1887

Chapter 19 : Hyphal Fusion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Hyphal Fusion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap19-2.gif

Abstract:

This chapter focuses on hyphal fusion in filamentous ascomycete and basidiomycete species, with emphasis on the model ascomycete fungus, . It reviews the different types of hyphal fusion, its mechanistic basis, and the varied functions that it serves, and it compares hyphal fusion with processes of cell fusion in fungi and other eukaryotic species. Hyphal fusion between spores and spore germlings during colony initiation is very common. In members of the Ascomycota and Basidiomycota, hyphal fusion occurs during mating-cell fusion and during the formation and maintenance of the dikaryon during the sexual phase of the life cycle. Future comparison of different types of hyphal fusion at different stages during the fungal life cycle will be important to distinguish molecular components universally involved in cell fusion from those that are specific to individual cell fusion pathways. Many of the processes required for hyphal fusion in filamentous fungi during vegetative growth are also required during cell fusion processes in general, including signaling by diffusible substances, directed cell growth or movement towards each other, attachment of the two cell types to one another, production and targeting of enzymes to the attachment site, and fusion of the plasma membranes of the interacting cells. Understanding the molecular basis of hyphal fusion during vegetative growth in filamentous fungi may provide a paradigm for self-signaling and self-fusion mechanisms in eukaryotic microbial species, as well as provide a useful model for somatic cell fusion events in complex, multicellular species.

Citation: Read N, Fleißner A, Roca M, Glass N. 2010. Hyphal Fusion, p 260-273. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch19

Key Concept Ranking

Fungal Pathogenesis
0.54332095
Plant Pathogenic Fungi
0.43069443
0.54332095
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

. (A) Conidial anastomosis tubes (CATs) (c) that have formed directly from macroconidia (s) and fused with each other. Note that the germ tubes (g) are wider than the CATs. Bar = 5 μm. (From M. G. Roca, C.E. Jeffree, and N. D. Read, unpublished data.) (B) CATs (c) that have formed from germ tube (g) tips, grown towards each other, and made contact. Bar = 5 μm. (From Roca, Jeffree, and Read, unpublished.) (C) CATs (c) that have formed subapically from germ tubes (g) and have fused. Bar = 5 μm. (From , with permission.) (D) The CAT homing assay. The two conidia had germinated, and their CATs were homing towards each other (0 min). The left-hand germling was repositioned (here shown 4 min after repositioning). The CAT tips then changed their orientation to home back towards each other (15 and 21 min) before making contact (25 min) and subsequently fusing (not shown). The left-hand conidium remained trapped throughout the entire 25-min period without apparent inhibition of CAT growth, homing, or fusion. The position of the trap in the germ tube (g) is represented by the crosshair in the circle. Note that the germ tube is significantly wider than either CAT. Bar = 10 μm. (From , with permission.) (E) Hyphal fusion in a mature colony that has resulted in a complex interconnected hyphal network. Bar = 100 μm. (From K.M. Lord and N. D. Read, cover image for 2008 issues of , with permission.) (F) A comparison of the morphology of anastomosis between fusion hyphae in a mature wild-type colony (note fusion pores [asterisks]) and a fusion mutant () in which fusion does not occur. Hyphae imaged by confocal microscopy after staining with calcofluor white M2R. Bar = 10 μm. (From Fleißner et al., 2005, with permission.) (G) Trichogyne that has homed towards, and wrapped around, a macroconidium (arrow) of opposite mating type. Bar = 20 μm. (From H.C. Kuo, C.E. Jeffree, and N. D. Read, unpublished data).

Citation: Read N, Fleißner A, Roca M, Glass N. 2010. Hyphal Fusion, p 260-273. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Diagram of crozier cell fusion in a typical ascomycete species. (B) Diagram of clamp cell fusion in a basidiomycete species. See “Hyphal Fusion in a Mature Colony” for details.

Citation: Read N, Fleißner A, Roca M, Glass N. 2010. Hyphal Fusion, p 260-273. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Working model of the signaling involved during vegetative hyphal fusion in (see the text for details). The self-signaling ligand and receptor responsible for the process of self-fusion are unknown. GPIG1, GPIT1, GPIP1, GPIP2, and GPIP3 are involved in the GPI protein anchoring pathway ( ). It is not known which stage(s) of vegetative hyphal fusion these proteins regulate. HAM-2 is a predicted transmembrane protein ( ), although it is not known which cellular membrane it is associated with. NRC1-MEK2-MAK2 (Li et al., 2005; ), MIK1-MEK1-MAK1 ( ), and the OS4-OS5-OS2 ( ) are three MAP kinase pathways, and PP1 ( ) is the transcription factor predicted to be at the base of the MAK2 pathway. Upstream elements of the MAK1 and OS2 MAP kinase pathways and the stage(s) of vegetative hyphal fusion that they regulate are unknown. Mutations in suppress the vegetative hyphal fusion defect of ( ). SO is an ascomycete-specific WW domain protein ( ).

Citation: Read N, Fleißner A, Roca M, Glass N. 2010. Hyphal Fusion, p 260-273. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch19
1. Araujo-Palomares, C. L.,, E. Castro-Longoria, and, M. Riquelme. 2007. Ontogeny of the Spitzenkörper in germlings of Neurospora crassa. Fungal Genet. Biol. 44:492503.
2. Badalyan, S. M.,, E. Polak,, R. Hermann,, M. Aebi, and, U. Kües. 2004. Role of peg formation in clamp cell fusion of homobasidiomycete fungi. J. Basic Microbiol. 44:167177.
3. Barron, G. L. 1977. The Nematode-Destroying Fungi. Canadian Biological Publications, Guelph, Ontario, Canada.
4. Beckett, A. 1981. The ultrastructure of septal pores and associated structures in the ascogenous hyphae and asci of Sordaria humana. Protoplasma 107:127147.
5. Berteaux-Lecellier, V.,, D. Zickler,, R. Debuchy,, A. PanvierAdoutte,, C. Thompson-Coffe, and, M. Picard. 1998. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO J. 17:12481258.
6. Bistis, G. N. 1981. Chemotropic interactions between trichogynes and conidia of opposite mating-type in Neurospora crassa. Mycologia 73:959975.
7. Bistis, G. N. 1970. Dikaryotization in Clitocybe truncicola. Mycologia 62:911923.
8. Bistis, G. N.,, D. D. Perkins, and, N. D. Read. 2003. Different cell types in Neurospora crassa. Fungal Genet. Newslett. 50:1719.
9. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
10. Bowman, S. M.,, A. Piwowar,, M. Al Dabbous,, J. Vierula, and, S. J. Free. 2006. Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa. Eukaryot. Cell 5:587600.
11. Bracker, C. E.,, D. J. Murphy, and, R. Lopez-Franco. 1997. Laser microbeam manipulation of cell morphogenesis in growing fungal hyphae. Proc. SPIE 2983:6780.
12. Buehrer, B. M., and, B. Errede. 1997. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:65176525.
13. Buller, A. H. R. 1933. Researches on Fungi, vol. 5. Longman, London, England.
14. Buss, L. W., and, R. K. Grosberg. 1990. Morphogenetic basis for phenotypic differences in hydroid competitive behaviour. Nature 343:6366.
15. Changwei, Z.,, X. Mingyong, and, W. Ranran. 2007. Afr1p has a role in regulating the localization of Mpk1p at the shmoo tip in Saccharomyces cerevisiae. FEBS Lett. 581:26702674.
16. Chen, E. H.,, E. Grote,, W. Mohler, and, A. Vignery. 2007. Cell-cell fusion. FEBS Lett. 581:21812193.
17. Chen, E. H., and, E. N. Olson. 2004. Towards a molecular pathway for myoblast fusion in Drosophila. Trends Cell Biol. 14:452.
18. Collins, O. N. R., and, E. F. Haskins. 1972. Genetics of somatic fusion in Physarum polycephalum: the PpII strain. Genetics 71:6371.
19. Craven, K. D.,, H. Velez,, Y. Cho,, C. B. Lawrence, and, T. K. Mitchell. 2008. Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot. Cell 7:675683.
20. Cross, F. 1988. Conjugation in Saccharomyces cerevisiae. Annu. Rev. Cell Biol. 4:429457.
21. Cross, J. C.,, Z. Werb, and, S. J. Fisher. 1994. Implantation and the placenta: key pieces of the development puzzle. Science 266:15081518.
22. Dworak, H. A., and, H. Sink. 2002. Myoblast fusion in Drosophila. Bioessays 24:591601.
23. Elion, E. A. 2000. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3:573581.
24. Engh, I.,, C. Wurtz,, K. Witzel-Schlomp,, H. Y. Zhang,, B. Hoff,, M. Nowrousian,, H. Rottensteiner, and, U. Kück. 2007. The WW domain protein Pro40 is required for fungal fertility and associates with Woronin bodies. Eukaryot. Cell 6:831843.
25. Errede, B., and, G. Ammerer. 1989. STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 3:13491361.
26. Fischer-Parton, S.,, R. M. Parton,, P. C. Hickey,, J. Dijksterhuis,, H. A. Atkinson, and, N. D. Read. 2000. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198:246259.
27. Fleißner, A.,, S. Diamond, and, N. L. Glass. 2009. The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events, but also has post-fertilization functions. Genetics 181:497510.
28. Fleißner, A., and, N. L. Glass. 2007. SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot. Cell 6:8494.
29. Fleißner, A.,, S. Sarkar,, D. J. Jacobson,, M. G. Roca,, N. D. Read, and, N. L. Glass. 2005. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot. Cell 4:920930.
30. Fleißner, A.,, A. R. Simonin, and, N. L. Glass. 2008. Cell fusion in the filamentous fungus, Neurospora crassa, p. 21–38. In E. E. Chen (ed.), Cell Fusion. Humana Press, Totowa, NJ.
31. Furukawa, K.,, Y. Hoshi,, T. Maeda,, T. Nakajima, and, K. Abe. 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56:12461261.
32. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. P. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
33. Gammie, A. E.,, V. Brizzio, and, M. D. Rose. 1998. Distinct morphological phenotypes of cell fusion mutants. Mol. Biol. Cell 9:13951410.
34. Gierz, G., and, S. Bartnicki-Garcia. 2001. A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J. Theor. Biol. 208:151164.
35. Giovannetti, M.,, D. Azzolini, and, A. S. Citernesi. 1999. Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 65:55715575.
36. Giovannetti, M.,, P. Fortuna,, A. S. Citernesia,, S. Morini, and, M. P. Nuti. 2001. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol. 151:717724.
37. Girbardt, M. 1957. Der Spitzenkorper von Polystictus versicolor (L.). Planta 50:4759.
38. Glass, N. L., and, K. Dementhon. 2006. Non-self recognition and programmed cell death in filamentous fungi. Curr. Opin. Microbiol. 9:553558.
39. Glass, N. L., and, A. Fleißner. 2006. Re-wiring the network: understanding the mechanism and function of anastomosis in filamentous ascomycete fungi, p. 123–139. In U. Kues and R. Fischer (ed.), The Mycota. Springer-Verlag, Berlin, Germany.
40. Glass, N. L.,, D. J. Jacobson, and, P. K. T. Shiu. 2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu. Rev. Genet. 34:165186.
41. Glass, N. L.,, C. G. Rasmussen,, M. G. Roca, and, N. D. Read. 2004. Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol. 12:135141.
42. Gregory, P. H. 1984. The fungal mycelium: a historical perspective. Trans. Br. Mycol. Soc. 82:111.
43. Griffin, D. M., and, H. N. Perrin. 1960. Anastomosis in the Phycomycetes. Nature 187:10391040.
44. Grove, S. N., and, C. E. Bracker. 1970. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J. Bacteriol. 104:9891009.
45. Harris, S. D.,, N. D. Read,, R. W. Roberson,, B. Shaw,, S. Seiler,, M. Plamann, and, M. Momany. 2005. Polarisome meets Spitzenkorper: microscopy, genetics, and genomics converge. Eukaryot. Cell 4:225229.
46. Hay, F. S. 1995. Unusual germination of spores of Arthrobotrys conoides and A. cladodes. Mycol. Res. 99:981982.
47. Heiman, M. G., and, P. Walter. 2000. Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J. Cell Biol. 151:719730.
48. Hickey, P. C.,, D. Jacobson,, N. D. Read, and, N. L. Louise Glass. 2002. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet. Biol. 37:109119.
49. Hickey, P. C.,, S. R. Swift,, M. G. Roca, and, N. D. Read. 2005. Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy, p. 63–87. In T. Savidge and C. Pothoulakis (ed.), Methods in Microbiology. Elsevier, London, United Kingdom.
50. Higashiyama, T.,, H. Kuroiwa, and, T. Kuroiwa. 2003. Pollen-tube guidance: beacons from the female gametophyte. Curr. Opin. Plant Biol. 6:3641.
51. Hou, Z.,, C. Xue,, Y. Peng,, T. Katan,, H. C. Kistler, and, J. R. Xu. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe Interact. 15:11191127.
52. Jee, W. S. S., and, P. D. Nolan. 1963. Origin of osteoclasts from the fusion of phagocytes. Nature 200:225226.
53. Jones, C. A.,, S. E. Greer-Phillips, and, K. A. Borkovich. 2007. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol. Biol. Cell 18:21232136.
54. Kemp, H. A., and, G. F. Sprague. 2003. Far3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae. Mol. Cell Biol. 23:17501763.
55. Kim, H., and, K. A. Borkovich. 2004. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol. Microbiol. 52:17811798.
56. Kim, H., and, K. A. Borkovich. 2006. Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot. Cell 5:544554.
57. Köhler, E. 1929. Beitraege zur Kenntnis der vegetativen Anastomosen der Pilze I. Planta 8:140153.
58. Köhler, E. 1930. Zur Kenntnis der vegetativen Anastomosen der Pilze (II. Mitteilung). Planta 10:495522.
59. Kojima, K.,, T. Kikuchi,, Y. Takano,, E. Oshiro, and, T. Okuno. 2002. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol. Plant-Microbe Interact. 15:12681276.
60. Kothe, G. O., and, S. J. Free. 1998. The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics 149:117130.
61. Kurjan, J. 1993. The pheromone response pathway in Saccharomyces cerevisiae. Annu. Rev. Genet. 27:147179.
62. Laibach, F. 1928. Ueber Zellfusionen bei Pilzen. Planta 5:340359.
63. Latunde-Dada, A. O.,, R. J. O’Connell, and, J. A. Lucas. 1999. Stomatal penetration of cowpea (Vigna unguiculata) leaves by a Colletotrichum species causing latent anthracnose. Plant Pathol. 48:777785.
64. Lengeler, K. B.,, R. C. Davidson,, C. D’Souza,, T. Harashima,, W.-C. Shen,, P. Wang,, X. Pan,, M. Waugh, and, J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64:746785.
65. Leslie, J. F. 1993. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 31:127150.
66. Leu, L. S. 1967. Anastomosis in Venturia inaequalis (CKE) Wint. Ph. D. thesis. University of Wisconsin, Madison.
67. Lev, S.,, A. Sharon,, R. Hadar,, H. Ma, and, B. A. Horwitz. 1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad. Sci. USA 96:1354213547.
68. Li, D.,, P. Bobrowicz,, H. H. Wilkinson, and, D. J. Ebbole. 2005. A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:10911104.
69. Li, L.,, S. J. Wright,, S. Krystofova,, G. Park, and, K. A. Borkovich. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423452.
70. Lipke, P. N., and, J. Kurjan. 1992. Sexual agglutination in budding yeasts. Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56:180194.
71. Litman, G. W. 2006. How Botryllus chooses to fuse. Immunity 25:1315.
72. Lu, Q.,, D. C. Pallas,, H. K. Surks,, W. E. Baur,, M. E. Mendelsohn, and, R. H. Karas. 2004. Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor α. Proc. Natl. Acad. Sci. USA 101:1712617131.
73. Maerz, S.,, C. Ziv,, N. Vogt,, K. Helmstaedt,, N. Cohen,, R. Gorovits,, O. Yarden, and, S. Seiler. 2008. The nuclear Dbf2-related kinase COT1, and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179:13131325.
74. Manahan, C. L.,, P. A. Iglesias,, Y. Long, and, P. N. Devreotes. 2004. Chemoattractant signaling in Dictyostelium discoideum. Annu. Rev. Cell Dev. Biol. 20:223253.
75. Mesterhazy, A. 1973. The morphology of an undescribed form of anastomosis in Fusarium. Mycologia 65:916919.
76. Mey, G.,, B. Oeser,, M. H. Lebrun, and, P. Tudzynski. 2002. The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. Mol. Plant-Microbe Interact. 15:303312.
77. Miller, M. B., and, B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165199.
78. Nordbring-Hertz, B.,, E. Frimnan, and, M. Veenhuis. 1989. Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. Antonie van Leeuwenhoek 55:237244.
79. Pandey, A.,, M. G. Roca,, N. D. Read, and, N. L. Glass. 2004. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot. Cell 3:348358.
80. Paululat, A.,, A. Holz, and, R. Renkawitz-Pohl. 1999. Essential genes for myoblast fusion in Drosophila embryogenesis. Mech. Dev. 83:1726.
81. Poggeler, S., and, U. Kuck. 2004. A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot. Cell 3:232240.
82. Pontecorvo, G. 1956. The parasexual cycle in fungi. Annu. Rev. Microbiol. 10:393400.
83. Prados Rosales, R. C., and, A. Di Pietro. 2008. Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot. Cell 7:162171.
84. Pramer, D., and, N. R. Stoll. 1959. Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129:966969.
85. Pringle, A., and, J. W. Taylor. 2002. The fitness of filamentous fungi. Trends Microbiol. 10:474481.
86. Raju, N. B. 1980. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 23:208223.
87. Rasmussen, C. G. 2007. Characterization of Genes Required for Septation and Fusion in Neurospora crassa. University of California, Berkeley.
88. Rayner, A. D. M. 1996. Interconnectedness and Individualism in Fungal Mycelia. Cambridge University Press, Cambridge, England.
89. Read, N. D. 2007. Environmental sensing and the filamentous fungal lifestyle, p. 38–57. In G. M. Gadd, S. C. Watkinson, and P. S. Dyer (ed.), Fungi and Their Environment. Cambridge University Press, Cambridge, England.
90. Read, N. D., and, A. Beckett. 1996. Ascus and ascospore morphogenesis. Mycol. Res. 100:12811314.
91. Read, N. D., and, M. G. Roca. 2006. Vegetative hyphal fusion in filamentous fungi, p. 87–98. In F. Baluska, D. Volkmann, and P. W. Barlow (ed.), Cell-Cell Channels. Landes Bioscience, Georgetown, TX.
92. Rech, C.,, I. Engh, and, U. Kück. 2007. Detection of hyphal fusion in filamentous fungi using differently fluorescence-labeled histones. Curr. Genet. 52:259266.
93. Riquelme, M.,, C. G. Reynaga-Pena,, G. Gierz, and, S. Bart-nicki-Garcia. 1998. What determines growth direction in fungal hyphae? Fungal Genet. Biol. 24:101109.
94. Roca, G. M.,, N. D. Read, and, A. E. Wheals. 2005a. Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol. Lett. 249:191198.
95. Roca, M. G.,, J. Arlt,, C. E. Jeffree, and, N. D. Read. 2005b. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot. Cell 4:911919.
96. Roca, M. G.,, L. C. Davide,, M. C. Mendes-Costa, and, A. Wheals. 2003. Conidial anastomosis tubes in Colletotrichum. Fungal Genet. Biol. 40:138145.
97. Sachs, J. L.,, U. G. Mueller,, T. P. Wilcox, and, J. J. Bull. 2004. The evolution of cooperation. Q. Rev. Biol. 79:135160.
98. Saupe, S. J. 2000. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 64:489502.
99. Shemer, G., and, B. Podbilewicz. 2003. The story of cell fusion: big lessons from little worms. Bioessays 25:672682.
100. Stephenson, L. W.,, D. C. Erwin, and, J. V. Leary. 1974. Hyphal anastomosis in Phytophthora capsici. Phytopathology 64:149150.
101. Swart, K.,, A. J. M. Debets,, C. J. Bos,, M. Slakhorst,, E. F. Holub, and, R. F. Hoekstra. 2001. Genetic analysis in the asexual fungus Aspergillus niger. Acta Biol. Hung. 52:335343.
102. Takano, Y.,, T. Kikuchi,, Y. Kubo,, J. E. Hamer,, K. Mise, and, I. Furusawa. 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact. 13:374383.
103. Todd, N. K., and, R. C. Aylmore. 1985. Cytology of hyphal interactions and reactions in Schizophyllum commune, p. 231–248. In L. A. C. D. Moore, D. A. Wood, and J. C. Fran-kland (ed.), Developmental Biology of Higher Fungi. Cambridge University Press, Cambridge, United Kingdom.
104. Tudzynski, P., and, J. Scheffer. 2004. Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Mol. Plant Pathol. 5:377388.
105. Tulasne, L. R., and, C. Tulasne. 1863. Selecta Fungorum Carpologia. Imperial Press, Paris, France.
106. Vallim, M. A.,, K. Y. Miller, and, B. L. Miller. 2000. Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol. Microbiol. 36:290301.
107. Van der Valk, P., and, R. Marchant. 1978. Hyphal ultrastructure in fruit body primordial of the basidiomycetes Schizophyllum commune and Coprinus cinereus. Protoplasma 95:5772.
108. Vignery, A. 2000. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int. J. Exp. Pathol. 81:291304.
109. Virag, A., and, S. D. Harris. 2006. The Spitzenkörper: a molecular perspective. Mycol. Res. 110:413.
110. Vitalini, M. W.,, R. M. de Paula,, C. S. Goldsmith,, C. A. Jones,, K. A. Borkovich, and, D. Bell-Pedersen. 2007. Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc. Natl. Acad. Sci. USA 104:1822318228.
111. Webster, J. 1980. Introduction to Fungi, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
112. Wei, H.,, N. Requena, and, R. Fischer. 2003. The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol. Microbiol. 47:15771588.
113. Williams, M. A. J.,, A. Beckett, and, N. D. Read. 1985. Ultrastructural aspects of fruit body differentiation in Flammulina velutipes, p. 429–450. In D. W. D. T. Moore, L. A. Casselton, and J. C. Frankland (ed.), Developmental Biology of Higher Fungi. Cambridge University Press, Cambridge, United Kingdom.
114. Wilson, J. F., and, J. A. Dempsey. 1999. A hyphal fusion mutant in Neurospora crassa. Fungal Genet. Newsl. 46:31.
115. Worrall, J. J. 1997. Somatic incompatibility in basidiomycetes. Mycologia 89:2436.
116. Wright, G. D.,, J. Arlt,, W. C. K. Poon, and, N. D. Read. 2007. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet. Biol. 44:113.
117. Xiang, Q.,, C. G. Rasmussen, and, N. L. Glass. 2002. The ham-2 locus, encoding a putative transmembrane protein, is required for hyphal fusion in Neurospora crassa. Genetics 160:169180.
118. Xu, J. R. 2000. MAP kinases in fungal pathogens. Fungal Genet. Biol. 31:137152.
119. Xu, J. R.,, C. J. Staiger, and, J. E. Hamer. 1998. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl. Acad. Sci. USA 95:1271312718.
120. Yamazaki, H.,, A. Tanaka,, J. Kaneko,, A. Ohta, and, H. Horiuchi. 2008. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet. Biol. 45:963972.
121. Yarden, O.,, M. Plamann,, D. J. Ebbole, and, C. Yanofsky. 1992. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 11:21592166.
122. Zhang, Y.,, R. Lamm,, C. Pillonel,, S. Lam, and, J.-R. Xu. 2002. Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl. Environ. Microbiol. 68:532538.
123. Zickler, D.,, S. Arnaise,, E. Coppin,, R. Debuchy, and, M. Picard. 1995. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics 140:493503.

Tables

Generic image for table
TABLE 1

Genes required for hyphal fusion in and their roles in the fusion process

Citation: Read N, Fleißner A, Roca M, Glass N. 2010. Hyphal Fusion, p 260-273. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error