:708720.
58. Kiel, J. A., and, I. J. van der Klei. 2009. Proteins involved in microbody biogenesis and degradation in Aspergillus nidulans. Fungal Genet. Biol. 46(Suppl. 1):S62S71.
59. Kiel, J. A.,, I. J. van der Klei,, M. A. van den Berg,, R. A. Bovenberg, and, M. Veenhuis. 2005. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet. Biol. 42:154164.
60. Kiel, J. A.,, M. Veenhuis, and, I. J. van der Klei. 2006. PEX genes in fungal genomes: common, rare or redundant. Traffic 7:12911303.
61. Kimura, A.,, Y. Takano,, I. Furusawa, and, T. Okuno. 2001. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13:19451957.
62. King, H. B., and, L. A. Casselton. 1977. Genetics and function of isocitrate lyase in Coprinus. Mol. Gen. Genet. 157:319325.
63. Klose, J.,, M. M. de Sa, and, J. W. Kronstad. 2004. Lipid-induced filamentous growth in Ustilago maydis. Mol. Micro-biol. 52:823835.
64. Klose, J., and, J. W. Kronstad. 2006. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot. Cell 5:20472061.
65. Koch, A.,, G. Schneider,, G. H. Luers, and, M. Schrader. 2004. Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J. Cell Sci. 117(Pt. 17):39954006.
66. Kuravi, K.,, S. Nagotu,, A. M. Krikken,, K. Sjollema,, M. Deckers,, R. Erdmann,, M. Veenhuis, and, I. J. van der Klei. 2006. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 119(Pt. 19):39944001.
67. Lander, H. M. 1997. An essential role for free radicals and derived species in signal transduction. FASEB J. 11:118124.
68. Langfelder, K.,, M. Streibel,, B. Jahn,, G. Haase, and, A. A. Brakhage. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38:143158.
69. Liu, F.,, S. K. Ng,, Y. Lu,, W. Low,, J. Lai, and, G. Jedd. 2008. Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J. Cell Biol. 180:325339.
70. Lorenz, M. C., and, G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412:8386.
71. Maggio-Hall, L. A., and, N. P. Keller. 2004. Mitochondrial beta-oxidation in Aspergillus nidulans. Mol. Microbiol. 54:11731185.
72. Managadze, D.,, C. Wurtz,, M. Sichting,, G. Niehaus,, M. Veenhuis, and, H. Rottensteiner. 2007. The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies. Traffic 8:687701.
73. Markham, P., and, A. J. Collinge. 1987. Woronin bodies of filamentous fungi. FEMS Microbiol. Rev. 46:111.
74. Masloff, S.,, S. Poggeler, and, U. Kuck. 1999. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152:191199.
75. Maynard, E. L.,, G. J. Gatto, Jr., and, J. M. Berg. 2004. Pex5p binding affinities for canonical and noncanonical PTS1 peptides. Proteins 55:856861.
76. Momany, N.,, E. A. Richardson,, C. V. Van Sickle, and, G. Jedd. 2002. Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260266.
77. Moore, D., and, J. O. Ewaze. 1976. Activities of some enzymes involved in metabolism of carbohydrates during sporophore development in Coprinus cinereus. J. Gen. Microbiol. 97:313322.
78. Mozdy, A. D.,, J. M. McCaffery, and, J. M. Shaw. 2000. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151:367380.
79. Muller, W. H.,, R. A. Bovenberg,, M. H. Groothuis,, F. Kattevilder,, E. B. Smaal,, L. H. Van der Voort, and, A. J. Verkleij. 1992. Involvement of microbodies in penicillin biosynthesis. Biochim. Biophys. Acta 1116:210213.
80. Müller, W. H.,, T. P. van der Krift,, A. J. J. Krouwer,, H. A. B. Wösten,, L. H. M. van der Voort,, E. B. Smaal, and, A. J. Verkleij. 1991. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J. 10:489495.
81. Neuberger, G.,, S. Maurer-Stroh,, B. Eisenhaber,, A. Hartig, and, F. Eisenhaber. 2003. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J. Mol. Biol. 328:581592.
82. Nyathi, Y., and, A. Baker. 2006. Plant peroxisomes as a source of signalling molecules. Biochim. Biophys. Acta 1763:14781495.
83. Ohsugi, M.,, K. Miyauchi,, K. Tachibana, and, S. Nakao. 1988. Formation of a biotin precursor, pimelic acid, in yeasts from C18 fatty acids. J. Nutr. Sci. Vitaminol. (Tokyo) 34:343352.
84. Olivas, I.,, M. Royuela,, B. Romero,, M. C. Monteiro,, J. M. Minguez,, F. Laborda, and, J. R. De Lucas. 2008. Ability to grow on lipids accounts for the fully virulent phenotype in neutropenic mice of Aspergillus fumigatus null mutants in the key glyoxylate cycle enzymes. Fungal Genet. Biol. 45:4560.
85. Orth, T.,, S. Reumann,, X. Zhang,, J. Fan,, D. Wenzel,, S. Quan, and, J. Hu. 2007. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. Plant Cell 19:333350.
86. Peraza-Reyes, L.,, E. Espagne,, S. Arnaise, and, V. Berteaux-Lecellier. 2008a. The role of peroxisomes in the regulation of Podospora anserina sexual development, p. 61–85. In S. R. Terlecky and, V. Titorenko (ed.), Emergent Functions of the Peroxisome. Research Signpost, Kerala, India.
87. Peraza-Reyes, L.,, D. Zickler, and, V. Berteaux-Lecellier. 2008b. The peroxisome RING-Finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 9:19982009.
88. Petriv, O. I.,, L. Tang,, V. I. Titorenko, and, R. A. Rachubinski. 2004. A new definition for the consensus sequence of the peroxisome targeting signal type 2. J. Mol. Biol. 341:119134.
89. Platta, H. W., and, R. Erdmann. 2007. The peroxisomal protein import machinery. FEBS Lett. 581:28112819.
90. Poggeler, S.,, M. Nowrousian, and, U. Kuck. 2006. Fruiting-body development in Ascomycetes, p. 325–355. In U. Kues and, R. Fischer (ed.), The Mycota. I. Growth, Differentiation and Sexuality. Springer-Verlag, Berlin, Germany.
91. Ramos-Pamplona, M., and, N. I. Naqvi. 2006. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol. Microbiol. 61:6175.
92. Rayapuram, N., and, S. Subramani. 2006. The importomer— a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim. Biophys. Acta 1763:16131619.
93. Ruprich-Robert, G.,, V. Berteaux-Lecellier,, D. Zickler,, A. Panvier-Adoutte, and, M. Picard. 2002. Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in Podospora. Genetics 161:10891099.
94. Schliebs, W.,, C. Wurtz,, W. H. Kunau,, M. Veenhuis, and, H. Rottensteiner. 2006. A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot. Cell 5:14901502.
95. Schluter, A.,, S. Fourcade,, R. Ripp,, J. L. Mandel,, O. Poch, and, A. Pujol. 2006. The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol. Biol. Evol. 23:838845.
96. Schrader, M., and, H. D. Fahimi. 2006. Growth and division of peroxisomes. Int. Rev. Cytol. 255:237290.
97. Schrader, M., and, H. D. Fahimi. 2008. The peroxisome: still a mysterious organelle. Histochem. Cell Biol. 129:421440.
98. Schwalb, M. N. 1974. Changes in activity of enzymes metabolizing glucose 6-phosphate during development of the basidiomycete Schizophyllum. Dev. Biol. 40:8489.
99. Seong, K. Y.,, X. Zhao,, J. R. Xu,, U. Guldener, and, H. C. Kistler. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 45:389399.
100. Simon, U. K.,, R. Bauer,, D. Rioux,, M. Simard, and, F. Oberwinkler. 2005. The vegetative life-cycle of the clover pathogen Cymadothea trifolii as revealed by transmission electron microscopy. Mycol. Res. 109(Pt. 7):764778.
101. Simonet, J. M., and, D. Zickler. 1972. Mutations affecting meiosis in Podospora anserina. I. Cytological studies. Chromosoma 37:327351.
102. Soundararajan, S.,, G. Jedd,, X. Li,, M. Ramos-Pamplona,, N. H. Chua, and, N. I. Naqvi. 2004. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:15641574.
103. Steinberg, S. J.,, G. Dodt,, G. V. Raymond,, N. E. Braverman,, A. B. Moser, and, H. W. Moser. 2006. Peroxisome biogenesis disorders. Biochim. Biophys. Acta 1763:17331748.
104. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177202.
105. Tenney, K.,, I. Hunt,, J. Sweigard,, J. I. Pounder,, C. McClain,, E. J. Bowman, and, B. J. Bowman. 2000. Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet. Biol. 31:205217.
106. Tey, W. K.,, A. J. North,, J. L. Reyes,, Y. F. Lu, and, G. Jedd. 2005. Polarized gene expression determines woronin body formation at the leading edge of the fungal colony. Mol. Biol. Cell 16:26512659.
107. Thieringer, R., and, W. H. Kunau. 1991. The beta-oxidation system in catalase-free microbodies of the filamentous fungus Neurospora crassa. Purification of a multifunctional protein possessing 2-enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase activities. J. Biol. Chem. 266:1311013117.
108. Thines, E.,, R. W. Weber, and, N. J. Talbot. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:17031718.
109. Titorenko, V. I., and, R. T. Mullen. 2006. Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER. J. Cell Biol. 174:1117.
110. Titorenko, V. I.,, D. M. Ogrydziak, and, R. A. Rachubinski. 1997. Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol. Cell. Biol. 17:52105226.
111. Titorenko, V. I., and, R. A. Rachubinski. 1998. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18:27892803.
112. Trinci, A. P., and, A. J. Collinge. 1974. Occlusion of the septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma 80:5767.
113. Tsitsigiannis, D. I., and, N. P. Keller. 2007. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol. 15:109118.
114. Valenciano, S.,, J. R. De Lucas,, I. Van der Klei,, M. Veenhuis, and, F. Laborda. 1998. Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy. Arch. Microbiol. 170:370376.
115. Valenciano, S.,, J. R. Lucas,, A. Pedregosa,, I. F. Monistrol, and, F. Laborda. 1996. Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch. Microbiol. 166:336341.
116. van den Berg, M. A.,, I. Westerlaken,, C. Leeflang,, R. Kerkman, and, R. A. Bovenberg. 2007. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet. Biol. 44:830844.
117. van der Klei, I. J.,, H. Yurimoto,, Y. Sakai, and, M. Veenhuis. 2006. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta 1763:14531462.
118. van der Lende, T. R.,, M. van de Kamp,, M. Berg,, K. Sjollema,, R. A. Bovenberg,, M. Veenhuis,, W. N. Konings, and, A. J. Driessen. 2002. delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet. Biol. 37:4955.
119. Veenhuis, M.,, B. Nordbring-Hertz, and, W. Harde. 1984. Occurence, characterization and development of two different types of microbodies in the nematophagous fungus Arthrobotrys oligospora. FEMS Microbiol. Lett. 24:3138.
120. Veenhuis, M.,, C. Van Wijk,, U. Wyss,, B. Nordbring-Hertz, and, W. Harder. 1989. Significance of electron dense micro-bodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek 56:251261.
121. Veneault-Fourrey, C.,, M. Barooah,, M. Egan,, G. Wakley, and, N. J. Talbot. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580583.
122. Veneault-Fourrey, C., and, N. J. Talbot. 2007. Autophagic cell death and its importance for fungal developmental biology and pathogenesis. Autophagy 3:126127.
123. Wanders, R. J., and, H. R. Waterham. 2006. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta 1763:17071720.
124. Wang, Z. Y.,, D. M. Soanes,, M. J. Kershaw, and, N. J. Talbot. 2007. Functional analysis of lipid metabolism in Magna-porthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol. Plant-Microbe Interact. 20:475491.
125. Wang, Z. Y.,, C. R. Thornton,, M. J. Kershaw,, L. Debao, and, N. J. Talbot. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol. 47:16011612.
126. Waterham, H. R.,, Y. de Vries,, K. A. Russel,, W. Xie,, M. Veenhuis, and, J. M. Cregg. 1996. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol. Cell. Biol. 16:25272536.
127. Westermann, B., and, H. Prokisch. 2002. Mitochondrial dynamics in filamentous fungi. Fungal Genet. Biol. 36:9197.
128. Woronin, M. S. 1864. Zur Entwicklungsgeschichte des Ascobolus pulcherrimus Cr. und einiger Pezizen. Abh. Senkenb. Naturforsch. Ges. 5:333344.
129. Wosten, H. A., and, J. G. H. Wessels. 2006. The emergence of fruiting bodies in Basidiomycetes, p. 394–414. In U. Kues and, R. Fischer (ed.), The Mycota. I. Growth, Differentiation and Sexuality. Springer-Verlag, Berlin, Germany.
130. Würtz, C. 2007. Ph.D. thesis. Ruhr-Universität Bochum, Bochum, Germany.
131. Wurtz, C.,, W. Schliebs,, R. Erdmann, and, H. Rottensteiner. 2008. Dynamin-like protein-dependent formation of Woronin bodies in Saccharomyces cerevisiae upon heterologous expression of a single protein. FEBS J. 275:29322941.
132. Yoon, J. J.,, T. Hattori, and, M. Shimada. 2002. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris. FEMS Microbiol. Lett. 217:914.
133. Yuan, P.,, G. Jedd,, D. Kumaran,, S. Swaminathan,, H. Shio,, D. Hewitt,, N. H. Chua, and, K. Swaminathan. 2003. A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat. Struct. Biol. 10:264270.
134. Yurimoto, H.,, N. Kato, and, Y. Sakai. 2005. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem. Rec. 5:367375.

Tables

Generic image for table
TABLE 1

Predicted peroxins of

Citation: Peraza-Reyes L, Espagne E, Arnaise S, Berteaux-Lecellier* V. 2010. Peroxisomes in Filamentous Fungi, p 191-206. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error