Chapter 21 : Glucose

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Glucose, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap21-2.gif


This chapter reviews the regulation of glucose uptake and metabolism in filamentous fungi and highlights the similarities with and differences from mechanisms in yeast. Fungal glucose transporters are classified as high-affinity transporters if the K for glucose is in the micromolar range and low-affinity transporters if K for glucose is in the millimolar range. contains a large number of proteins that can transport glucose across the yeast cell membrane, 17 of which (Hxt1 through Hxt11p, Hxt13 through Hxt17p, and Gal2p) belong to the yeast glucose transporter family. The use of glucose analogues has been used to determine whether glucose sensing in fungi requires uptake and/or further metabolism of glucose. The role of hexokinases in glucose sensing was confirmed in studies using strains carrying mutations in the three genes encoding sugar-phosphorylating enzymes: , , and . Given the central role of glucose in carbon metabolism and the diverse nutrient sources used by different fungi, it is not surprising that differences in glucose transport, glucose metabolism, glucose signaling, and carbon catabolite repression have arisen through selection.

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21

Key Concept Ranking

Major Facilitator Superfamily
Acetyl Coenzyme A
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Phylogenetic tree of putative sugar transporters in (AN) putative proteins that show similarity to fungal hexose transporters have been characterized in (Mst1), (HxtA and MstE), (MstA), (HGT1 and RCO3), (Hxt1p through Hxt11p, Hxt13p through Hxt17p, and Gal2p). (Gtt1), and (Hxt1p). The rooted tree was constructed using CLUSTAL ( ), PROTDIST and KITSCH ( ) through Biomanager at the Australian National Genome Information Service ((http://www.angis.org.au), and TREE-VIEW ( ). The amino acid sequences used to construct the tree were obtained from the Genome Database (http://www.yeastgenome.org/), NCBI (http://www.ncbi.nlm.nih.gov/), and the Comparative Database (http://www.broad.mit.edu/annotation/genome/aspergillus_group/MultiHome.html). The human glucose transporter GTR1 was included as an outgroup.

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Enzymes of the glycolytic pathway and TCA cycle. In , genes encoding enzymes indicated in a solid box were increased, and those indicated in a dotted box decreased, in mycelia grown in glucose-rich compared to glucose-poor media ( ). Abbreviations: HEX, hexokinase/glucokinase; GPI, phosphoglucose isomerase; PFK, phosphofructokinase; FBA, fructose bisphosphatase; FBPA, fructose bisphosphate aldolase; TPI, triose phosphate isomerase; GPD, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PK, phosphoenolpyruvate kinase; PDC, pyruvate decarboxylase; ADH, alcohol dehydrogenase I; ALD, acetaldehyde dehydrogenase; ACS, acetyl-CoA synthase; PDH, pyruvate dehydrogenase; CT, citrate synthase; ACO, aconitase; IDH, isocitrate dehydrogenase; KDH, α-ketoglutarate dehydrogenase; SCoS, succinyl-CoA synthase; SDH, succinate dehydrogenase; FUM, fumarate dehydratase; MDH, malate dehydrogenase; PEPCK, phosphoenolpyruvate carboxykinase.

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Phylogenetic tree of hexokinases and hexokinase-like proteins from , , , , , (formerly ) and . The rooted tree was constructed with amino acid sequences from the Fungal Genome Initiative at the Broad Institute (http://www.broad.mit.edu/annotation/fgi/) and sequences from ( ) by using CLUSTAL ( ), PROTDIST and KITSCH ( ) through Biomanager at the Australian National Genome Information Service (http://www.angis.org.au), and TREEVIEW ( ). Only two of the six sequences encoded by the genome were included ( ). Human glucokinase was included for comparison.

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Conserved motifs within filamentous fungal carbon catabolite repressor proteins. Shown are sequence comparisons of ( [] EMBL ENCREA); ( EMBL AOR272151); ( EMBL ANCREA); ( EMBL AB024314); ( EMBL GFY16626); ( EMBL SSCRES); ( EMBL BCY16625); ( EMBL ACH245727); ( EMBL AB003106); ( EMBL TR27356); ( EMBL AF306571); ( EMBL MACRR1); ( EMBL AF055464); and ( EMBL THCRE1). Amino acid residues in , , and referred to in the text are underlined.

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abdallah, B. M.,, T. Simoes,, A. R. Fernandes,, J. Strauss,, B. Seiboth,, I. Sa-Correia, and, C. P. Kubicek. 2000. Glucose does not activate the plasma-membrane-bound H+-ATPase but affects pmaA transcript abundance in Aspergillus nidulans. Arch. Microbiol. 174:340345.
2. Ahuatzi, D.,, A. Riera,, R. Pelaez,, P. Herrero, and, F. Moreno. 2007. Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J. Biol. Chem. 282:44854493.
3. Alspaugh, J. A.,, J. R. Perfect, and, J. Heitman. 1997. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha-subunit GPA1 and cAMP. Genes Dev. 11:32063210.
4. Arst, H. N. 1981. Aspects of the control of gene expression in fungi. Symp. Soc. Gen. Microbiol. 31:131160.
5. Arst, H. N., and, C. R. Bailey. 1977. The regulation of carbon metabolism in Aspergillus nidulans, p. 131–146. In J. E. Smith and J. A. Pateman (ed.), Genetics and Physiology of Aspergillus nidulans. Academic Press, London, United Kingdom.
6. Arst, H. N., and, D. J. Cove. 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 126:111141.
7. Arst, H. N., and, D. W. MacDonald. 1975. A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:2634.
8. Arst, H. N.,, D. Tollervey,, C. E. Dowzer, and, J. M. Kelly. 1990. An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Mol. Microbiol. 4:851854.
9. Bailey, C., and, H. N. Arst. 1975. Carbon catabolite repression in Aspergillus nidulans. Eur. J. Biochem. 51:575577.
10. Baker, S. P., and, P. A. Grant. 2007. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26:53295340.
11. Barredo, J. L.,, E. Alvarez,, J. M. Cantoral,, B. Diez, and, J. F. Martin. 1988. Glucokinase-deficient mutant of Penicillium chrysogenum is derepressed in glucose catabolite regulation of both beta-galactosidase and penicillin biosynthesis. Antimicrob. Agents Chemother. 32:10611067.
12. Bernardo, S. M. H.,, K.- A. Gray,, R. B. Todd,, B. F. Cheetham, and, M. E. Katz. 2007. Characterization of regulatory non-catalytic hexokinases in Aspergillus nidulans. Mol. Genet. Genomics 277:519532.
13. Blumenthal, H. J. 1965. Carbohydrate metabolism. 1. Glycolysis, p. 229–268. In G. C. Ainsworth and A. S. Sussman (ed.), The Fungi: an Advanced Treatise, vol. 1. Academic Press, New York, NY.
14. Boase, N. A., and, J. M. Kelly. 2004. A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination. Mol. Microbiol. 53:929940.
15. Boase, N. A.,, R. A. Lockington,, J. R. J. Adams,, L. Rodbourn, and, J. M. Kelly. 2003. Molecular characterization and analysis of the acrB gene of Aspergillus nidulans: a gene identified by genetic interaction as a component of the regulatory network that includes the CreB deubiquitination enzyme. Genetics 164:95104.
16. Bos, C. J.,, M. Slakhorst,, J. Visser, and, C. F. Roberts. 1981. A third unlinked gene controlling the pyruvate dehydrogenase complex in Aspergillus nidulans. J. Bacteriol. 148:594599.
17. Breakspear, A., and, M. Momany. 2007. The first fifty microarray studies in filamentous fungi. Microbiology 153:715.
18. Caddick, M. X. 2004. Nitrogen regulation in mycelial fungi, p. 349–368. In R. Brambl and G. A. Marzluf (ed.), The Mycota, vol. III. Biochemistry and Molecular Biology. Springer, Berlin, Germany.
19. Chambergo, F. S.,, E. D. Bonaccorsi,, A. J. S. Ferreira,, A. S. P. Ramos,, J. R. F. Junior,, J. Abrahao-Neto,, J. P. S. Farah, and, H. El-Dorry. 2002. Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microar-rays. J. Biol. Chem. 277:1398313988.
20. Chandra, T., and, E. R. B. Shanmugasundaram. 1961. Intra-cellular distribution of enzymes in microorganisms. I. A study of citric acid cycle enzymes and L-amino acid oxidases in the cell free extract of Neurospora crassa. Enzymologia 23:347352.
21. Clements, J. M., and, C. F. Roberts. 1985. Molecular cloning of the 3-phosphoglycerate kinase (PGK) gene from Aspergillus nidulans. Curr. Genet. 9:293298.
22. Colvin, H. J.,, B. L. Sauer, and, K. D. Munkres. 1973. Glucose utilization and ethanolic fermentation by wild-type and extrachromosomal mutants of Neurospora crassa. J. Bacteriol. 116:13221328.
23. Cubero, B.,, D. Gomez, and, C. Scazzocchio. 2000. Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J. Bacteriol. 182:233235.
24. Cziferszky, A.,, R. L. Mach, and, C. P. Kubicek. 2002. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J. Biol. Chem. 277:1468814694.
25. Cziferszky, A.,, R. L. Mach, and, C. P. Kubicek. 2003. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1. Fungal Genet. Biol. 40:166175.
26. D’Andrea, A., and, D. Pellman. 1998. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33:337352.
27. David, H.,, M. Akesson, and, J. Nielsen. 2003. Reconstruction of the central carbon metabolism of Aspergillus niger. Eur. J. Biochem. 270:42434253.
28. David, H.,, G. Hofmann,, A. P. Oliveira,, H. Jarmer, and, J. Nielsen. 2006. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol. 7:R108.
29. David, H.,, A. M. Krogh,, C. Roca,, M. Akesson, and, J. Nielsen. 2005. CreA influences the metabolic fluxes of Aspergillus nidulans during growth on glucose and xylose. Microbiology 151:22092221.
30. De Graaff, L.,, H. van den Broeck, and, J. Visser. 1992. Isolation and characterization of the Aspergillus niger pyruvate kinase gene. Curr. Genet. 22:2127.
31. De Graaff, L.,, H. van den Broek, and, J. Visser. 1988. Isolation and transformation of the pyruvate kinase gene of Aspergillus nidulans. Curr. Genet. 13:315321.
32. De Graaff, L., and, J. Visser. 1988. Structure of the Aspergillus nidulans pyruvate kinase gene. Curr. Genet. 14:553560.
33. Delgado-Jarana, J.,, M. A. Moreno-Mateos, and, T. Benítez. 2003. Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryot. Cell 2:708717.
34. DeRisi, J. L.,, V. L. Iyer, and, P. O. Brown. 1997. Science 278:680686.
35. De Vit, M., and, M. Johnston. 1999. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr. Biol. 9:12311241.
36. De Vit, M. J.,, J. A. Waddle, and, M. Johnston. 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8:16031618.
37. De Winde, J. H.,, M. Crauwels,, S. Hohmann,, J. M. Thevelein, and, J. Winderickx. 1996. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur. J. Biochem. 241:633643.
38. Doehlemann, G.,, P. Berndt, and, M. Hahn. 2006. Different signalling pathways involving a G protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol. Microbiol. 59:821835.
39. Dowzer, C. E. A., and, J. M. Kelly. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol. Cell. Biol. 11:57015709.
40. Dowzer, C. E. A., and, J. M. Kelly. 1989. Cloning of creA from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr. Genet. 15:457459.
41. Dunn-Coleman, N. S., and, J. A. Pateman. 1979. Regulation of hexokinase and phosphoglucomutase activity in Aspergillus nidulans. Mol. Gen. Genet. 171:6973.
42. Elorza, M. V., and, H. N. Arst. 1971. Sorbose resistant mutants of Aspergillus nidulans. Mol. Gen. Genet. 111:185193.
43. Espeso, E. A.,, J. M. Fernandez-canon, and, M. A. Penalva. 1995. Carbon regulation of penicillin biosynthesis in Aspergillus nidulans—a minor effect of mutations in creB and creC. FEMS Microbiol. Lett. 126:6367.
44. Espeso, E. A., and, M. A. Penalva. 1994. In vitro binding of the two-finger repressor CREA to several consensus and non-consensus sites at the ipnA upstream region is context dependent. FEBS Lett. 342:4348.
45. Farkas, V.,, I. Labudová,, S. Baurer, and, L. Ferenczy. 1981. Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia Microbiol. 26:129132.
46. Felsenstein, J. 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266:418427.
47. Fischer, M.,, R. Durand, and, M. Fèvre. 1995. Characterization of the “promoter region” of the enolase-encoding gene enol from the anaerobic fungus Neocallimastix frontalis: sequence and promoter analysis. Curr. Genet. 28:8086.
48. Flavell, R. B., and, D. O. Woodward. 1970a. The concurrent regulation of metabolically related enzymes. The Krebs cycle and glyoxylate shunt enzymes in Neurospora. Eur. J. Biochem. 17:284291.
49. Flavell, R. B., and, D. O. Woodward. 1970b. The regulation of synthesis of Krebs cycle enzymes in Neurospora by catabolite and end-product repression. Eur. J. Biochem. 13:548553.
50. Flipphi, M., and, B. Felenbok. 2004. The onset of carbon catabolic repression and interplay between specific induction and carbon catabolite repression in Aspergillus nidulans, p. 403–420. In K. Esser (ed.), The Mycota, vol. III. Springer, Berlin, Germany.
51. Flipphi, M.,, M. Mathieu,, I. Cirpus,, C. Panozzo, and, B. Felenbok. 2001. Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. J. Biol. Chem. 276:69506958.
52. Flipphi, M.,, P. J. van de Vondervoort,, G. J. Ruijter,, J. Visser,, H. N. Arst, and, B. Felenbok. 2003. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J. Biol. Chem. 278:1184911857.
53. Forment, J. V.,, M. Flipphi,, D. Ramon,, L. Ventura, and, A. P. MacCabe. 2006. Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans. J. Biol. Chem. 281:83398346.
54. Fraser, J. A.,, M. A. Davis, and, M. J. Hynes. 2001. The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 157:119131.
55. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
56. Garcia, I.,, R. Gonzalez,, D. Gomez, and, C. Scazzocchio. 2004. Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. Eukaryot. Cell 3:144156.
57. Geever, R. F.,, L. Huiet,, J. A. Baum,, B. M. Tyler,, V. B. Patel,, B. J. Rutledge,, M. E. Case, and, N. H. Giles. 1989. DNA sequence, organization and regulation of the qa gene cluster in Neurospora crassa. J. Mol. Biol. 207:1534.
58. Hankinson, O. 1974. Mutants of the pentose phosphate pathway in Aspergillus nidulans. J. Bacteriol. 117:11211130.
59. Hansen-Hagge, T. E.,, J. W. G. Janssen,, H. Hameister,, F. R. Papa,, U. Zechner,, T. Seriu,, A. Jauch,, D. Becke,, M. Hochstrasser, and, C. R. Bartram. 1998. An evolutionarily conserved gene on human chromosome 5q33-q34, UBH1, encodes a novel deubiquitinating enzyme. Genomics 49:411418.
60. Hardie, D. G. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8:774785.
61. Harding, R. W.,, D. F. Caroline, and, R. P. Wagner. 1970. The pyruvate dehydrogenase complex from the mitochondrial fraction of Neurospora crassa. Arch. Biochem. 138:653661.
62. Hicks, J.,, R. A. Lockington,, J. Strauss,, D. Dieringer,, C. P. Kubicek,, J. Kelly, and, N. Keller. 2001. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol. Microbiol. 39:14821493.
63. Hohmann, S.,, J. Winderickx,, J. H. de Winde,, D. Valckx,, P. Cobbaert,, K. Luyten,, C. de Meirsman,, J. Ramos, and, J. M. Thevelein. 1999. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression SUC2. Microbiology 145:703714.
64. Hynes, M. J. 1970. Induction and repression of amidase enzymes in Aspergillus nidulans. J. Bacteriol. 103:482487.
65. Hynes, M. J., and, M. A. Davis. 2004. Regulation of the amdS gene in Aspergillus nidulans, p. 421–435. In K. Esser (ed.), The Mycota III: Biochemistry and Molecular Biology, 2nd ed. Springer, Berlin, Germany.
66. Hynes, M. J., and, J. M. Kelly. 1977. Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol. Gen. Genet. 150:193204.
67. Hynes, M. J.,, E. Szewczyck,, S. L. Murray,, Y. Suzuki,, M. A. Davis, and, H. M. Sealy-Lewis. 2007. Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176:139150.
68. Ilmen, M.,, C. Thrane, and, M. Penttila. 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet. 253:303314.
69. Jekosch, K., and, U. Kuck. 2000a. Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr. Genet. 37:388395.
70. Jekosch, K., and, U. Kuck. 2000b. Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl. Microbiol. Biotechnol. 54:556563.
71. Johnson, C. M., and, N. C. Price. 1988. Do metal ions promote re-activation of the 2, 3-bisphosphoglycerate-independent phosphoglycerate mutases? Biochem. J. 252:111117.
72. Jorgensen, H.,, J. Nielsen,, J. Villadsen, and, H. Mollgaard. 1995. Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46:117131.
73. Jørgensen, T. R.,, P. A. van Kuyk,, B. R. Poulsen,, G. J. G. Ruijter,, J. Visser, and, J. L. Iversen. 2007. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter. Microbiology 153:19631973.
74. Kamlangdee, N. 2008. Identifying Target Proteins of the CreB Deubiquitination Enzyme in the Fungus, Aspergillus nidulans. University of Adelaide, Adelaide, Australia.
75. Katz, M. E.,, S. M. Bernardo, and, B. F. Cheetham. 30 May 2008, posting date. The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans : evidence for a role for CreA in the response to carbon starvation. Curr. Genet. doi:10.1007/ s00294-008-0198-6.
76. Katz, M. E.,, P. K. Flynn,, P. van Kuyk, and, B. F. Cheetham. 1996. Mutations affecting extracellular protease production in the filamentous fungus, Aspergillus nidulans. Mol. Gen. Genet. 250:715724.
77. Katz, M. E.,, K.-A. Gray, and, B. F. Cheetham. 2006. The Aspergillus nidulans xprG (phoG) gene encodes a putative transcriptional activator involved in the response to nutrient limitation. Fungal Genet. Biol. 43:190199.
78. Katz, M. E.,, A. Masoumi,, S. R. Burrows,, C. G. Shirtliff, and, B. F. Cheetham. 2000. The Aspergillus nidulans xprF gene encodes a hexokinase-like protein involved in the regulation of the extracellular proteases. Genetics 156:15591571.
79. Kawasaki, L.,, A. Farres, and, J. Aguirre. 1995. Aspergillus nidulans mutants affected in acetate metabolism isolated as lipid nonutilizers. Exp. Mycol. 19:8185.
80. Kelly, J. M. 1980. Pleiotropic mutants of Aspergillus nidulans affected in carbon metabolism. Ph. D. thesis. La Trobe University, Melbourne, Australia.
81. Kelly, J. M., and, M. J. Hynes. 1977. Increased and decreased sensitivity to carbon catabolite repression of enzymes of acetate metabolism in mutants of Aspergillus nidulans. Mol. Gen. Genet. 156:8792.
82. Kester, H. C. M.,, J. H. A. A. Uitzetter,, L. H. De Graaff, and, J. Visser. 1988. A rapid purification procedure for pyruvate kinase from the hyphal fungus Aspergillus nidulans. Can. J. Microbiol. 34:11541158.
83. Kim, J.-H., and, M. Johnston. 2006. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J. Biol. Chem. 281:2614426149.
84. Klingmüller, W. 1967. Kreuzungs-Analyse Sorbose-resistenter Mutaten von Neurospora crassa. Mol. Gen. Genet. 100:109116.
85. Klingmuller, W., and, H. G. Truper. 1965. Determination of hexokinase and other enzymes which possibly phosphorylate fructose in Neurospora crassa. Neurospora Newslett. 8:1819.
86. Kulmburg, P.,, N. Judewicz,, M. Mathieu,, F. Lenouvel,, D. Sequeval, and, B. Felenbok. 1992a. Specific binding-sites for the activator protein, AlcR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. J. Biol. Chem. 267:2114621153.
87. Kulmburg, P.,, M. Mathieu,, C. E. A. Dowzer,, J. M. Kelly, and, B. Felenbok. 1993. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CreA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol. Microbiol. 7:847857.
88. Kulmburg, P.,, D. Sequeval,, F. Lenouvel,, M. Mathieu, and, B. Felenbok. 1992b. Identification of the promoter region involved in the autoregulation of the transcriptional activator AlcR in Aspergillus nidulans. Mol. Cell. Biol. 12:19321939.
89. Kuwana, H., and, K. Tanaka. 1987. The structural gene for pyruvate kinase in Neurospora crassa. Jpn. J. Genet. 62:283290.
90. Lafon, A.,, K.-H. Han,, J.-A. Seo,, H.-J. Yu, and, C. d’Enfert. 2005. The heterotrimeric G-protein GanB(alpha)-SfaD (beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171:7180.
91. Lamb, H. K.,, G. H. Newton,, L. J. Levett,, E. Cairns,, C. F. Roberts, and, A. R. Hawkins. 1996. The QutA activator and QutR repressor proteins of Aspergillus nidulans interact to regulate transcription of the quinate utilization genes. Microbiology 142:14771490.
92. Levett, L. J.,, S. M. Si-Hoe,, S. Liddle,, K. Wheeler,, D. Smith,, H. K. Lamb,, G. H. Newton,, J. R. Coggins, and, A. R. Hawkins. 2000. Identification of domains responsible for signal recognition and transduction within the QUTR transcription repressor protein. Biochem. J. 350:189197.
93. Li, L., and, K. A. Borkovich. 2006. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot. Cell 5:12871300.
94. Li, L.,, S. J. Wright,, S. Krystofova,, G. Park, and, K. A. Borkovich. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423452.
95. Lockington, R. A., and, J. M. Kelly. 2001. Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Mol. Microbiol. 40:13111321.
96. Lockington, R. A., and, J. M. Kelly. 2002. The WD40-repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Mol. Micro-biol. 43:11731182.
97. Lockington, R. A.,, H. M. Sealylewis,, C. Scazzocchio, and, R. W. Davies. 1985. Cloning and characterization of the ethanol utilization regulon in Aspergillus nidulans. Gene 33:137149.
98. MacCabe, A. P.,, P. Miró,, L. Ventura, and, D. Ramón. 2003. Glucose uptake in germinating Aspergillus nidulans conidia: involvement of the creA and sorA genes. Microbiology 149:21292136.
99. Machida, M.,, K. Asai,, M. Sano,, T. Tanaka,, T. Kumagai,, G. Terai,, K. I. Kusumoto,, T. Arima,, O. Akita,, Y. Kashiwagi,, K. Abe,, K. Gomi,, H. Horiuchi,, K. Kitamoto,, T. Kobayashi,, M. Takeuchi,, D. W. Denning,, J. E. Galagan,, W. C. Nierman,, J. J. Yu,, D. B. Archer,, J. W. Bennett,, D. Bhatnagar,, T. E. Cleveland,, N. D. Fedorova,, O. Gotoh,, H. Horikawa,, A. Hosoyama,, M. Ichinomiya,, R. Igarashi,, K. Iwashita,, P. R. Juvvadi,, M. Kato,, Y. Kato,, T. Kin,, A. Kokubun,, H. Maeda,, N. Maeyama,, J. Maruyama,, H. Nagasaki,, T. Nakajima,, K. Oda,, K. Okada,, I. Paulsen,, K. Sakamoto,, T. Sawano,, M. Takahashi,, K. Takase,, Y. Terabayashi,, J. R. Wortman,, O. Yamada,, Y. Yamagata,, H. Anazawa,, Y. Hata,, Y. Koide,, T. Komori,, Y. Koyama,, T. Minetoki,, S. Suharnan,, A. Tanaka,, K. Isono,, S. Kuhara,, N. Ogasawara, and, H. Kikuchi. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438:11571161.
100. Machida, M.,, Y.-C. Chang,, M. Manabe,, M. Yasukawa,, S. Kunichiro, and, Y. Tigami. 1996. Molecular cloning of a cDNA encoding enolase from the filamentous fungus, Aspergillus oryzae. Curr. Genet. 30:423431.
101. Madi, L. S.,, D. J. Ebbole,, B. T. White, and, C. Yanofsky. 1994. Mutants of Neurospora crassa that alter gene expression and conidia development. Proc. Natl. Acad. Sci. USA 91:62266230.
102. Madi, L. S.,, A. McBride,, L. A. Bailey, and, D. J. Ebbole. 1997. roc-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499508.
103. Maeda, H.,, M. Sano,, Y. Maruyama,, T. Tanno,, T. Akao,, Y. Totsuka,, M. Endo,, R. Sakurada,, Y. Yamagata,, M. Machida,, O. Akita,, F. Hasegawa,, K. Abe,, K. Gomi,, T. Nakajima, and, Y. Iguchi. 2004. Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl. Microbiol. Biotechnol. 65:7483.
104. Maitra, P. K., and, Z. Lobo. 1983. Genetics of yeast glucokinase. Genetics 105:501515.
105. Marger, M. D., and, M. H. J. Saier. 1993. A major superfamily of transmembrane facilitators that catalyse uniport, sym-port and antiport. T. Biochem. Sci. 18:1320.
106. Mark, C. G., and, A. H. Romano. 1971. Properties of the hexose transport systems of Aspergillus nidulans. Biochim. Biophys. Acta 249:216226.
107. Martin, J. F.,, J. Casqueiro,, K. Kosalkova,, A. T. Marcos, and, S. Gutierrez. 1999. Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeuwenhoek 75:2131.
108. Mathieu, M.,, S. Fillinger, and, B. Felenbok. 2000. In vivo studies of upstream regulatory cis-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol. Microbiol. 36:123131.
109. Mathieu, M.,, I. Nikolaev,, C. Scazzocchio, and, B. Felenbok. 2005. Patterns of nucleosomal organization in the alc regulon of Aspergillus nidulans: roles of the AlcR transcriptional activator and the CreA global repressor. Mol. Microbiol. 56:535548.
110. Mattoo, A. K., and, J. R. Roo. 1974. Neurospora fructose-1, 6-diphosphate aldolase: inhibition by sodium pyruvate. Biochem. Biophys. Res. Comm. 60:12291237.
111. McAleese, S. M.,, B. Dunbar,, I. Kay, and, L. A. Fothergill-Gilmore. 1988. Cofactor-independent monophosphoglycerate mutase. Biochem. Soc. Trans. 16:558559.
112. McCullough, W.,, M. A. Payton, and, C. F. Roberts. 1977. Carbon metabolism in Aspergillus nidulans, p. 97–129. In J. E. Smith and J. A. Pateman (ed.), Genetics and Physiology of Aspergillus. Academic Press, London, United Kingdom.
113. McKnight, G. L.,, P. J. O’Hara, and, M. L. Parker. 1986. Nucleotide sequence of the triosephosphate isomerase gene from Aspergillus nidulans: implications for a differential loss of introns. Cell 46:143147.
114. Medina, A., and, D. J. D. Nicholas. 1957a. Some properties of a zinc-dependent hexokinase from Neurospora crassa. Biochem. J. 66:573578.
115. Medina, A., and, D. J. D. Nicholas. 1957b. A zinc-dependent hexokinase from Neurospora crassa. Nature 179:8788.
116. Mogensen, J.,, H. B. Nielsen,, G. Hofmann, and, J. Nielsen. 2006. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet. Biol. 43:593603.
117. Moore, D. 1973. Mutants of Coprinus selected for resistance to D-glucosamine and L-sorbose. Genet. Res. 22:205209.
118. Muller, S.,, E. Boles,, M. May, and, F. K. Zimmermann. 1995. Different internal metabolites trigger the induction glycolytic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177:45174519.
119. Murayama, T., and, T. Ishikawa. 1975. Characterization of Neurospora crassa mutants deficient in glucosephosphate isomerase. J. Bacteriol. 122:5458.
120. Nehlin, J. O.,, M. Carlberg, and, H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:33733377.
121. Nehlin, J. O., and, H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 9:28912898.
122. Nehls, U.,, J. Wiese,, M. Guttenberger, and, R. Hampp. 1998. Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol. Plant-Microbe Interact. 11:167176.
123. Nierman, W. C.,, A. Pain,, M. J. Anderson,, J. R. Wortman,, H. S. Kim,, J. Arroyo,, M. Berriman,, K. Abe,, D. B. Archer,, C. Bermejo,, J. Bennett,, P. Bowyer,, D. Chen,, M. Collins,, R. Coulsen,, R. Davies,, P. S. Dyer,, M. Farman,, N. Fedorova,, T. V. Feldblyum,, R. Fischer,, N. Fosker,, A. Fraser,, J. L. Garcia,, M. J. Garcia,, A. Goble,, G. H. Goldman,, K. Gomi,, S. Griffith-Jones,, R. Gwilliam,, B. Haas,, H. Haas,, D. Harris,, H. Horiuchi,, J. Huang,, S. Humphray,, J. Jimenez,, N. Keller,, H. Khouri,, K. Kitamoto,, T. Kobayashi,, S. Konzack,, R. Kulkarni,, T. Kumagai,, A. Lafton,, J. P. Latge,, W. X. Li,, A. Lord,, W. H. Majoros,, G. S. May,, B. L. Miller,, Y. Mohamoud,, M. Molina,, M. Monod,, I. Mouyna,, S. Mulligan,, L. Murphy,, S. O’Neil,, I. Paulsen,, M. A. Penalva,, M. Pertea,, C. Price,, B. L. Pritchard,, M. A. Quail,, E. Rabbinowitsch,, N. Rawlins,, M. A. Rajandream,, U. Reichard,, H. Renauld,, G. D. Robson,, S. R. de Cordoba,, J. M. Rodriguez-Pena,, C. M. Ronning,, S. Rutter,, S. L. Salzberg,, M. Sanchez,, J. C. Sanchez-Ferrero,, D. Saunders,, K. Seeger,, R. Squares,, S. Squares,, M. Takeuchi,, F. Tekaia,, G. Turner,, C. R. V. de Aldana,, J. Weidman,, O. White,, J. Woodward,, J. H. Yu,, C. Fraser,, J. E. Galagan,, K. Asai,, M. Machida,, N. Hall,, B. Barrell, and, D. W. Denning. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:11511156.
124. Nikolaev, I.,, M. F. Cochet,, F. Lenouvel, and, B. Felenbok. 1999. A single amino acid, outside the AlcR zinc binuclear cluster, is involved in DNA binding and in transcriptional regulation of the alc genes in Aspergillus nidulans. Mol. Microbiol. 31:11151124.
125. Ostling, J.,, M. Carlberg, and, H. Ronne. 1996. Functional domains in the Mig1 repressor. Mol. Cell. Biol. 16:753761.
126. Ostling, J., and, H. Ronne. 1988. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162168.
127. Özcan, S., and, M. Johnston. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554569.
128. Page, R. D. M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12:357358.
129. Panneman, H.,, G. J. Ruijter,, H. C. Van den Broeck, and, J. Visser. 1998. Cloning and biochemical characterisation of Aspergillus niger hexokinase—the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur. J. Biochem. 258:223232.
130. Panneman, H.,, G. J. G. Ruijter,, H. C. van den Broeck,, E. T. M. Driever, and, J. Visser. 1996. Cloning and biochemical characterization of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur. J. Biochem. 240:518525.
131. Panozzo, C.,, E. Cornillot, and, B. Felenbok. 1998. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J. Biol. Chem. 273:63676372.
132. Papamichos-Chronakis, M.,, T. Gligoris, and, D. Tzamarias. 2004. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tupl co-repressor. EMBO Rep. 5:368372.
133. Papamichos-Chronakis, M.,, T. Petrakis,, E. Ktistaki,, I. Topalidou, and, D. Tzamarias. 2002. Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol. Cell 9:12971305.
134. Pastorino, J. G.,, N. Shulga, and, J. B. Hoek. 2002. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277:76107618.
135. Pateman, J. A.,, C. H. Doy,, J. E. Olsen,, U. Norris,, E. H. Creaser, and, M. J. Hynes. 1983. Regulation of alcohol dehydrogenase and aldehyde dehydrogenase in Aspergillus nidulans. Proc. R. Soc. Lond. B 217:243264.
136. Polidori, E.,, P. Ceccaroli,, R. Saltarelli,, M. Guescini,, M. Menotta,, D. Agostini,, F. Palma, and, V. Stocchi. 2007. Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genet. Biol. 44:187198.
137. Punt, P. J.,, N. D. Zegers,, M. Busscher,, P. H. Pouwels, and, C. Vandenhondel. 1991. Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J. Biotechnol. 17:1933.
138. Rechsteiner, M., and, S. Rogers. 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267271.
139. Reyes-Dominguez, Y.,, F. Narendja,, H. Berger,, A. Gallmetzer,, R. Fernandez-Martin,, I. Garcia,, C. Scazzocchio, and, J. Strauss. 2008. Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot. Cell 7:656663.
140. Roberts, C. F. 1963. The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J. Gen. Microbiol. 31:4558.
141. Rolland, F.,, J. Winderickx, and, J. M. Thevelein. 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2:183201.
142. Rolland, F.,, J. Winderickx, and, J. M. Thevelein. 2001. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26:310317.
143. Romano, A. H., and, H. L. Kornberg. 1969. Regulation of sugar uptake by Aspergillus nidulans. Proc. R. Soc. Lond. B 173:475490.
144. Romano, A. H., and, H. L. Kornberg. 1968. Regulation of sugar utilisation by Aspergillus nidulans. Biochim. Biophys. Acta 158:491493.
145. Rose, M.,, W. Albig, and, K. D. Entian. 1991. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase PI and hexokinase PII. Eur. J. Biochem. 199:511518.
146. Roy, P.,, R. A. Lockington, and, J. M. Kelly. 2008. CreA-mediated repression in Aspergillus nidulans does not require transcriptional auto-regulation, regulated intracellular localisation or degradation of CreA. Fungal Genet. Biol. 45:657670.
147. Ruijter, G. J. G.,, H. Panneman,, H. C. Van den Broeck,, J. M. Bennett, and, J. Visser. 1996. Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol. Lett. 139:223228.
148. Ruijter, G. J. G.,, S. A. Vanhanen,, M. M. C. Gielkens,, P. J. I. vandeVondervoort, and, J. Visser. 1997. Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. Microbiology 143:29912998.
149. Santangelo, G. M. 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70:253282.
150. Sanz, P.,, G. R. Alms,, T. A. J. Haystead, and, M. Carlson. 2000. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20:13211328.
151. Scarborough, G. A. 1970. Sugar transport in Neurospora crassa. II. A second glucose transport system. J. Biol. Chem. 245:39853987.
152. Scazzocchio, C.,, V. Gavrias,, B. Cubero,, C. Panozzo,, M. Mathieu, and, B. Felenbok. 1995. Carbon catabolite repression in Aspergillus nidulans—a review. Can. J. Bot. 73:S160S166.
153. Schindler, M.,, R. L. Mach,, S. K. Vollenhofer,, R. Hodits,, F. Gruber,, J. Visser,, L. De Graaff, and, C. P. Kubicek. 1993. Characterization of the pyruvate kinase-encoding gene (pkil) of Trichoderma reesei. Gene 130:271275.
154. Schneider, R. P., and, W. R. Wiley. 1971. Kinetic characteristics of the two glucose transport system in Neurospora crassa. J. Bacteriol. 106:479486.
155. Shroff, R. A.,, R. A. Lockington, and, J. M. Kelly. 1996. Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can. J. Microbiol. 42:950959.
156. Shroff, R. A.,, S. M. O’Conner,, M. J. Hynes,, R. A. Lockington, and, J. M. Kelly. 1997. Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet. Biol. 22:2838.
157. Skromne, I.,, O. Sanchez, and, J. Aguirre. 1995. Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141:2128.
158. Song, E.,, J. Briggs, and, J. B. Courtright. 1978. Alterations in pyruvate dehydrogenase complex during adaptation to glucose by Neurospora. Biochim. Biophys. Acta 544:453461.
159. Strauss, J.,, H. K. Horvath,, B. M. Abdallah,, J. Kindermann,, R. L. Mach, and, C. P. Kubicek. 1999. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol. Microbiol. 32:168178.
160. Thompson, J. D.,, D. G. Higgins, and, T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:46734680.
161. Tilburn, J.,, J. C. Sanchez-Ferrero,, E. Reoyo,, H. N. Arst, and, M. A. Penalva. 2005. Mutational analysis of the pH signal transduction component PalC of Aspergillus nidulans supports distant similarity to BRO1 domain family members. Genetics 171:393401.
162. Toda, T.,, M. Sano,, M. Honda,, O. J. Rimoldi,, Y. Yang,, M. Yamamoto,, K. Takase,, K. Hirozumi,, K. Kitamoto,, T. Minetoki,, K. Gomi, and, M. Machida. 2001. Deletion analysis of the enolase (enoA) promoter from the filamentous fungus Aspergillus oryzae. Curr. Genet. 40:260267.
163. Todd, R. B.,, J. R. Greenhalgh,, M. J. Hynes, and, A. Andrianopoulos. 2003. TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol. Microbiol. 48:8594.
164. Todd, R. B.,, R. A. Lockington, and, J. M. Kelly. 2000. The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol. Gen. Genet. 263:561570.
165. Tonukari, N. J.,, J. S. Scott-Craig, and, J. D. Walton. 2000. The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12:237247.
166. Treitel, M. A., and, M. Carlson. 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc. Natl. Acad. Sci. USA 92:31323136.
167. Tsao, M. U., and, T. I. Madley. 1975. Regulation of glycolysis in Neurospora crassa. Kinetic properties of pyruvate kinase. Microbios 12:125142.
168. Tzamarias, D., and, K. Struhl. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 9:821831.
169. Vanhannen, S.,, M. Pentilla,, P. Lehtovaara, and, J. Knowles. 1989. Isolation and characterization of the 3-phosphoglycerate kinase gene (PGK) from the filamentous fungus Trichoderma reesei. Curr. Genet. 15:181186.
170. vanKuyk, P. A.,, M. J. L. De Groot,, G. J. G. Ruijter,, R. P. De Vries, and, J. Visser. 2001. The Aspergillus niger D-xylu-lose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xy-lose and L-arabinose. Eur. J. Biochem. 268:54145423.
171. vanKuyk, P. A.,, J. A. Diderich,, A. P. MacCabe,, O. Hererro, and, G. J. G. Ruijter. 2004. Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochem. J. 379:375383.
172. Van Solingen, P.,, H. Muurling,, B. Koekman, and, J. Van den Berg. 1988. Sequence of the Penicillium chrysogenum phosphoglycerate kinase gene. Nucleic Acids Res. 16:11823.
173. Van Winden, W. A.,, W. M. Van Gulik,, D. Schipper,, P. J. Verheijen,, P. Krabben,, J. L. Vinke, and, J. J. Heijnen. 2003. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation. Biotechnol. Bioeng. 83:7592.
174. Vautard-Mey, G.,, P. Cotton, and, M. Fevre. 1999. Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. Eur. J. Biochem. 266:252259.
175. Vautard-Mey, G., and, M. Fevre. 2000. Mutation of a putative AMPK phosphorylation site abolishes the repressor activity but not the nuclear targeting of the fungal glucose regulator CRE1. Curr. Genet. 37:328332.
176. Verma, M.,, A. Layne, and, S. K. Dutta. 1987. Molecular cloning of non-neuronal enolase gene from Neurospora crassa. Genetics 116:S58.
177. Voegele, R. T.,, C. Struck,, M. Hahn, and, K. Mendgen. 2001. The role of haustori in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc. Natl. Acad. Sci. USA 98:81338138.
178. Wei, H.,, K. Vienken,, R. Weber,, S. Bunting,, N. Requena, and, R. Fischer. 2004. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet. Biol. 41:148156.
179. Wieczorke, R.,, S. Krampe,, T. Weierstall,, K. Friedel,, C. P. Hollenberg, and, E. Boles. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123128.
180. Xie, X.,, H. H. Wilkinson,, A. Correa,, Z. A. Lewis,, D. Bell-Pedersen, and, D. J. Ebbole. 2004. Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genet. Biol. 41:11041119.
181. Xue, C.,, Y.-S. Bahn,, G. M. Cox, and, J. Heitman. 2006. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol. Biol. Cell 17:667679.
182. Zuber, S.,, M. J. Hynes, and, A. Andrianopoulos. 2003. The G-protein alpha-subunit GasC plays a major role in germination in the dimorphic fungus Penicillium marneffei. Genetics 164:487499.


Generic image for table

Characterization of glucose transporters in filamentous fungi

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Generic image for table

Comparison of glucose sensing in and filamentous fungi

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Generic image for table

Number of genes encoding hexokinases in filamentous fungi

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21
Generic image for table

Comparison of mechanisms of regulation by major carbon catabolite repression proteins in fungi

Citation: Katz M, Kelly J. 2010. Glucose, p 291-311. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error