1887

Chapter 22 : Gluconeogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Gluconeogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap22-2.gif

Abstract:

The major pathways of carbon metabolism are glycolytic breakdown of sugars and the tricarboxylic acid (TCA) cycle for energy generation and the synthesis of biosynthetic intermediates. Growth on carbon compounds metabolized via TCA cycle intermediates requires the net formation of sugars from TCA cycle intermediates in the process of gluconeogenesis-a reversal of glycolysis, in which TCA cycle intermediates are converted to sugars. It is likely that mycelia undergoing carbon starvation in the wild are common, and survival depends on the breakdown of cellular components resulting in carbon sources requiring gluconeogenesis. In asexual spores, mRNAs for gluconeogenic, glyoxylate cycle, and β-oxidation enzymes as well as peroxisomes are present, indicating that gluconeogenesis may be significant for spore survival and germination via the use of stored lipids. The shuttling of metabolites between mitochondria, cytosol, and peroxisomes is crucial for gluconeogenesis. The enzymatic generation of the appropriate reducing power in the form of NADH/NADPH in the different compartments is an important factor in the ability to use carbon sources. In , there are three genes encoding NADP-dependent isocitrate dehydrogenases, each of which is located in just one of the three compartments. This raises the possibility that other genes encoding the reversible enzymes of glycolysis/ gluconeogenesis are subject to dual control.

Citation: Hynes M. 2010. Gluconeogenesis, p 312-324. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch22

Key Concept Ranking

Electron Transport Complex III
0.42678642
0.42678642
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Outline of pathways for gluconeogenesis. Numbers in boldface represent key enzymes discussed in the text, as follows: 1, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase; 2, fructose-1,6-bisphosphatase; 3, enolase; 4, pyruvate kinase; 5, phosphoenolpyruvate-carboxykinase; 6, malic enzyme; 7, isocitrate lyase; 8, malate synthase; 9, citrate synthase; 10, malate dehydrogenase; 11, isocitrate dehydrogenase; 12, pyruvate dehydrogenase; 13, pyruvate carboxylase. Reversible steps are shown with bidirectional arrows. For a full outline of relevant enzymes see Supplementary Figure S6 in .

Citation: Hynes M. 2010. Gluconeogenesis, p 312-324. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The logic of transcriptional regulation of gluconeogenic carbon source utilization in . The absence of glucose is the key signal. This results in the Snf1 kinase becoming active, leading to the removal of the repressor Mig1 from the nucleus and the activation of the transcriptional activators Cat8, Adr1, Sip4, and Rsd2 (and perhaps YBR239C and YJL103C) by phosphorylation. These activators regulate the transcription of a large number of genes involved in the utilization of carbon sources including both glyoxalate cycle and specific gluconeogenic genes. Each regulated gene is dependent to varying extents on two or more of the activators. The CSRE core element is CCAN5CCG, while the UAS1 consists of two half-sites, TTGGRG. In addition, Adr1, in conjunction with Oaf1 and Pip2, activates genes required for fatty acid utilization ( ). Based on data from ); and .

Citation: Hynes M. 2010. Gluconeogenesis, p 312-324. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Proposed logic for transcriptional regulation of gluconeogenic carbon source utilization in . In the presence of glucose, the CreA repressor turns off the expression of the specific genes required for the utilization of each carbon source directly and/or by repression of the synthesis of a specific activator. However, this activator also requires an inducer for activity resulting in the genes for the specific pathway being turned on. Pathway-specific activators are given in Table 1 . The specific pathways result in the production of TCA cycle intermediates. The AcuK/AcuM heterodimer is required for expression of the unique genes of gluconeogenesis as well as for at least some of the reversible glycolytic/gluconeogenic genes and is also proposed to increase the levels of at least some TCA cycle enzyme genes in response to the accumulation of TCA cycle intermediates. Black arrows indicate confirmed targets, while open arrows are proposed.

Citation: Hynes M. 2010. Gluconeogenesis, p 312-324. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch22
1. Aguirre, J.,, M. Ríos-Momberg,, D. Hewitt, and, W. Hansberg. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13:111118.
2. Andrianopoulos, A., and, M. J. Hynes. 1990. Sequence and functional analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol. Cell. Biol. 10:31943203.
3. Armitt, S.,, W. McCullough, and, C. F. Roberts. 1976. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J. Gen. Microbiol. 92:263282.
4. Arst, H. N., Jr. 1976. Integrator gene in Aspergillus nidulans. Nature 262:231234.
5. Arst, H. N., Jr.,, A. A Parbtani, and, D. J. Cove. 1975. A mutant of Aspergillus nidulans defective in NAD-linked glutamate dehydrogenase. Mol. Gen. Genet. 138:164171.
6. Barelle, C. J.,, C. L. Priest,, D. M. MacCallum,, N. A. R. Gow,, F. C. Odds, and, A. J. Brown. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8:961971.
7. Bhambra, G. K.,, Z. Y. Wang,, D. M. Soanes,, G. E. Wakley, and, N. J. Talbot. 2006. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol. Microbiol. 61:4660.
8. Bibbins, M.,, V. F. Crepin,, N. J. Cummings,, T. Mizote,, K. Baker,, K. H. Mellits, and, I. F. Connerton. 2002. A regulator gene for acetate utilization from Neurospora crassa. Mol. Genet. Genomics 267:498505.
9. Bonnet, C.,, E. Espagne,, D. Zickler,, S. Boisnard,, A. Bourdais, and, V. Berteaux-Lecellier. 2006. The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle. Mol. Microbiol. 62:157169.
10. Bradshaw, R. E.,, D. M. Bird,, S. Brown,, R. E. Gardiner, and, P. Hirst. 2001. Cytochrome c is not essential for viability of the fungus Aspergillus nidulans. Mol. Genet. Genomics 266:4855.
11. Brocard, C., and, A. Hartig. 2006. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta 1763:15651573.
12. Brock, M. 2005. Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl. Environ. Microbiol. 71:54655475.
13. Brock, M., and, W. Buckel. 2004. On the mechanism of action of the antifungal agent propionate. Eur. J. Biochem. 271:32273241.
14. Brock, M.,, R. Fischer,, D. Linder, and, W. Buckel. 2000. Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol. Microbiol. 35:961973.
15. Caracuel-Riosa, Z., and, N. J. Talbot. 2007. Cellular differentiation and host invasion by the rice blast fungus Magna-porthe grisea. Curr. Opin. Microbiol. 10:339345.
16. Chae, M. S.,, C. E. Nargang,, I. A. Cleary,, C. C. Lin,, A. T. Todd, and, F. E. Nargang. 2007. Two zinc-cluster transcription factors control induction of alternative oxidase in Neurospora crassa. Genetics 77:19972006.
17. Connerton, I. F.,, J. R. S. Fincham,, R. A. Sandeman, and, M. J. Hynes. 1990. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the ascomycete fungi, Aspergillus nidulans and Neurospora crassa. Mol. Microbiol. 4:451460.
18. David, H.,, G. Hofmann,, A. P. Oliveira,, H. Jarmer, and, J. Nielsen. 2006. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol. 7:R108.
19. De Lucas, J. R.,, A. I. Dominguez,, S. Valenciano,, G. Turner, and, F. Laborda. 1999. The acuH gene of Aspergillus nidulans, required for growth on acetate and long-chain fatty acids, encodes a putative homologue of the mammalian carnitine/ acylcarnitine carrier. Arch. Microbiol. 171:386396.
20. De Lucas, R. J.,, O. Martínez,, P. Pérez,, I. M. López,, S. Valenciano, and, F. Laborda. 2001. The Aspergillus nidulans carnitine carrier encoded by the acuH gene is exclusively located in the mitochondria. FEMS Microbiol. Lett. 201:193198.
21. Des Etages, S. A.,, D. Saxena,, H. L. Huang,, D. A. Falvey,, D. Barber,, M. C. Brandriss. 2001. Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Mol. Microbiol. 40:890899.
22. Dowzer, C. E., and, J. M. Kelly. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol. Cell. Biol. 11:57015709.
23. Ebel, F.,, M. Schwienbacher,, J. Beyer,, J. Heesemann,, A. A. Brakhage, and, M. Brock. 2006. Analysis of the regulation, expression, and localization of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genet. Biol. 43:476489.
24. Elgersma, Y.,, C. W. van Roermund,, R. J. Wanders, and, H. F. Tabak. 1995. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 14:34723479.
25. Flavell, R. B., and, J. R. Fincham. 1968. Acetate-nonutilizing mutants of Neurospora crassa. I. Mutant isolation, complementation studies, and linkage relationships J. Bacteriol. 95:10561062.
26. Flipphi, M., and, B. Felenbok. 2004. The onset of carbon catabolic repression and interplay between specific induction and carbon catabolite repression in Aspergillus nidulans, p. 403–420. In R. Brambl and G. A Marzluf (ed.), The Mycota, vol. III. Springer-Verlag, Berlin, Germany.
27. Fosså, A.,, A. Beyer,, E. Pfitzner,, B. Wenzel, and, W. H. Kunau. 1995. Molecular cloning, sequencing and sequence analysis of the fox-2 gene of Neurospora crassa encoding the multifunctional β-oxidation protein. Mol. Gen. Genet. 247:95104.
28. Fraser, J. A.,, M. A. Davis, and, M. J. Hynes. 2002. The genes gmdA, encoding an amidase, and bzuA, encoding a cytochrome P450, are required for benzamide utilization in Aspergillus nidulans. Fungal Genet. Biol. 35:135146.
29. Gainey, L. D.,, I. F. Connerton,, E. H. Lewis,, G. Turner, and, D. J. Balance. 1992. Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans (acuD) and Neurospora crassa (acu-3). Curr. Genet. 21:4347.
30. Galbraith, J. C., and, J. E. Smith. 1969. Changes in activity of certain enzymes of the tricarboxylic acid cycle and the glyoxylate cycle during the initiation of conidiation of Aspergillus niger. Can. J. Microbiol. 15:12071212.
31. Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334361.
32. Gibson, N., and, L. McAlister-Henn. 2003. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. J. Biol. Chem. 278:2562825636.
33. Giles, N. H.,, M. E. Case,, J. Baum,, R. Geever,, L. Huiet,, V. Patel, and, B. Tyler. 1985. Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa. Microbiol. Rev. 49:338358.
34. Gómez, D.,, B. Cubero,, G. Cecchetto, and, C. Scazzocchio. 2002. PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol. Microbiol. 44:585597.
35. Grant, S.,, C. F. Roberts,, H. Lamb,, M. Stout, and, A. R Hawkins. 1988. Genetic regulation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. J. Gen. Microbiol. 134:347358.
36. Hane, J. K.,, R. G. T. Lowe,, P. S. Solomon,, K-C. Tan,, C. L. Schoch,, J. W. Spatafora,, P. W. Crous,, C. Kodira,, B. W. Birren,, J. E. Galagan,, S. F. F. Torriani,, B. A. McDonald, and, R. P. Oliver. 2007. Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19:33473368.
37. Haselbeck, R. J., and, L. McAlister-Henn. 1993. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem. 268:1211612122.
38. Hazelwood, L. A.,, J.-M. Daran,, A. J. A. van Maris,, J. T. Pronk, and, J. Richard Dickinson. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Micro-biol. 74:22592266.
39. Hiltunen, J. K.,, A. M. Mursula,, H. Rottensteiner,, R. K. Wierenga,, A. J. Kastaniotis, and, A. Gurvitz. 2003. The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27:3564.
40. Hondmann, D. H. A., and, J. Visser. 1994. Carbon metabolism, p. 61–139. In S. D. Martinelli and J. R. Kinghorn (ed.), Aspergillus: 50 Years on. Elsevier, Amsterdam, The Netherlands.
41. Hynes, M. J.,, S. L. Murray,, A. Duncan,, G. S. Khew, and, M. A. Davis. 2006. Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus, Aspergillus nidulans. Eukaryot. Cell 5:794805.
42. Hynes, M. J.,, E. Szewczyk,, S. L. Murray,, Y. Suzuki,, M. A. Davis, and, H. M Sealy-Lewis. 2007. Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176:139150.
43. Hynes, M. J.,, S. L. Murray,, G. S. Khew, and, M. A. Davis. 2008. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics 178:13551369.
44. Ibrahim-Granet, O.,, M. Dubourdeau,, J. P. Latgé,, P. Ave,, M. Huerre,, A. A. Brakhage, and, M. Brock. 2008. Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell. Microbiol. 10:134148.
45. Idnurm, A., and, B. J. Howlett. 2002. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot. Cell 1:719724.
46. Kawasaki, L., and, J. Aguirre. 2001. Multiple catalase genes are differentially regulated in Aspergillus nidulans. J. Bacteriol. 183:14341440.
47. Kinghorn, J. R., and, J. A. Pateman. 1976. Mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase. J. Bacteriol. 125:4247.
48. Klein, A. T.,, M. Van denBerg,, G. Bottger,, H. F. Tabak, and, B. Distel. 2002. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J. Biol. Chem. 277:2501125019.
49. Klose, J., and, J. W. Kronstad. 2006. The multifunctional β-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot. Cell 5:20472061.
50. Kubicek-Pranz, E. M.,, M. Mozelt,, M. Rohr, and, C. P. Kubicek. 1990. Changes in the concentration of fructose 2, 6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentration. Biochim. Biophys. Acta 1033:250255.
51. Kunze, M.,, I. Pracharoenwattana,, S. M. Smith, and, A. Hartig. 2006. A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim. Biophys. Acta 1763:14411452.
52. Kunze, M.,, F. Kragler,, M. Binder,, A. Hartig, and, A. Gurvitz. 2002. Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid. Eur. J. Biochem. 269:915922.
53. Lara-Ortiz, T.,, H. Riveros-Rosas, and, J. Aguirre. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:12411255.
54. Li, D.,, T. Sirakova,, L. Rogers,, W. F. Ettinger, and, P. E. Kolattukudy. 2002. Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). J. Biol. Chem. 277:79057912.
55. Liu, Z., and, R. A. Butow. 1999. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell. Biol. 19:67206728.
56. Lockington, R. A.,, G. N. Borlace, and, J. M. Kelly. 1997. Pyruvate decarboxylase and anaerobic survival in Aspergillus nidulans. Gene 191:6167.
57. Lorenz, M. C., and, G. R. Fink. 2002. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot. Cell 1:657662.
58. Maerker, C.,, M. Rohde,, A. A. Brakhage, and, M. Brock. 2005. Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J. 272:36153630.
59. Maggio-Hall, L. A., and, N. P. Keller. 2004. Mitochondrial β-oxidation in Aspergillus nidulans. Mol. Microbiol. 54:11731185.
60. Maggio-Hall, L. A.,, R. A. Wilson, and, N. P. Keller. 2005. Fundamental contribution of β-oxidation to polyketide mycotoxin production in planta. Mol. Plant-Microbe Interact. 18:783793.
61. Maggio-Hall, L. A.,, P. Lyne,, J. A. Wolff, and, N. P. Keller. 2007. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans. Fungal Genet. Biol. 45:180189.
62. McAlister-Henn, L., and, W. C. Small. 1997. Molecular genetics of yeast TCA cycle isozymes. Prog. Nucleic Acid Res. Mol. Biol. 57:317339.
63. McCullough, W.,, C. F. Roberts,, S. A. Osmani, and, M. C. Scrutton. 1986. Regulation of carbon metabolism in filamentous fungi, p. 287–355. In M. J. Morgan (ed.), Carbohydrate Metabolism in Cultured Cells. Plenum Press, New York, NY.
64. McCullough, W.,, M. A. Payton, and, C. F. Roberts. 1977. Carbon metabolism in Aspergillus nidulans, p. 97–129. In J. E. Smith and J. A. Pateman (ed.), Genetics and Physiology of Aspergillus. Academic Press, London, England.
65. McCullough, W., and, A. Shanks. 1993. Properties of genes involved in the control of isocitrate lyase production in Aspergillus nidulans. J. Gen. Microbiol. 139:509511.
66. Mlakar, T., and, M. Legisa. 2006. Citrate inhibition-resistant form of 6-phosphofructo-1-kinase from Aspergillus niger. Appl. Environ. Microbiol. 72:45154521.
67. Osherov, N., and, G. S. May. 2001. The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 199:153160.
68. Osherov, N.,, J. Mathew,, A. Romans, and, G. S. May. 2002. Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridisation. Fungal Genet. Biol. 37:197204.
69. Osmani, S. A., and, M. C. Scrutton. 1983. The sub-cellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133:551560.
70. Palmieri, L.,, M. J. Runswick,, G. Fiermonte,, J. E. Walker, and, F. Palmieri. 2000. Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J. Bioenerg. Biomembr. 32:6777.
71. Palmieri, L.,, H. Rottensteiner,, W. Girzalsky,, P. Scarcia,, F. Palmieri, and, R. Erdmann. 2001. Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J. 20:50495059.
72. Peñalva, M. A. 2001. A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet. Biol. 34:110.
73. Petriv, O. I.,, L. Tang,, V. I. Titorenko, and, R. A. Rachubinski. 2004. A new definition for the consensus sequence of the peroxisome targeting signal type 2. J. Mol. Biol. 341:119134.
74. Pracharoenwattana, I.,, J. E. Cornah, and, S. M. Smith. 2005. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:20372048.
75. Ramos-Pamplona, M., and, N. I. Naqvi. 2006. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol. Microbiol. 61:6175.
76. Regev-Rudzki, N.,, O. Yogev, and, O. Pines. 2008. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J. Cell Sci. 121:24232431.
77. Richardson, I. B.,, S. K. Hurley, and, M. J. Hynes. 1989. Cloning and molecular characterisation of the amdR controlled gatA gene of Aspergillus nidulans. Mol. Gen. Genet. 217:118125.
78. Roth, S., and, H. J. Schüller. 2001. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Yeast 18:151162.
79. Rottensteiner, H.,, L. Wabnegger,, R. Erdmann,, B. Hamilton,, H. Ruis,, A. Hartig, and, A. Gurvitz. 2003. Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxi-some proliferation is regulated by Adr1p and Pip2p-Oaf1p. J. Biol. Chem. 278:2760527611.
80. Ruprich-Robert, G.,, D. Zickler,, V. Berteaux-Lecellier,, C. Vélot, and, M. Picard. 2002. Lack of mitochondrial citrate synthase discloses a new meiotic checkpoint in a strict aerobe. EMBO J. 21:64406451.
81. Sass, E.,, E. Blachinsky,, S. Karniely, and, O Pines. 2001. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J. Biol. Chem. 276:4611146117.
82. Schliebs, W.,, C. Wurtz,, W. Kunau,, M. Veenhuis, and, H. Rottensteiner. 2006. A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot. Cell 5:14901502.
83. Schuller, H. J. 2003. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43:139160.
84. Seong, K. Y.,, X. Zhao,, J. R. Xu,, U. Güldener, and, H. C. Kistler. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 45:389399.
85. Sexton, A. C., and, B. J. Howlett. 2006. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell. 5:19411949.
86. Solomon, P. S.,, R. C. Lee,, T. J. Wilson, and, R. P. Oliver. 2004. Pathogenicity of Stagonospora nodorum requires malate synthase. Mol. Microbiol. 53:10651073.
87. Soontorngun, N.,, M. Larochelle,, S. Drouin,, F. Robert, and, B. Turcotte. 2007. Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol. Cell. Biol. 27:78957905.
88. Stemple, C. J.,, M. A. Davis, and, M. J. Hynes. 1998. The facC gene of Aspergillus nidulans encodes an acetate-inducible carnitine acetyltransferase. J. Bacteriol. 180:62426251.
89. Strijbis, K.,, C. W. van Roermund,, W. F. Visser,, E. C. Mol,, J. van den Burg,, D. M. MacCallum,, F. C. Odds,, E. Paramonova,, B. P. Krom, and, B. Distel. 2008. Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. Eukaryot. Cell 7:610618.
90. Swiegers, J. H.,, N. Dippenaar,, I. S. Pretorius, and, F. F. Bauer. 2001. Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18:585595.
91. Szewczyk, E.,, A. Andrianopoulos,, M. A. Davis, and, M. J. Hynes. 2001. A single gene produces mitochondrial, cytoplasmic, and peroxisomal NADP-dependent isocitrate dehydrogenase in Aspergillus nidulans. J. Biol. Chem. 276:3772237729.
92. Tabak, H. F.,, A. van der Zand, and, I. Braakman. 2008 Peroxisomes: minted by the ER. Curr. Opin. Cell Biol. 20:393400.
93. Tachibana, C.,, J. Y. Yoo,, J. B. Tagne,, N. Kacherovsky,, T. I. Lee, and, E. T. Young. 2005. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol. Cell. Biol. 25:21382146.
94. Todd, R. B.,, A. Andrianopoulos,, M. A. Davis, and, M. J. Hynes. 1998. FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J. 17:20422054.
95. Todd, R. B.,, R. L. Murphy,, H. M. Martin,, J. A. Sharp,, M. A. Davis,, M. E. Katz, and, M. J. Hynes. 1997. The acetate regulatory gene facB of Aspergillus nidulans encodes a Zn(II)Cys6 transcriptional activator. Mol. Gen. Genet. 254:495504.
96. Tsitsigiannis, D. I., and, N. P. Keller. 2007. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol. 15:109118.
97. van Roermund, C. W. T.,, Y. Elgersma,, N. Singh,, R. J. A. Wanders, and, H. Tabak. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14:34803486.
98. van Roermund, C. W.,, E. H. Hettema,, M. van den Berg,, H. F. Tabak, and, R. J. Wanders. 1999. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 18:58435852.
99. van Roermund, C. W.,, M. de Jong,, L. IJlst,, J. van Marle,, T. B. Dansen,, R. J. Wanders, and, H. R. Waterham. 2004. The peroxisomal lumen in Saccharomyces cerevisiae is alkaline. J. Cell Sci. 117:42314237.
100. Wang, Z. Y.,, C. R. Thornton,, M. J. Kershaw,, L. Debao, and, N. J. Talbot. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol. 47:16011612.
101. Wang, Z. Y.,, D. M. Soanes,, M. J. Kershaw, and, N. J. Talbot. 2007. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a role for peroxisomal fatty acid β-oxidation during appressorium-mediated plant infection, Mol. Plant-Microbe Interact. 20:475491.
102. Xie, X.,, H. H. Wilkinson,, A. Correa,, Z. A. Lewis,, D. Bell-Pedersen, and, D. J. Ebbole. 2004. Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genet. Biol. 41:11041119.
103. Yi, M.,, J.-H. Park,, J.-H. Ahn, and, Y.-H. Lee. 2008. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 45:11721181.
104. Young, E. T.,, K. M. Dombek,, C. Tachibana, and, T. Ideker. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278:2614626158.
105. Zhang, Y.,, M. Brock, and, N. P. Keller. 2004. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics 168:785794.
106. Zhou, H., and, M. C. Lorenz. 2008. Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans. Microbiology 154:500509.

Tables

Generic image for table
TABLE 1

Strong gluconeogenic carbon sources common to filamentous ascomycetes

Citation: Hynes M. 2010. Gluconeogenesis, p 312-324. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch22
Generic image for table
TABLE 2

Carbon source utilization in loss-of-function regulatory gene mutants in

Citation: Hynes M. 2010. Gluconeogenesis, p 312-324. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error