Chapter 16 : The Cytoskeleton in Filamentous Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Cytoskeleton in Filamentous Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap16-2.gif


This chapter focuses on the microtubule and actin cytoskeletons of filamentous fungi, including the motor proteins that are integral to cytoskeletal function. Relevant results from yeasts are discussed to provide background and context. The emphasis is on more recent data from live-cell imaging as well as genetic and molecular genetic studies. It has been shown that both the microtubule and the actin cytoskeletons play roles in polarized growth of hyphae, and how these cytoskeletal elements function to support hyphal growth and organelle distribution in elongated hyphae is a topic of great interest. Dynein in filamentous fungi also participates in organizing the microtubule network by regulating microtubule dynamics and by providing force for transporting microtubules. In filamentous fungi, the actin cytoskeleton and its myosin motors are important for the delivery of cell membrane and cell wall components to the growing hyphal tip and to the septum. Myosins are a diverse superfamily of actin motor proteins that play various cellular roles. In filamentous fungi such as and , four families of myosins have been found, including myosin-I, myosin-II, myosin-V, and the fungus-specific chitin synthases with myosin motor domains. Hyphal growth in filamentous fungi needs both microtubule and actin cytoskeletons, and thus, it would be important to understand how these two systems interact to coordinate vesicle transport towards the hyphal tip.

Citation: Xiang X, Oakley B. 2010. The Cytoskeleton in Filamentous Fungi, p 209-223. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch16

Key Concept Ranking

Fungal Proteins
Plasma Membrane
Spindle Pole Bodies
Cell Wall Components
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Microtubule plus end localization of GFP-labeled cytoplasmic dynein heavy chain (NUDA) and NUDF/LIS1. Microtubules (MT) are stained by an anti-α -tubulin antibody. This figure is a modified version of Fig. 2 from , with permission from Elsevier Ltd.

Citation: Xiang X, Oakley B. 2010. The Cytoskeleton in Filamentous Fungi, p 209-223. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Diagram showing that early endosomes move bidirectionally along a microtubule. While the anterograde movement towards the microtubule plus end is driven by kinesin-3, the retrograde movement away from the plus end is driven by dynein ( ).

Citation: Xiang X, Oakley B. 2010. The Cytoskeleton in Filamentous Fungi, p 209-223. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Model for tip growth in . The Spitzenkörper is not specifically labeled but includes (but is not necessarily limited to) the vesicle cluster and the apical actin cluster as well as the apical SSOA patch, SECC, and apical SEPA, which are not shown. Secretory vesicles containing components necessary for tip growth are transported toward the tip along microtubules powered by kinesin molecules (data not shown). The plus ends of microtubules are extremely dynamic. In some cases, they transiently contact the vesicle cluster. In such cases, the secretory vesicles could be transferred directly from microtubules to the cluster. In other cases, secretory vesicles presumably fall off the microtubule as the plus end disassembles, and they are transported to the vesicle cluster by myosin molecules (not shown) on actin cables. Vesicles fuse with the plasma membrane, releasing their contents, and the components of the membranes of the secretory vesicles (here represented by SYNA) become incorporated into the plasma membrane. As the tip grows, the ring of actin/ABPA endocytic patches moves forward, removing SYNA and other vesicle membrane components from the plasma membrane and incorporating them into endocytic vesicles for recycling. Although we do not have direct evidence, information from other systems and from M. Peñalva, J. Rodríguez, and J. Abenza (personal communication) indicates that these vesicles move to the post-Golgi sorting endosome by mechanisms that are not yet defined. From this compartment, SYNA-containing membranes move away from the tip on microtubules, powered by dynein, to be eventually incorporated into Golgi body-derived secretory vesicles containing cell wall biosynthetic enzymes and wall precursors. This figure and its legend are from , with permission from the American Society of Cell Biology.

Citation: Xiang X, Oakley B. 2010. The Cytoskeleton in Filamentous Fungi, p 209-223. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abenza, J. F.,, A. Pantazopoulou,, J. M. Rodriguez,, A. Galindo, and, M. A. Peñalva. 2009. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:5775.
2. Adio, S.,, J. Reth,, F. Bathe, and, G. Woehlke. 2006a. Review: regulation mechanisms of Kinesin-1. J. Muscle Res. Cell Motil. 27:153160.
3. Adio, S.,, M. Bloemink,, M. Hartel,, S. Leier,, M. A. Geeves, and, G. Woehlke. 2006b. Kinetic and mechanistic basis of the nonprocessive Kinesin-3 motor NcKin3. J. Biol. Chem. 281:3778237793.
4. Akhmanova, A., and, C. C. Hoogenraad. 2005. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17:4754.
5. Alberti-Segui, C.,, F. Dietrich,, R. Altmann-Johl,, D. Hoepfner, and, P. Philippsen. 2001. Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 114:975986.
6. Ali, M. Y.,, E. B. Krementsova,, G. G. Kennedy,, R. Mahaffy,, T. D. Pollard,, K. M. Trybus, and, D. M. Warshaw. 2007. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl. Acad. Sci. USA 104:43324336.
7. Araujo-Bazan, L.,, M. A. Peñalva, and, E. A. Espeso. 2008. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol. Microbiol. 67:891905.
8. Aumais, J. P.,, J. R. Tunstead,, R. S. McNeil,, B. T. Schaar,, S. K. McConnell,, S. H. Lin,, G. D. Clark, and, L. Y. Yu-Lee. 2001. NudC associates with Lis1 and the dynein motor at the leading pole of neurons. J. Neurosci. 21:RC187.
9. Basu, R., and, F. Chang. 2007. Shaping the actin cytoskeleton using microtubule tips. Curr. Opin. Cell Biol. 19:8894.
10. Becht, P.,, J. Konig, and, M. Feldbrugge. 2006. The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J. Cell Sci. 119:49644973.
11. Bieling, P.,, S. Kandels-Lewis,, I. A. Telley,, J. van Dijk,, C. Janke, and, T. Surrey. 2008. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183:12231233.
12. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
13. Bretscher, A. 2003. Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors. J. Cell Biol. 160:811816.
14. Busch, K. E.,, J. Hayles,, P. Nurse, and, D. Brunner. 2004. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6:831843.
15. Buttery, S. M.,, S. Yoshida, and, D. Pellman. 2007. Yeast formins Bni1 and Bnr1 utilize different modes of cortical interaction during the assembly of actin cables. Mol. Biol. Cell 18:18261838.
16. Carbo, N., and, J. Perez-Martin. 2008. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Fungal Genet. Biol. 45:13151327.
17. Carminati, J. L., and, T. Stearns. 1997. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138:629641.
18. Carvalho, P.,, M. L. Gupta, Jr.,, M. A. Hoyt, and, D. Pellman. 2004. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6:815829.
19. Carvalho, P.,, J. S. Tirnauer, and, D. Pellman. 2003. Surfing on microtubule ends. Trends Cell Biol. 13:229237.
20. Chevalier-Larsen, E., and, E. L. Holzbaur. 2006. Axonal transport and neurodegenerative disease. Biochim. Biophys. Acta 1762:10941108.
21. Clark, S. W., and, M. D. Rose. 2006. Arp10p is a pointed-end-associated component of yeast dynactin. Mol. Biol. Cell 17:738748.
22. Cooper, J. A., and, D. Sept. 2008. New insights into mechanism and regulation of actin capping protein. Int. Rev. Cell Mol. Biol. 267:183206.
23. Czymmek, K. J.,, T. M. Bourett,, Y. Shao,, T. M. DeZwaan,, J. A. Sweigard, and, R. J. Howard. 2005. Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea treated with anti-microtubule and anti-microfilament agents. Protoplasma 225:2332.
24. Daga, R. R.,, A. Yonetani, and, F. Chang. 2006. Asymmetric microtubule pushing forces in nuclear centering. Curr. Biol. 16:15441550.
25. Desai, A., and, T. J. Mitchison. 1997. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13:83117.
26. Dixit, R.,, B. Barnett,, J. E. Lazarus,, M. Tokito,, Y. E. Goldman, and, E. L. Holzbaur. 2009. Microtubule plus-end tracking by CLIP-170 requires EB1. Proc. Natl. Acad. Sci. USA 106:492497.
27. Efimov, V. P., and, N. R. Morris. 1998. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis. Genetics 149:101116.
28. Efimov, V. P., and, N. R. Morris. 2000. The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J. Cell Biol. 150:681688.
29. Efimov, V. P.,, J. Zhang, and, X. Xiang. 2006. CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Mol. Biol. Cell 17:20212034.
30. Endow, S. A.,, S. J. Kang,, L. L. Satterwhite,, M. D. Rose,, V. P. Skeen, and, E. D. Salmon. 1994. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes micro-tubules preferentially at the minus ends. EMBO J. 13:27082713.
31. Enke, C.,, N. Zekert,, D. Veith,, C. Schaaf,, S. Konzack, and, R. Fischer. 2007. Aspergillus nidulans Dis1/XMAP215 protein AlpA localizes to spindle pole bodies and microtubule plus ends and contributes to growth directionality. Eukaryot. Cell 6:555562.
32. Enos, A. P., and, N. R. Morris. 1990. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:10191027.
33. Evangelista, M.,, B. M. Klebl,, A. H. Tong,, B. A. Webb,, T. Leeuw,, E. Leberer,, M. Whiteway,, D. Y. Thomas, and, C. Boone. 2000. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J. Cell Biol. 148:353362.
34. Evangelista, M.,, D. Pruyne,, D. C. Amberg,, C. Boone, and, A. Bretscher. 2002. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat. Cell Biol. 4:260269.
35. Feierbach, B., and, F. Chang. 2001. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr. Biol. 11:16561665.
36. Feierbach, B.,, F. Verde, and, F. Chang. 2004. Regulation of a formin complex by the microtubule plus end protein tea1p. J. Cell Biol. 165:697707.
37. Fink, G.,, I. Schuchardt,, J. Colombelli,, E. Stelzer, and, G. Steinberg. 2006a. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. EMBO J. 25:48974908.
38. Fink, G., and, G. Steinberg. 2006b. Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol. Biol. Cell 17:32423253.
39. Finley, K. R., and, J. Berman. 2005. Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis. Eukaryot. Cell 4:16971711.
40. Finley, K. R.,, K. J. Bouchonville,, A. Quick, and, J. Berman. 2008. Dynein-dependent nuclear dynamics affect morphogenesis in Candida albicans by means of the Bub2p spindle checkpoint. J. Cell Sci. 121:466476.
41. Fischer, R.,, N. Takeshita, and, J. Doonan. 2008a. Cytoskeleton, polarized growth and the cell cycle in Aspergillus nidulans, p. 223259. In G. H. Goldman and, S. Osmani (ed.), The Aspergilli: Genomics, Medical Applications, Biotechnology and Research Methods. CRC Press, Boca Raton, FL.
42. Fischer, R.,, N. Zekert, and, N. Takeshita. 2008b. Polarized growth in fungi—interplay between the cytoskeleton, positional markers and membrane domains. Mol. Microbiol. 68:813826.
43. Freitag, M.,, P. C. Hickey,, N. B. Raju,, E. U. Selker, and, N. D. Read. 2004. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet. Biol. 41:897910.
44. Fuchs, F., and, B. Westermann. 2005. Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Mol. Biol. Cell 16:153161.
45. Fuchs, U.,, I. Manns, and, G. Steinberg. 2005. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol. Biol. Cell 16:27462758.
46. Fujiwara, M.,, H. Horiuchi,, A. Ohta, and, M. Takagi. 1997. A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem. Biophys. Res. Commun. 236:7578.
47. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
48. Galletta, B. J.,, D. Y. Chuang, and, J. A. Cooper. 2008. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol. 6:e1.
49. Gao, L., and, A. Bretscher. 2009. Polarized growth in budding yeast in the absence of a localized formin. Mol. Biol. Cell 20:25402548.
50. Gardner, M. K.,, J. Haase,, K. Mythreye,, J. N. Molk,, M. Anderson,, A. P. Joglekar,, E. T. O’Toole,, M. Winey,, E. D. Salmon,, D. J. Odde, and, K. Bloom. 2008a. The micro-tubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. J. Cell Biol. 180:91100.
51. Gardner, M. K.,, D. C. Bouck,, L. V. Paliulis,, J. B. Meehl,, E. T. O’Toole,, J. Haase,, A. Soubry,, A. P. Joglekar,, M. Winey,, E. D. Salmon,, K. Bloom, and, D. J. Odde. 2008b. Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135:894906.
52. Gupta, M. L., Jr.,, P. Carvalho,, D. M. Roof, and, D. Pellman. 2006. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 8:913923.
53. Han, G.,, B. Liu,, J. Zhang,, W. Zuo,, N. R. Morris, and, X. Xiang. 2001. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr. Biol. 11:719724.
54. Harris, S. D.,, L. Hamer,, K. E. Sharpless, and, J. E. Hamer. 1997. The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J. 16:34743483.
55. Harris, S. D., and, M. Momany. 2004. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 41:391400.
56. Harris, S. D.,, J. L. Morrell, and, J. E. Hamer. 1994. Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136:517532.
57. Harris, S. D.,, N. D. Read,, R. W. Roberson,, B. Shaw,, S. Seiler,, M. Plamann, and, M. Momany. 2005. Polarisome meets spitzenkorper: microscopy, genetics, and genomics converge. Eukaryot. Cell 4:225229.
58. Heath, I. B. 1994a. The cytoskeleton, p. 99133. In N. A. R. Gow and, G. M. Gadd (ed.), The Growing Fungus. Chapman & Hall, London, United Kingdom.
59. Heath, I. B. 1994b. The cytoskeleton in hyphal growth, organelle movements, and mitosis, p. 4365. In J. G. H. Wessels and, F. Meinhardt (ed.), The Mycota. I. Growth, Differentiation and Sexuality. Springer-Verlag, Berlin, Germany.
60. Heath, I. B. 2000. Organization and functions of actin in hyphal tip growth, p. 275300. In C. J. Staiger,, F. Baluska,, D. Volkmann, and, P. W. Barlow (ed.), Actin: a Dynamic Framework for Multiple Plant Cell Functions. Kluwer Academic Publishers, Dordrecht, The Netherlands.
61. Helmstaedt, K.,, K. Laubinger,, K. Vosskuhl,, O. Bayram,, S. Busch,, M. Hoppert,, O. Valerius,, S. Seiler, and, G. H. Braus. 2008. The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies. Eukaryot. Cell 7:10411052.
62. Higgs, H. N., and, T. D. Pollard. 2001. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70:649676.
63. Hildebrandt, E. R.,, L. Gheber,, T. Kingsbury, and, M. A. Hoyt. 2006. Homotetrameric form of Cin8p, a Saccharomyces cerevisiae kinesin-5 motor, is essential for its in vivo function. J. Biol. Chem. 281:2600426013.
64. Hohmann-Marriott, M. F.,, M. Uchida,, A. M. van de Meene,, M. Garret,, B. E. Hjelm,, S. Kokoori, and, R. W. Roberson. 2006. Application of electron tomography to fungal ultra-structure studies. New Phytol. 172:208220.
65. Horio, T., and, B. R. Oakley. 2005. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell 16:918926.
66. Howard, J., and, A. A. Hyman. 2003. Dynamics and mechanics of the microtubule plus end. Nature 422:753758.
67. Hubbard, M. A., and, S. G. Kaminskyj. 2008. Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology 154:15441553.
68. Huckaba, T. M.,, T. Lipkin, and, L. A. Pon. 2006. Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast. J. Cell Biol. 175:957969.
69. Hwang, E.,, J. Kusch,, Y. Barral, and, T. C. Huffaker. 2003. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J. Cell Biol. 161:483488.
70. Inoue, S.,, O. C. Yoder,, B. G. Turgeon, and, J. R. Aist. 1998. A cytoplasmic dynein required for mitotic aster formation in vivo. J. Cell Sci. 111(Pt. 17):26072614.
71. Janson, M. E.,, R. Loughlin,, I. Loiodice,, C. Fu,, D. Brunner,, F. J. Nedelec, and, P. T. Tran. 2007. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357368.
72. Jaspersen, S. L., and, M. Winey. 2004. The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell Dev. Biol. 20:128.
73. Jung, G.,, K. Remmert,, X. Wu,, J. M. Volosky, and, J. A. Hammer III. 2001a. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J. Cell Biol. 153:14791497.
74. Jung, M. K.,, N. Prigozhina,, C. E. Oakley,, E. Nogales, and, B. R. Oakley. 2001b. Alanine-scanning mutagenesis of Aspergillus gamma-tubulin yields diverse and novel phenotypes. Mol. Biol. Cell 12:21192136.
75. Kaksonen, M.,, Y. Sun, and, D. G. Drubin. 2003. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475487.
76. Kamasaki, T.,, R. Arai,, M. Osumi, and, I. Mabuchi. 2005. Directionality of F-actin cables changes during the fission yeast cell cycle. Nat. Cell Biol. 7:916917.
77. Kapitein, L. C.,, E. J. Peterman,, B. H. Kwok,, J. H. Kim,, T. M. Kapoor, and, C. F. Schmidt. 2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114118.
78. Kim, J. M.,, L. Lu,, R. Shao,, J. Chin, and, B. Liu. 2006a. Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics 173:685696.
79. Kim, K.,, B. J. Galletta,, K. O. Schmidt,, F. S. Chang,, K. J. Blumer, and, J. A. Cooper. 2006b. Actin-based motility during endocytosis in budding yeast. Mol. Biol. Cell 17:13541363.
80. Knechtle, P.,, F. Dietrich, and, P. Philippsen. 2003. Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 14:41404154.
81. Kohli, M.,, V. Galati,, K. Boudier,, R. W. Roberson, and, P. Philippsen. 2008. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J. Cell Sci. 121:38783889.
82. Konzack, S.,, P. E. Rischitor,, C. Enke, and, R. Fischer. 2005. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol. Biol. Cell 16:497506.
83. Krzysiak, T. C., and, S. P. Gilbert. 2006. Dimeric Eg5 maintains processivity through alternating-site catalysis with rate-limiting ATP hydrolysis. J. Biol. Chem. 281:3944439454.
84. Krzysiak, T. C.,, T. Wendt,, L. R. Sproul,, P. Tittmann,, H. Gross,, S. P. Gilbert, and, A. Hoenger. 2006. A structural model for monastrol inhibition of dimeric kinesin Eg5. EMBO J. 25:22632273.
85. Lawrence, C. J.,, R. K. Dawe,, K. R. Christie,, D. W. Cleveland,, S. C. Dawson,, S. A. Endow,, L. S. Goldstein,, H. V. Goodson,, N. Hirokawa,, J. Howard,, R. L. Malmberg,, J. R. McIntosh,, H. Miki,, T. J. Mitchison,, Y. Okada,, A. S. Reddy,, W. M. Saxton,, M. Schliwa,, J. M. Scholey,, R. D. Vale,, C. E. Walczak, and, L. Wordeman. 2004. A standardized kinesin nomenclature. J. Cell Biol. 167:1922.
86. Lechler, T.,, A. Shevchenko, and, R. Li. 2000. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol. 148:363373.
87. Lee, I. H.,, S. Kumar, and, M. Plamann. 2001. Null mutants of the Neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol. Biol. Cell 12:21952206.
88. Lee, W. L.,, M. Bezanilla, and, T. D. Pollard. 2000. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J. Cell Biol. 151:789800.
89. Lee, W. L.,, J. R. Oberle, and, J. A. Cooper. 2003. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160:355364.
90. Lenz, J. H.,, I. Schuchardt,, A. Straube, and, G. Steinberg. 2006. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J. 25:22752286.
91. Li, C. R.,, Y. M. Wang,, X. De Zheng,, H. Y. Liang,, J. C. Tang, and, Y. Wang. 2005a. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. J. Cell Sci. 118:26372648.
92. Li, S.,, C. E. Oakley,, G. Chen,, X. Han,, B. R. Oakley, and, X. Xiang. 2005b. Cytoplasmic dynein’s mitotic spindle pole localization requires a functional anaphase-promoting complex, gamma-tubulin, and NUDF/LIS1 in Aspergillus nidulans. Mol. Biol. Cell 16:35913605.
93. Liu, B., and, N. R. Morris. 2000. A spindle pole body-associated protein, SNAD, affects septation and conidiation in Aspergillus nidulans. Mol. Gen. Genet. 263:375387.
94. Liu, B.,, X. Xiang, and, Y. R. Lee. 2003. The requirement of the LC8 dynein light chain for nuclear migration and septum positioning is temperature dependent in Aspergillus nidulans. Mol. Microbiol. 47:291301.
95. Liu, X.,, N. Osherov,, R. Yamashita,, H. Brzeska,, E. D. Korn, and, G. S. May. 2001. Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s). Proc. Natl. Acad. Sci. USA 98:91229127.
96. Maddox, P.,, E. Chin,, A. Mallavarapu,, E. Yeh,, E. D. Salmon, and, K. Bloom. 1999. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 144:977987.
97. Martin, R.,, A. Walther, and, J. Wendland. 2005a. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot. Cell 4:17121724.
98. Martin, S. G., and, F. Chang. 2006. Dynamics of the formin for3p in actin cable assembly. Curr. Biol. 16:11611170.
99. Martin, S. G.,, W. H. McDonald,, J. R. Yates III, and, F. Chang. 2005b. Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev. Cell 8:479491.
100. McDaniel, D. P., and, R. W. Roberson. 2000. Microtubules are required for motility and positioning of vesicles and mitochondria in hyphal tip cells of Allomyces macrogynus. Fungal Genet. Biol. 31:233244.
101. McDaniel, D. P., and, R. W. Roberson. 1998. γ-Tubulin is a component of the Spitzenkörper and centrosomes in hyphaltip cells of Allomyces macrogynus. Protoplasma 203:118123.
102. McGoldrick, C. A.,, C. Gruver, and, G. S. May. 1995. myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J. Cell Biol. 128:577587.
103. Miller, R. K.,, K. K. Heller,, L. Frisen,, D. L. Wallack,, D. Loayza,, A. E. Gammie, and, M. D. Rose. 1998. The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9:20512068.
104. Miller, R. K.,, S. D’Silva,, J. K. Moore, and, H. V. Goodson. 2006. The CLIP-170 orthologue Bik1p and positioning the mitotic spindle in yeast. Curr. Top. Dev. Biol. 76:4987.
105. Minc, N.,, S. V. Bratman,, R. Basu, and, F. Chang. 2009. Establishing new sites of polarization by microtubules. Curr. Biol. 19:8394.
106. Minke, P. F.,, I. H. Lee,, J. H. Tinsley,, K. S. Bruno, and, M. Plamann. 1999. Neurospora crassa ro-10 and ro-11 genes encode novel proteins required for nuclear distribution. Mol. Microbiol. 32:10651076.
107. Molk, J. N.,, E. D. Salmon, and, K. Bloom. 2006. Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae. J. Cell Biol. 172:2739.
108. Moore, J. K.,, J. Li, and, J. A. Cooper. 2008. Dynactin function in mitotic spindle positioning. Traffic 9:510527.
109. Morris, N. R. 1975. Mitotic mutants of Aspergillus nidulans. Genet. Res. 26:237254.
110. Morris, N. R.,, V. P. Efimov, and, X. Xiang. 1998. Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol. 8:467470.
111. Moseley, J. B., and, B. L. Goode. 2006. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70:605645.
112. Mouriño-Pérez, R. R.,, R. W. Roberson, and, S. Bartnicki-Garcia. 2006. Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet. Biol. 43:389400.
113. Mulvihill, D. P.,, S. R. Edwards, and, J. S. Hyams. 2006. A critical role for the type V myosin, Myo52, in septum deposition and cell fission during cytokinesis in Schizosaccharomyces pombe. Cell Motil. Cytoskelet. 63:149161.
114. Nogales, E.,, M. Whittaker,, R. A. Milligan, and, K. H. Downing. 1999. High-resolution model of the microtubule. Cell 96:7988.
115. Oakley, B. R. 2004. Tubulins in Aspergillus nidulans. Fungal Genet. Biol. 41:420427.
116. Oakley, B. R., and, N. R. Morris. 1980. Nuclear movement is beta-tubulin-dependent in Aspergillus nidulans. Cell 19:255262.
117. Oakley, B. R., and, N. R. Morris. 1981. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24:837845.
118. Oakley, B. R.,, C. E. Oakley,, Y. Yoon, and, M. K. Jung. 1990. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:12891301.
119. Oakley, C. E., and, B. R. Oakley. 1989. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662664.
120. Oberholzer, U.,, T. L. Iouk,, D. Y. Thomas, and, M. Whiteway. 2004. Functional characterization of myosin I tail regions in Candida albicans. Eukaryot. Cell 3:12721286.
121. Oberholzer, U.,, A. Marcil,, E. Leberer,, D. Y. Thomas, and, M. Whiteway. 2002. Myosin I is required for hypha formation in Candida albicans. Eukaryot. Cell 1:213228.
122. O’Connell, M. J.,, P. B. Meluh,, M. D. Rose, and, N. R. Morris. 1993. Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J. Cell Biol. 120:153162.
123. Osherov, N.,, R. A. Yamashita,, Y. S. Chung, and, G. S. May. 1998. Structural requirements for in vivo myosin I function in Aspergillus nidulans. J. Biol. Chem. 273:2701727025.
124. Osmani, A. H.,, S. A. Osmani, and, N. R. Morris. 1990. The molecular cloning and identification of a gene product specifically required for nuclear movement in Aspergillus nidulans. J. Cell Biol. 111:543551.
125. Paluh, J. L.,, E. Nogales,, B. R. Oakley,, K. McDonald,, A. L. Pidoux, and, W. Z. Cande. 2000. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol. Biol. Cell 11:12251239.
126. Pearson, C. L.,, K. Xu,, K. E. Sharpless, and, S. D. Harris. 2004. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol. Biol. Cell 15:36583672.
127. Pfister, K. K.,, P. R. Shah,, H. Hummerich,, A. Russ,, J. Cotton,, A. A. Annuar,, S. M. King, and, E. M. Fisher. 2006. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2:e1.
128. Pollard, T. D. 2007. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36:451477.
129. Prigozhina, N. L.,, C. E. Oakley,, A. M. Lewis,, T. Nayak,, S. A. Osmani, and, B. R. Oakley. 2004. Gamma-tubulin plays an essential role in the coordination of mitotic events. Mol. Biol. Cell 15:13741386.
130. Prigozhina, N. L.,, R. A. Walker,, C. E. Oakley, and, B. R. Oakley. 2001. Gamma-tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Mol. Biol. Cell 12:31613174.
131. Pruyne, D.,, M. Evangelista,, C. Yang,, E. Bi,, S. Zigmond,, A. Bretscher, and, C. Boone. 2002. Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612615.
132. Reck-Peterson, S. L.,, A. Yildiz,, A. P. Carter,, A. Gennerich,, N. Zhang, and, R. D. Vale. 2006. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335348.
133. Requena, N.,, C. Alberti-Segui,, E. Winzenburg,, C. Horn,, M. Schliwa,, P. Philippsen,, R. Liese, and, R. Fischer. 2001. Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol. Microbiol. 42:121132.
134. Reynaga-Peña, C. G.,, G. Gierz, and, S. Bartnicki-Garcia. 1997. Analysis of the role of the Spitzenkorper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger. Proc. Natl. Acad. Sci. USA 94:90969101.
135. Rida, P. C.,, A. Nishikawa,, G. Y. Won, and, N. Dean. 2006. Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans. Mol. Biol. Cell 17:43644378.
136. Riquelme, M.,, R. Fischer, and, S. Bartnicki-Garcia. 2003. Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 222:211215.
137. Rischitor, P. E.,, S. Konzack, and, R. Fischer. 2004. The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot. Cell 3:632645.
138. Roberts, A. J.,, N. Numata,, M. L. Walker,, Y. S. Kato,, B. Malkova,, T. Kon,, R. Ohkura,, F. Arisaka,, P. J. Knight,, K. Sutoh, and, S. A. Burgess. 2009. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136:485495.
139. Roof, D. M.,, P. B. Meluh, and, M. D. Rose. 1992. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 118:95108.
140. Sagot, I.,, S. K. Klee, and, D. Pellman. 2002a. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4:4250.
141. Sagot, I.,, A. A. Rodal,, J. Moseley,, B. L. Goode, and, D. Pellman. 2002b. An actin nucleation mechanism mediated by Bni1 and profilin. Nat. Cell Biol. 4:626631.
142. Sakato, M., and, S. M. King. 2004. Design and regulation of the AAA+ microtubule motor dynein. J. Struct. Biol. 146:5871.
143. Sampson, K., and, I. B. Heath. 2005. The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151:15431555.
144. Sanchez-Perez, I.,, S. J. Renwick,, K. Crawley,, I. Karig,, V. Buck,, J. C. Meadows,, A. Franco-Sanchez,, U. Fleig,, T. Toda, and, J. B. Millar. 2005. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J. 24:29312943.
145. Saunders, W. S., and, M. A. Hoyt. 1992. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451458.
146. Schliwa, M., and, G. Woehlke. 2003. Molecular motors. Nature 422:759765.
147. Schmitz, H. P.,, A. Kaufmann,, M. Kohli,, P. P. Laissue, and, P. Philippsen. 2006. From function to shape: a novel role of a formin in morphogenesis of the fungus Ashbya gossypii. Mol. Biol. Cell 17:130145.
148. Schoch, C. L.,, J. R. Aist,, O. C. Yoder, and, B. Gillian Turgeon. 2003. A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genet. Biol. 39:115.
149. Schroer, T. A. 2004. Dynactin. Annu. Rev. Cell. Dev. Biol. 20:759779.
150. Schuchardt, I.,, D. Assmann,, E. Thines,, C. Schuberth, and, G. Steinberg. 2005. Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol. Biol. Cell 16:51915201.
151. Seiler, S., and, M. Plamann. 2003. The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol. Biol. Cell 14:43524364.
152. Seiler, S.,, N. Vogt,, C. Ziv,, R. Gorovits, and, O. Yarden. 2006. The STE20/germinal center kinase POD6 interacts with the NDR kinase COT1 and is involved in polar tip extension in Neurospora crassa. Mol. Biol. Cell 17:40804092.
153. Sellers, J. R. 2000. Myosins: a diverse superfamily. Biochim. Biophys. Acta 1496:322.
154. Sharpless, K. E., and, S. D. Harris. 2002. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell 13:469479.
155. Sheeman, B.,, P. Carvalho,, I. Sagot,, J. Geiser,, D. Kho,, M. A. Hoyt, and, D. Pellman. 2003. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13:364372.
156. Sheu, Y. J.,, B. Santos,, N. Fortin,, C. Costigan, and, M. Snyder. 1998. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell. Biol. 18:40534069.
157. Skoumpla, K.,, A. T. Coulton,, W. Lehman,, M. A. Geeves, and, D. P. Mulvihill. 2007. Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 120:16351645.
158. Soldati, T., and, M. Schliwa. 2006. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 7:897908.
159. Sproul, L. R.,, D. J. Anderson,, A. T. Mackey,, W. S. Saunders, and, S. P. Gilbert. 2005. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15:14201427.
160. Steinberg, G. 2007a. On the move: endosomes in fungal growth and pathogenicity. Nat. Rev. Microbiol. 5:309316.
161. Steinberg, G. 2007b. Preparing the way: fungal motors in microtubule organization. Trends Microbiol. 15:1421.
162. Straube, A.,, M. Brill,, B. R. Oakley,, T. Horio, and, G. Steinberg. 2003. Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol. Biol. Cell 14:642657.
163. Straube, A.,, W. Enard,, A. Berner,, R. Wedlich-Soldner,, R. Kahmann, and, G. Steinberg. 2001. A split motor domain in a cytoplasmic dynein. EMBO J. 20:50915100.
164. Straube, A.,, G. Hause,, G. Fink, and, G. Steinberg. 2006. Conventional kinesin mediates microtubule-microtubule interactions in vivo. Mol. Biol. Cell 17:907916.
165. Straube, A.,, I. Weber, and, G. Steinberg. 2005. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J. 24:16741685.
166. Stumpff, J.,, G. von Dassow,, M. Wagenbach,, C. Asbury, and, L. Wordeman. 2008. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14:252262.
167. Suelmann, R., and, R. Fischer. 2000. Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil. Cytoskelet. 45:4250.
168. Sun, Y.,, A. C. Martin, and, D. G. Drubin. 2006. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11:3346.
169. Taheri-Talesh, N.,, T. Horio,, L. Araujo-Bazan,, X. Dou,, E. A. Espeso,, M. A. Peñalva,, S. A. Osmani, and, B. R. Oakley. 2008. The tip growth apparatus of Aspergillus nidulans. Mol. Biol. Cell 19:14391449.
170. Takeshita, N.,, Y. Higashitsuji,, S. Konzack, and, R. Fischer. 2008. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell 19:339351.
171. Takeshita, N.,, A. Ohta, and, H. Horiuchi. 2002. csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem. Biophys. Res. Commun. 298:103109.
172. Takeshita, N.,, A. Ohta, and, H. Horiuchi. 2005. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol. Biol. Cell 16:19611970.
173. Takeshita, N.,, S. Yamashita,, A. Ohta, and, H. Horiuchi. 2006. Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol. Microbiol. 59:13801394.
174. Terenna, C. R.,, T. Makushok,, G. Velve-Casquillas,, D. Baigl,, Y. Chen,, M. Bornens,, A. Paoletti,, M. Piel, and, P. T. Tran. 2008. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr. Biol. 18:17481753.
175. Tolliday, N.,, L. VerPlank, and, R. Li. 2002. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr. Biol. 12:18641870.
176. Torralba, S.,, M. Raudaskoski,, A. M. Pedregosa, and, F. Laborda. 1998. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144(Pt. 1):4553.
177. Tran, P. T.,, L. Marsh,, V. Doye,, S. Inoue, and, F. Chang. 2001. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153:397411.
178. Tsai, L. H., and, J. G. Gleeson. 2005. Nucleokinesis in neuronal migration. Neuron 46:383388.
179. Tytell, J. D., and, P. K. Sorger. 2006. Analysis of kinesin motor function at budding yeast kinetochores. J. Cell Biol. 172:861874.
180. Uchida, M.,, R. R. Mourino-Perez,, M. Freitag,, S. Bartnicki-Garcia, and, R. W. Roberson. 2008. Microtubule dynamics and the role of molecular motors in Neurospora crassa. Fungal Genet. Biol. 45:683692.
181. Upadhyay, S., and, B. D. Shaw. 2008. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol. Microbiol. 68:690705.
182. Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112:467480.
183. Vallee, R. B., and, P. Hook. 2006. Autoinhibitory and other autoregulatory elements within the dynein motor domain. J. Struct. Biol. 156:175181.
184. Vallee, R. B., and, J. W. Tsai. 2006. The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev. 20:13841393.
185. Varga, V.,, J. Helenius,, K. Tanaka,, A. A. Hyman,, T. U. Tanaka, and, J. Howard. 2006. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8:957962.
186. Veith, D.,, N. Scherr,, V. P. Efimov, and, R. Fischer. 2005. Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. J. Cell Sci. 118:37053716.
187. Virag, A., and, S. D. Harris. 2006. Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot. Cell 5:881895.
188. Vogt, N., and, S. Seiler. 2008. The RHO1-specific GTPase-activating protein LRG1 regulates polar tip growth in parallel to Ndr kinase signaling in Neurospora. Mol. Biol. Cell 19:45544569.
189. Walker, R. A.,, E. D. Salmon, and, S. A. Endow. 1990. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780782.
190. Weber, I.,, D. Assmann,, E. Thines, and, G. Steinberg. 2006. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225242.
191. Weber, I.,, C. Gruber, and, G. Steinberg. 2003. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15:28262842.
192. Wedlich-Soldner, R.,, A. Straube,, M. W. Friedrich, and, G. Steinberg. 2002a. A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J. 21:29462957.
193. Wedlich-Soldner, R.,, I. Schulz,, A. Straube, and, G. Steinberg. 2002b. Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol. Biol. Cell 13:965977.
194. Werner, S.,, J. A. Sugui,, G. Steinberg, and, H. B. Deising. 2007. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol. Plant-Microbe Interact. 20:15551567.
195. West, R. R.,, T. Malmstrom, and, J. R. McIntosh. 2002. Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. J. Cell Sci. 115:931940.
196. Wiese, C., and, Y. Zheng. 2006. Microtubule nucleation: gamma-tubulin and beyond. J. Cell Sci. 119:41434153.
197. Willins, D. A.,, X. Xiang, and, N. R. Morris. 1995. An alpha tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics 141:12871298.
198. Wortman, J. R.,, J. M. Gilsenan,, V. Joardar,, J. Deegan,, J. Clutterbuck,, M. R. Andersen,, D. Archer,, M. Bencina,, G. Braus,, P. Coutinho,, H. von Dohren,, J. Doonan,, A. J. Driessen,, P. Durek,, E. Espeso,, E. Fekete,, M. Flipphi,, C. G. Estrada,, S. Geysens,, G. Goldman,, P. W. de Groot,, K. Hansen,, S. D. Harris,, T. Heinekamp,, K. Helmstaedt,, B. Henrissat,, G. Hofmann,, T. Homan,, T. Horio,, H. Horiuchi,, S. James,, M. Jones,, L. Karaffa,, Z. Karanyi,, M. Kato,, N. Keller,, D. E. Kelly,, J. A. Kiel,, J. M. Kim,, I. J. van der Klei,, F. M. Klis,, A. Kovalchuk,, N. Krasevec,, C. P. Kubicek,, B. Liu,, A. Maccabe,, V. Meyer,, P. Mirabito,, M. Miskei,, M. Mos,, J. Mullins,, D. R. Nelson,, J. Nielsen,, B. R. Oakley,, S. A. Osmani,, T. Pakula,, A. Paszewski,, I. Paulsen,, S. Pilsyk,, I. Pocsi,, P. J. Punt,, A. F. Ram,, Q. Ren,, X. Robellet,, G. Robson,, B. Seiboth,, P. van Solingen,, T. Specht,, J. Sun,, N. Taheri-Talesh,, N. Takeshita,, D. Ussery,, P. A. vanKuyk,, H. Visser,, P. J. van de Vondervoort,, R. P. de Vries,, J. Walton,, X. Xiang,, Y. Xiong,, A. P. Zeng,, B. W. Brandt,, M. J. Cornell,, C. A. van den Hondel,, J. Visser,, S. G. Oliver, and, G. Turner. 2009. The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet. Biol. 46(Suppl. 1):S2S13.
199. Wu, J. Q.,, V. Sirotkin,, D. R. Kovar,, M. Lord,, C. C. Beltzner,, J. R. Kuhn, and, T. D. Pollard. 2006a. Assembly of the cytokinetic contractile ring from a broad band of nodes in fission yeast. J. Cell Biol. 174:391402.
200. Wu, X.,, X. Xiang, and, J. A. Hammer III. 2006b. Motor proteins at the microtubule plus-end. Trends Cell Biol. 16:135143.
201. Wu, X. S.,, G. L. Tsan, and, J. A. Hammer III. 2005. Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol. 171:201207.
202. Xiang, X., and, R. Fischer. 2004. Nuclear migration and positioning in filamentous fungi. Fungal Genet. Biol. 41:411419.
203. Xiang, X.,, A. H. Osmani,, S. A. Osmani,, M. Xin, and, N. R. Morris. 1995. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6:297310.
204. Xiang, X., and, M. Plamann. 2003. Cytoskeleton and motor proteins in filamentous fungi. Curr. Opin. Microbiol. 6:628633.
205. Yamashita, R. A., and, G. S. May. 1998. Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J. Biol. Chem. 273:1464414648.
206. Yamashita, R. A.,, N. Osherov, and, G. S. May. 2000. Localization of wild type and mutant class I myosin proteins in Aspergillus nidulans using GFP-fusion proteins. Cell Motil. Cytoskelet. 45:163172.
207. Yeh, E.,, C. Yang,, E. Chin,, P. Maddox,, E. D. Salmon,, D. J. Lew, and, K. Bloom. 2000. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol. Biol. Cell 11:39493961.
208. Zekert, N., and, R. Fischer. 2009. The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol. Biol. Cell 20:673684.
209. Zhang, J.,, S. Li,, R. Fischer, and, X. Xiang. 2003. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol. Biol. Cell 14:14791488.
210. Zhang, J.,, L. Wang,, L. Zhuang,, L. Huo,, S. Musa,, S. Li, and, X. Xiang. 2008. Arp11 affects dynein-dynactin interaction and is essential for dynein function in Aspergillus nidulans. Traffic 9:10731087.
211. Zheng, X. D.,, Y. M. Wang, and, Y. Wang. 2003. CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Mol. Microbiol. 49:13911405.
212. Zhou, T.,, W. Zimmerman,, X. Liu, and, R. L. Erikson. 2006. A mammalian NudC-like protein essential for dynein stability and cell viability. Proc. Natl. Acad. Sci. USA 103:90399044.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error