1887

Chapter 23 : Nitrogen Metabolism in Filamentous Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Nitrogen Metabolism in Filamentous Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap23-2.gif

Abstract:

Among the filamentous fungi, the genetic basis of nitrogen metabolism has been most intensively studied in the model ascomycetes and by utilizing the excellent classical and molecular genetic systems provided by these species. Much of one's current knowledge is based on classical genetic analysis of mutants affected in specific aspects of the enzymology or the regulation of nitrogen metabolism. There are also instances where significant differences across species provide fascinating insights into the evolutionary divergence of nitrogen metabolism within the filamentous fungi. In this chapter, the molecular genetics of the ammonium assimilatory pathways is considered as the starting point for the biosynthesis of complex nitrogenous macromolecules. The switch from anabolism to catabolism requires the relief of nitrogen metabolite repression, a global control system that modulates the expression of large sets of nitrogen-catabolic enzymes. Recent studies suggest some diversity in the complex molecular mechanisms underlying this regulation among different fungal groups. Details of several nitrogen-catabolic systems are reviewed to illustrate the metabolic and regulatory strategies employed by fungi in the acquisition of nitrogen metabolites. The catabolism of certain amino acids, such as proline and arginine, provides a good source of nitrogen metabolites and supports strong growth in , whereas other amino acids, such as histidine and leucine, are very poor sources of nitrogen for the wild-type organism.

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23

Key Concept Ranking

L-Amino Acid Oxidase
0.48032734
0.48032734
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Ammonium assimilation pathway in fungi. Ammonium can be assimilated by NADPGDH to form glutamate or by the GOGAT cycle through the action of GS and GOGAT to form glutamine and glutamate for the biosynthesis of nitrogenous molecules. The interconversion of ammonium, glutamate, and glutamine catalyzed by NADP-GDH, GS, GOGAT, and NAD-GDH is central to nitrogen metabolism.

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Components of nitrogen regulation in . The expression of genes subject to nitrogen metabolite repression is regulated by changes in the levels and transcriptional activity of AreA in response to the nitrogen status of the cells (see the text). The levels of mRNA are influenced by autoregulation of transcription (1) and differential stability of the mRNA (2) such that the transcript is degraded more rapidly under nitrogen-sufficient conditions than when nitrogen is limiting or absent. The levels of AreA available to activate transcription within the nucleus are determined by a balance between nuclear import and export (3). Under conditions of nitrogen starvation, AreA accumulates in the nucleus due to a block in CrmA-dependent nuclear export. Once inside the nucleus, the transcriptional activity of AreA is influenced by interaction with the NmrA corepressor (4). The extent to which AreA activity is inhibited by NmrA under nitrogen-sufficient conditions is determined indirectly by the bZIP transcription factor MeaB (5). Under nitrogen-sufficient conditions, MeaB activates expression, leading to increased levels of NmrA and greater inhibition of AreA activity. Thus, the activity of AreA is determined by the relative levels of AreA and NmrA (6), with active AreA predominating under nitrogen-limiting or nitrogen starvation conditions.

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Genomic arrangement of nitrate-assimilatory genes in sequenced fungal genomes. (A) In the nitrate-assimilatory pathway, nitrate is transported into the cell by nitrate permeases (encoded by and in ). Endogenous nitrate is catabolized by nitrate reductase (encoded by in ) to nitrite, which in turn is converted by nitrite reductase (encoded by in ) to ammonium for synthesis of nitrogen-containing biomolecules. (B) Evolution of the nitrate-assimilatory gene cluster in filamentous fungi. The phylogenetic relationships of the various fungi are shown on the left ( ). The , , and orthologues were identified by blastp and tblastn searches ( ) against the respective genome databases, using the NiaD, NiiA, and NrtA sequences. The relative orientation of the open reading frames of (black rectangles), (grey rectangles), and (white rectangles) orthologues in various fungi is indicated by arrows. Thick lines connecting the rectangles indicate that the genes are linked. Nil means that sequence with high similarity could not be found in the respective genome sequences by blastp and tblastn searches. “.” includes , , , , , , , and . “.” includes , , and .

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Growth of and on various amino acids as nitrogen source. (A) wild-type, Δ, and strains were grown at 37°C for 2 days on ANM solid media ( ) containing 1% glucose and ammonium (NH), glutamine (Gln), glutamate (Glu), alanine (Ala), nitrate (NO), proline (Pro), γ-amino butyric acid (GABA), arginine (Arg), uric acid (UA), or histidine (His) at a final concentration of 10 mM as the sole nitrogen source. (B) Wild-type was grown on solid ANM minimal media ( ) containing 1% glucose and the indicated amino acid at a concentration of 10 mM. The relative levels of growth after 2 days at 37°C are ranked from strongest (++++) to weakest (–/+). Wild-type was grown on liquid Vogel’s medium lacking NH and NO with 2% sucrose and the indicated amino acid at a concentration of 10 mM. The relative strength of growth is determined by dry mass weight after 3 days of growth at 30°C ( ). The data are grouped and expressed with symbols as follows: ++++, >30 mg; +++, <30 mg; ++, <15 mg; +, 5 mg; –/+, <2 mg. ND, not determined.

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Evolution of L-amino acid oxidase in filamentous fungi. The phylogenetic relationships of the various filamentous ascomycetes are indicated on the left ( ; Broad Institute website [http://www.broad.mit.edu/annotation/genome/aspergillus_group/]). L-Amino acid oxidase and related sequences in various fungi were obtained by blastp and tblastn searches ( ) of the respective fungal genome database (Broad Institute [http://www.broad.mit.edu/annotation/fgi/]), using the A. nidulans sequences (L-amino acid oxidase, SarA [accession number, AAT84085], and L-amino acid oxidase-like sequence [accession number, EAA64973]). A minus sign (–) represents the absence of any orthologous sequence. An asterisk (*) indicates that the identified sequence was almost equally similar to both L-amino oxidase and L-amino oxidase-like sequences but has a slightly higher percentage of identity and similarity to the indicated sequence. Accession numbers or gene locus (GL) numbers of L-amino acid oxidase sequences are as follows: (GL, AFL2G_08801.2); (EAU31805); (CAK45753); (EAW12261); (EAT79476); (EDK01261); (CAD21325); (FGSG_13802.3); (GL, FOXG_15820.2 and FOXG_15290.2); and (GL, FVEG_13289.3 and FVEG_12615.3). Accession numbers or GL numbers of L-amino acid oxidase-like sequences are as follows: (GL, AFL2G_11781.2); (BAC55901); (EAU36894); (EAW19737); (EAL86792); (EAT82237); (GL, FOXG_05815.2); and (FVEG_03694.3).

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch23
1. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
2. Andrianopoulos, A., and, M. J. Hynes. 1990. Sequence and functional analysis of the positively acting regulatory gene amd R from Aspergillus nidulans. Mol. Cell. Biol. 10:31943203.
3. Andrianopoulos, A.,, S. Kourambas,, J. A. Sharp,, M. A. Davis, and, M. J. Hynes. 1998. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J. Bacteriol. 180:19731977.
4. Arst, H. N., Jr., and, D. J. Cove. 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 126:111141.
5. Arst, H. N., Jr., and, D. W. MacDonald. 1973. A mutant of Aspergillus nidulans lacking NADP-linked glutamate dehydrogenase. Mol. Gen. Genet. 122:261265.
6. Arst, H. N., Jr.,, A. A. Parbtani, and, D. J. Cove. 1975. A mutant of Aspergillus nidulans defective in NAD-linked glutamate dehydrogenase. Mol. Gen. Genet. 138:164171.
7. Arst, H. N., Jr.,, A. G. Brownlee, and, S. A. Cousen. 1982. Nitrogen metabolite repression in Aspergillus nidulans: a farewell to tamA? Curr. Genet. 6:245257.
8. Berger, H.,, R. Pachlinger,, I. Morozov,, S. Goller,, F. Narendja,, M. X. Caddick, and, J. Strauss. 2006. The GATA factor AreA regulates localization and in vivo binding site occupancy of the nitrate activator NirA. Mol. Microbiol. 59:433446.
9. Berger, H.,, A. Basheer,, S. Böck,, Y. Reyes-Dominguez,, T. Dalik,, F. Altmann, and, J. Strauss. 2008. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol. Microbiol. 69:13841398.
10. Bernreiter, A.,, A. Ramon,, J. Fernandez-Martinez,, H. Berger,, L. Araujo-Bazan,, E. A. Espeso,, R. Pachlinger,, A. Gallmetzer,, I. Anderl,, C. Scazzocchio, and, J. Strauss. 2007. Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Mol. Cell. Biol. 27:791802.
11. Billon-Grand, G.,, N. Poussereau, and, M. Fèvre. 2002. The extracellular proteases secreted in vitro and in planta by the phytopathogenic fungus Sclerotinia sclerotiorum. J. Phytopathol. 150:507511.
12. Burger, G.,, J. Strauss,, C. Scazzocchio, and, B. F. Lang. 1991a. nirA, the pathway-specific regulatory gene of nitrate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. Mol. Cell. Biol. 11:57465755.
13. Burger, G.,, J. Tilburn, and, C. Scazzocchio. 1991b. Molecular cloning and functional characterization of the pathway-specific regulatory gene nirA, which controls nitrate assimilation in Aspergillus nidulans. Mol. Cell. Biol. 11:795802.
14. Caddick, M. X. 2004. Nitrogen regulation in mycelial fungi, p. 349–368. In R. Brambl and G. A. Marzluf (ed.), The Mycota III. Springer-Verlag, Berlin, Germany.
15. Caddick, M. X.,, M. G. Jones,, J. M. van Tonder,, H. Le Cordier,, F. Narendja,, J. Strauss, and, I. Y. Morozov. 2006. Opposing signals differentially regulate transcript stability in Aspergillus nidulans. Mol. Microbiol. 62:509519.
16. Calderón, J., and, L. M. Martínez. 1993. Regulation of ammonium ion assimilation enzymes in Neurospora crassa nit-2 and ms-5 mutant strains. Biochem. Genet. 31:425439.
17. Campbell, W. H., and, J. R. Kinghorn. 1990. Functional domains of assimilatory nitrate reductase and nitrite reductase. Trends Biochem. Sci. 15:315319.
18. Cazelle, B.,, A. Pokorska,, E. Hull,, P. M. Green,, G. Stanway, and, C. Scazzocchio. 1998. Sequence, exon-intron organization, transcription and mutational analysis of prnA, the gene encoding the transcriptional activator of the prn gene cluster in Aspergillus nidulans. Mol. Microbiol. 28:355370.
19. Chang, P. K.,, J. Yu,, D. Bhatnagar, and, T. E. Cleveland. 2000. Characterization of the Aspergillus parasiticus major nitrogen regulatory gene, areA. Biochim. Biophys. Acta 1491:263266.
20. Chen, H., and, J. A. Kinsey. 1994. Sequential gel mobility shift scanning of 5' upstream sequences of the Neurospora crassa am (GDH) gene. Mol. Gen. Genet. 242:399403.
21. Chen, H.,, J. W. Crabb, and, J. A. Kinsey. 1998. The Neurospora aab-1 gene encodes a CCAAT binding protein homologous to yeast HAP5. Genetics 148:123130.
22. Chiang, T. Y., and, G. A. Marzluf. 1995. Binding affinity and functional significance of NIT2 and NIT4 binding sites in the promoter of the highly regulated nit-3 gene, which encodes nitrate reductase in Neurospora crassa. J. Bacteriol. 177:60936099.
23. Christensen, T.,, M. J. Hynes, and, M. A Davis. 1998. Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl. Environ. Microbiol. 64:32323237.
24. Cohen, B. L. 1973. The neutral and alkaline proteases of Aspergillus nidulans. J. Gen. Microbiol. 77:521528.
25. Conlon, H.,, I. Zadra,, H. Haas,, H. N. Arst, Jr.,, M. G. Jones, and, M. X. Caddick. 2001. The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol. Microbiol. 40:361375.
26. Cornwell, E. V., and, D. W. MacDonald. 1984. glnA mutations define the structural gene for glutamine synthetase in Aspergillus. Curr. Genet. 8:3336.
27. Cove, D. J. 1966. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. Biophys. Acta 113:5156.
28. Crawford, N. M., and, H. N. Arst. 1993. The molecular genetics of nitrate assimilation in fungi and plants. Annu. Rev. Genet. 27:115146.
29. Cubero, B., and, C. Scazzocchio. 1994. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 13:407415.
30. Cubero, B.,, D. Gómez, and, C. Scazzocchio. 2000. Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J. Bacteriol. 182:233235.
31. Dantzig, A. H.,, F. L. Wiegmann, Jr., and, A. Nason. 1979. Regulation of glutamate dehydrogenases in nit-2 and am mutants of Neurospora crassa. J. Bacteriol. 137:13331339.
32. Dantzig, A. H.,, W. K. Zurowski,, T. M. Ball, and, A. Nason. 1978. Induction and repression of nitrate reductase in Neurospora crassa. J. Bacteriol. 133:671679.
33. Davis, M. A., and, M. J. Hynes. 1987. Complementation of areA regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc. Natl. Acad. Sci. USA 84:37533757.
34. Davis, M. A.,, A. J. Small,, S. Kourambas, and, M. J. Hynes. 1996. The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J. Bacteriol. 178:34063409.
35. Davis, M. A.,, A. C. Askin, and, M. J. Hynes. 2005. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. Appl. Environ. Microbiol. 71:35513555.
36. DeBusk, R. M., and, S. Ogilvie. 1984. Regulation of amino acid utilization in Neurospora crassa: effect of nmr-1 and ms-5 mutations. J. Bacteriol. 160:656661.
37. Diallinas, G.,, L. Gorfinkiel,, H. N. Arst, Jr.,, G. Cecchetto, and, C. Scazzocchio. 1995. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J. Biol. Chem. 270:86108622.
38. Dunn-Coleman, N. S., and, R. H. Garrett. 1980. The role of glutamine synthetase and glutamine metabolism in nitrogen metabolite repression, a regulatory phenomenon in the lower eukaryote Neurospora crassa. Mol. Gen. Genet. 179:2532.
39. Dunn-Coleman, N. S.,, A. B. Tomsett, and, R. H. Garrett. 1981. The regulation of nitrate assimilation in Neurospora crassa: biochemical analysis of the nmr-1 mutants. Mol. Gen. Genet. 182:234239.
40. Facklam, T. J., and, G. A. Marzluf. 1978. Nitrogen regulation of amino acid catabolism in Neurospora crassa. Biochem. Genet. 16:343354.
41. Feng, B., and, G. A. Marzluf. 1998. Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol. Cell. Biol. 18:39833990.
42. Feng, B.,, H. Haas, and, G. A. Marzluf. 2000. ASD4, a new GATA factor of Neurospora crassa, displays sequence-specific DNA binding and functions in ascus and ascospore development. Biochemistry 39:1106511073.
43. Fitzgibbon, G. J.,, I. Y. Morozov,, M. G. Jones, and, M. X. Caddick. 2005. Genetic analysis of the TOR pathway in Aspergillus nidulans. Eukaryot. Cell 4:15951598.
44. Fitzpatrick, D. A.,, M. E. Logue,, J. E. Stajich, and, G. Butler. 2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6:99.
45. Fraser, J. A.,, M. A. Davis, and, M. J. Hynes. 2001. The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 157:119131.
46. Frederick, G. D., and, J. A. Kinsey. 1990. Distant upstream regulatory sequences control the level of expression of the am (GDH) locus of Neurospora crassa. Curr. Genet. 18:5358.
47. Froeliger, E. H., and, B. E. Carpenter. 1996. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol. Gen. Genet. 251:647656.
48. Fu, Y. H., and, G. A. Marzluf. 1987. Characterization of nit-2, the major nitrogen regulatory gene of Neurospora crassa. Mol. Cell. Biol. 7:16911696.
49. Fu, Y. H.,, J. L. Young, and, G. A. Marzluf. 1988. Molecular cloning and characterization of a negative-acting nitrogen regulatory gene of Neurospora crassa. Mol. Gen. Genet. 214:7479.
50. Fu, Y. H., and, G. A. Marzluf. 1990a. Site-directed mutagenesis of the ‘zinc finger’ DNA-binding domain of the nitrogen-regulatory protein NIT2 of Neurospora. Mol. Microbiol. 4:18471852.
51. Fu, Y. H., and, G. A. Marzluf. 1990b. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 10:10561065.
52. Fu, Y. H.,, B. Feng,, S. Evans, and, G. A. Marzluf. 1995. Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol. Microbiol. 15:935942.
53. García, I.,, R. Gonzalez,, D. Gómez, and, C. Scazzocchio. 2004. Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. Eukaryot. Cell 3:144156.
54. Gente, S.,, N. Poussereau, and, M. Fevre. 1999. Isolation and expression of a nitrogen regulatory gene, nmc, of Penicillium roqueforti. FEMS Microbiol. Lett. 175:291297.
55. Goldin, B. R., and, C. Frieden. 1971. L-glutamate dehydrogenases. Curr. Top. Cell. Regul. 4:77117.
56. Gómez, D.,, B. Cubero,, G. Cecchetto, and, C. Scazzocchio. 2002. PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol. Microbiol. 44:585597.
57. Gómez, D.,, I. García,, C. Scazzocchio, and, B. Cubero. 2003. Multiple GATA sites: protein binding and physiological relevance for the regulation of the proline transporter gene of Aspergillus nidulans. Mol. Microbiol. 50:277289.
58. Gorfinkiel, L.,, G. Diallinas, and, C. Scazzocchio. 1993. Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J. Biol. Chem. 268:2337623381.
59. Haas, H., and, G. A. Marzluf. 1995. NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr. Genet. 28:177183.
60. Haas, H.,, B. Bauer,, B. Redl,, G. Stoffler, and, G. A. Marzluf. 1995. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr. Genet. 27:150158.
61. Haas, H.,, K. Angermayr,, I. Zadra, and, G. Stoffler. 1997. Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J. Biol. Chem. 272:2257622582.
62. Hawker, K. L.,, P. Montague,, G. A. Marzluf, and, J. R. Kinghorn. 1991. Heterologous expression and regulation of the Neurospora crassa nit-4 pathway-specific regulatory gene for nitrate assimilation in Aspergillus nidulans. Gene 100:237240.
63. Hawkins, A. R.,, S. J. Gurr,, P. Montague, and, J. R. Kinghorn. 1989. Nucleotide sequence and regulation of expression of the Aspergillus nidulans gdhA gene encoding NADP dependent glutamate dehydrogenase. Mol. Gen. Genet. 218:105111.
64. Hensel, M.,, H. N. Arst, Jr.,, A. Aufauvre-Brown, and, D. W. Holden. 1998. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol. Gen. Genet. 258:553557.
65. Hernández, G.,, R. Sánchez-Pescador,, R. Palacios, and, J. Mora. 1983. Nitrogen source regulates glutamate dehydrogenase NADP synthesis in Neurospora crassa. J. Bacteriol. 154:524528.
66. Hu, Y.,, T. G. Cooper, and, G. B. Kohlhaw. 1995. The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol. Cell. Biol. 15:5257.
67. Hull, E. P.,, P. M. Green,, H. N. Arst, Jr., and, C. Scazzocchio. 1989. Cloning and physical characterization of the L-proline catabolism gene cluster of Aspergillus nidulans. Mol. Microbiol. 3:553559.
68. Hynes, M. J. 1974. The effects of the carbon source on glutamate dehydrogenase activities in Aspergillus nidulans. J. Gen. Microbiol. 81:165170.
69. Hynes, M. J. 1975. Studies on the role of the areA gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Aust. J. Biol. Sci. 28:301313.
70. Jarai, G., and, G. A. Marzluf. 1990. Analysis of conventional and in vitro generated mutants of nmr, the negatively acting nitrogen regulatory gene of Neurospora crassa. Mol. Gen. Genet. 222:233240.
71. Johnstone, I. L.,, P. C. McCabe,, P. Greaves,, S. J. Gurr,, G. E. Cole,, M. A. Brow,, S. E. Unkles,, A. J. Clutterbuck,, J. R. Kinghorn, and, M. A. Innis. 1990. Isolation and characterization of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90:181192.
72. Jones, S. A.,, H. N. Arst, Jr., and, D. W. MacDonald. 1981. Gene roles in the prn cluster of Aspergillus nidulans. Curr. Genet. 3:4956.
73. Kinghorn, J. R., and, J. A. Pateman. 1973. NAD and NADP L-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J. Gen. Microbiol. 78:3946.
74. Kinghorn, J. R., and, J. A. Pateman. 1974. The regulation of NAD L-glutamate dehydrogenase in Aspergillus nidulans. Genet. Res. 23:119124.
75. Kinghorn, J. R., and, J. A. Pateman. 1975a. The structural gene for NADP L-glutamate dehydrogenase in Aspergillus nidulans. J. Gen. Microbiol. 86:294300.
76. Kinghorn, J. R., and, J. A. Pateman. 1975b. Studies of partially repressed mutants at the tamA and areA loci in Aspergillus nidulans. Mol. Gen. Genet. 140:137147.
77. Kinghorn, J. R., and, J. A. Pateman. 1976. Mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase. J. Bacteriol. 125:4247.
78. Kinnaird J. H., and, J. R. Fincham. 1983. The complete nucleotide sequence of the Neurospora crassa am (NADP-specific glutamate dehydrogenase) gene. Gene 26:253260.
79. Kotaka, M.,, C. Johnson,, H. K. Lamb,, A. R. Hawkins,, J. Ren, and, D. K. Stammers. 2008. Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA. J. Mol. Biol. 381:373382.
80. Kudla, B.,, M. X. Caddick,, T. Langdon,, N. M. Martinez-Rossi,, C. F. Bennett,, S. Sibley,, R. W. Davies, and, H. N. Arst, Jr. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9:13551364.
81. Lamb, H. K.,, A. L. Dodds,, D. R. Swatman,, E. Cairns, and, A. R. Hawkins. 1997. Deletion of the N-terminal region of the AREA protein is correlated with a derepressed pheno-type with respect to nitrogen metabolite repression. J. Bacteriol. 179:66496656.
82. Lamb, H. K.,, K. Leslie,, A. L. Dodds,, M. Nutley,, A. Cooper,, C. Johnson,, P. Thompson,, D. K. Stammers, and, A. R. Hawkins. 2003. The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J. Biol. Chem. 278:3210732114.
83. Lamb, H. K.,, J. Ren,, A. Park,, C. Johnson,, K. Leslie,, S. Cocklin,, P. Thompson,, C. Mee,, A. Cooper,, D. K. Stammers, and, A. R. Hawkins. 2004. Modulation of the ligand binding properties of the transcription repressor NmrA by GATA-containing DNA and site-directed muta-genesis. Protein Sci. 13:31273138.
84. Langdon, T.,, A. Sheerins,, A. Ravagnani,, M. Gielkens,, M. X. Caddick, and, H. N. Arst, Jr. 1995. Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol. Microbiol. 17:877888.
85. MacCabe, A. P.,, S. Vanhanen,, M. D. Sollewign Gelpke,, P. J. van de Vondervoort,, H. N. Arst, Jr., and, J. Visser. 1998. Identification, cloning and sequence of the Aspergillus niger areA wide domain regulatory gene controlling nitrogen utilisation. Biochim. Biophys. Acta 1396:163168.
86. MacDonald, D. W. 1982. A single mutation leads to loss of glutamine synthetase and relief of ammonium repression in Aspergillus. Curr. Genet. 6:203208.
87. Macheda, M. L.,, M. J. Hynes, and, M. A. Davis. 1999. The Aspergillus nidulans gltA gene encoding glutamate synthase is required for ammonium assimilation in the absence of NADP-glutamate dehydrogenase. Curr. Genet. 34:467471.
88. Margelis, S.,, C. D’Souza,, A. J. Small,, M. J. Hynes,, T. H. Adams, and, M. A. Davis. 2001. Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans. J. Bacteriol. 183:58265833.
89. Marzluf, G. A. 1981. Regulation of nitrogen metabolism and gene expression in fungi. Microbiol. Rev. 45:437461.
90. Marzluf, G. A. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 61:1732.
91. Mihlan, M.,, V. Homann,, T. W. Liu, and, B. Tudzynski. 2003. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 47:975991.
92. Morel, M.,, M. Buee,, M. Chalot, and, A. Brun. 2006. NADP-dependent glutamate dehydrogenase: a dispensable function in ectomycorrhizal fungi. New Phytol. 169:179190.
93. Morozov, I. Y.,, M. G. Martinez,, M. G. Jones, and, M. X. Caddick. 2000. A defined sequence within the 3' UTR of the areA transcript is sufficient to mediate nitrogen metabolite signalling via accelerated deadenylation. Mol. Microbiol. 37:12481257.
94. Morozov, I. Y.,, M. Galbis-Martinez,, M. G. Jones, and, M. X. Caddick. 2001. Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol. Microbiol. 42:269277.
95. Muro-Pastor, M. I.,, R. Gonzalez,, J. Strauss,, F. Narendja, and, C. Scazzocchio. 1999. The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J. 18:15841597.
96. Narendja, F.,, S. P. Goller,, M. Wolschek, and, J. Strauss. 2002. Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans. Mol. Microbiol. 44:573583.
97. Neidermann, D. M., and, K. Lerch. 1990. Molecular cloning of the L-amino acid oxidase gene from Neurospora crassa. J. Biol. Chem. 265:1724617251.
98. Neidermann, D. M., and, K. Lerch. 1991. Regulation of biosynthesis of L-amino acid oxidase by Neurospora crassa. FEMS Microbiol. Lett. 63:309313.
99. Pan, H.,, B. Feng, and, G. A. Marzluf. 1997. Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa. Mol. Microbiol. 26:721729.
100. Pateman, J. A. 1969. Regulation of the synthesis of glutamate dehydrogenase and glutamine synthetase in microorganisms. Biochem. J. 115:769775.
101. Pellier, A. L.,, R. Lauge,, C. Veneault-Fourrey, and, T. Langin. 2003. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol. Microbiol. 48:639655.
102. Perez-Garcia, A.,, S. S. Snoeijers,, M. H. Joosten,, T. Goosen, and, P. J. De Wit. 2001. Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. Mol. Plant-Microbe Interact. 14:316325.
103. Platt, A.,, T. Langdon,, H. N. Arst, Jr.,, D. Kirk,, D. Tollervey,, J. M. Sanchez, and, M. X. Caddick. 1996a. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J. 15:27912801.
104. Platt, A.,, A. Ravagnani,, H. N. Arst, Jr.,, D. Kirk,, T. Langdon, and, M. X. Caddick. 1996b. Mutational analysis of the C-terminal region of AREA, the transcription factor mediating nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 250:106114.
105. Pokorska, A.,, C. Drevet, and, C. Scazzocchio. 2000. The analysis of the transcriptional activator PrnA reveals a tripartite nuclear localisation sequence. J. Mol. Biol. 298:585596.
106. Polkinghorne, M. A., and, M. J. Hynes. 1975. Mutants affecting histidine utilization in Aspergillus nidulans. Genet. Res. 25:119135.
107. Polkinghorne, M. A., and, M. J. Hynes. 1982. L-histidine utilization in Aspergillus nidulans. J. Bacteriol. 149:931940.
108. Polley, S. D., and, M. X. Caddick. 1996. Molecular characterization of meaB, a novel gene affecting nitrogen metabolite repression in Aspergillus nidulans. FEBS Lett. 388:200205.
109. Polotnianka, R.,, B. J. Monahan,, M. J. Hynes, and, M. A. Davis. 2004. TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans. Mol. Genet. Genomics 272:452459.
110. Punt, P. J.,, J. Strauss,, R. Smit,, J. R. Kinghorn,, C. A. van den Hondel, and, C. Scazzocchio. 1995. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol. Cell. Biol. 15:56885699.
111. Ravagnani, A.,, L. Gorfinkiel,, T. Langdon,, G. Diallinas,, E. Adjadj,, S. Demais,, D. Gorton,, H. N. Arst, Jr., and, C. Scazzocchio. 1997. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J. 16:39743986.
112. Romero, D., and, G. Davila. 1986. Genetic and biochemical identification of the glutamate synthase structural gene in Neurospora crassa. J. Bacteriol. 167:10431047.
113. Scazzocchio, C. 2000. The fungal GATA factors. Curr. Opin. Microbiol. 3:126131.
114. Schönig, B.,, D. W. Brown,, B. Oeser, and, B. Tudzynski. 2008. Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. Eukaryot. Cell 7:18311846.
115. Screen, S.,, A. Bailey,, K. Charnley,, R. Cooper, and, J. Clarkson. 1998. Isolation of a nitrogen response regulator gene (nrr1) from Metarhizium anisopliae. Gene 221:1724.
116. Sharma, K. K., and, H. N. Arst, Jr. 1985. The product of the regulatory gene of the proline catabolism gene cluster of Aspergillus nidulans is a positive-acting protein. Curr. Genet. 9:299304.
117. Sikora, L., and, G. A. Marzluf. 1982. Regulation of L-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol. Gen. Genet. 186:3339.
118. Slot, J. C., and, D. S. Hibbett. 2007. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS ONE 2:e1097.
119. Small, A. J.,, M. J. Hynes, and, M. A. Davis. 1999. The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. Genetics 153:95105.
120. Small, A. J.,, R. B. Todd,, M. C. Zanker,, S. Delimitrou,, M. J. Hynes, and, M. A. Davis. 2001. Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans. Mol. Genet. Genomics 265:636646.
121. Snoeijers, S. S.,, A. Pérez-García,, M. H. A. J. Joosten, and, P. J. G. M. De Wit. 2000. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur. J. Plant Pathol. 106:493506.
122. Stammers, D. K.,, J. Ren,, K. Leslie,, C. E. Nichols,, H. K. Lamb,, S. Cocklin,, A. Dodds, and, A. R. Hawkins. 2001. The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short-chain dehydrogenase/reductases. EMBO J. 20:66196626.
123. Stankovich, M.,, A. Platt,, M. X. Caddick,, T. Langdon,, P. M. Shaffer, and, H. N. Arst, Jr. 1993. C-terminal truncation of the transcriptional activator encoded by areA in Aspergillus nidulans results in both loss-of-function and gain-of-function phenotypes. Mol. Microbiol. 7:8187.
124. Starich, M. R.,, M. Wikstrom,, H. N. Arst, Jr.,, G. M. Clore, and, A. M. Gronenborn. 1998a. The solution structure of a fungal AREA protein-DNA complex: an alternative binding mode for the basic carboxyl tail of GATA factors. J. Mol. Biol. 277:605620.
125. Starich, M. R.,, M. Wikstrom,, S. Schumacher,, H. N. Arst, Jr.,, A. M. Gronenborn, and, G. M. Clore. 1998b. The solution structure of the Leu22—>Val mutant AREA DNA binding domain complexed with a TGATAG core element defines a role for hydrophobic packing in the determination of specificity. J. Mol. Biol. 277:621634.
126. Steidl, S.,, P. Papagiannopoulos,, O. Litzka,, A. Andrianopoulos,, M. A. Davis,, A. A. Brakhage, and, M. J. Hynes. 1999. AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC, and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol. Cell. Biol. 19:99106.
127. Strauss, J.,, M. I. Muro-Pastor, and, C. Scazzocchio. 1998. The regulator of nitrate assimilation in ascomycetes is a dimer which binds a nonrepeated, asymmetrical sequence. Mol. Cell. Biol. 18:13391348.
128. Suarez, T.,, M. V. de Queiroz,, N. Oestreicher, and, C. Scazzocchio. 1995. The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. EMBO J. 14:14531467.
129. Sze, J. Y.,, M. Wootner,, J. A. Jaehning, and, J. B. Kohlhaw. 1992. In vitro transcriptional activation by a metabolic intermediate: activation of LEU3 depends on alpha-isopropylmalate. Science 258:11431145.
130. Tao, Y., and, G. A. Marzluf. 1999. The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit-2 mRNA and protein. Curr. Genet. 36:153158.
131. Teichert, S.,, B. Schönig,, S. Richter, and, B. Tudzynski. 2004. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Mol. Microbiol. 53:16611675.
132. Teichert, S.,, M. Wottawa,, B. Schönig, and, B. Tudzynski. 2006. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot. Cell 5:18071819.
133. Thayer, P. S., and, N. H. Horowitz. 1951. The L-amino acid oxidase of Neurospora. J. Biol. Chem. 192:755767.
134. Thio, S. S.,, J. V. Bonventre, and, S. I. Hsu. 2004. The CtBP2 co-repressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain. Nucleic Acids Res. 32:18361847.
135. Thoden, J. B.,, C. A. Sellick,, R. J. Reece, and, H. M. Holden. 2007. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J. Biol. Chem. 282:15341538.
136. Todd, R. B.,, J. A. Fraser,, K. H. Wong,, M. A. Davis, and, M. J. Hynes. 2005. Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot. Cell 4:16461653.
137. Torii, S.,, K. Yamane,, T. Mashima,, N. Haga,, K. Yamamoto,, J. W. Fox,, M. Naito, and, T. Tsurno. 2000. Molecular cloning and functional analysis of Apoxin I, a snake venom-derived apoptosis-inducing factor with L-amino acid oxidase activity. Biochemistry 39:31973205.
138. Tudzynski, B.,, V. Homann,, B. Feng, and, G. A. Marzluf. 1999. Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol. Gen. Genet. 261:106114.
139. Unkles, S. E.,, K. L. Hawker,, C. Grieve,, E. L. Campbell,, P. Montague, and, J. R. Kinghorn. 1991. crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88:204208.
140. Unkles, S. E.,, J. Smith,, G. J. M. M. Kanan,, L. J. Millar,, I. S. Heck,, D. H. Boxer, and, J. R. Kinghorn. 1997. The Aspergillus nidulans cnxABC locus is a single gene encoding two catalytic domains required for synthesis of precursor Z, an intermediate in molybdenum cofactor biosynthesis. J. Biol. Chem. 272:2838128390.
141. Unkles, S. E.,, D. Zhou,, M. Y. Siddiqi,, J. R. Kinghorn, and, A. D. Glass. 2001. Apparent genetic redundancy facilitates ecological plasticity for nitrate transport. EMBO J. 20:62466255.
142. vanKuyk, P. A.,, B. F. Cheetham, and, M. E. Katz. 2000. Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fungal Genet. Biol. 29:201210.
143. Vierula, P. J., and, M. Kapoor. 1989. NAD-specific glutamate dehydrogenase of Neurospora crassa. J. Biol. Chem. 264:11081114.
144. Williams, R. S. B.,, M. A. Davis, and, B. J. Howlett. 1995. The nitrate and nitrite reductase-encoding genes of Leptosphaeria maculans are closely linked and transcribed in the same direction. Gene 158:153154.
145. Wilson, R. A.,, J. M. Jenkinson,, R. P. Gibson,, J. A. Littlechild,, Z.-Y. Wang, and, N. J. Talbot. 2007. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J. 26:36733685.
146. Wong, K. H.,, M. J. Hynes,, R. B. Todd, and, M. A. Davis. 2007. Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol. Microbiol. 66:534551.
147. Wong, K. H.,, M. J. Hynes, and, M. A. Davis. 2008. Recent advances in nitrogen regulation: a comparison between yeast and filamentous fungi. Eukaryot. Cell 7:917925.
148. Xiao, X.,, Y. H. Fu, and, G. A. Marzluf. 1995. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry 34:88618868.
149. Xiao, X. D., and, G. A. Marzluf. 1993. Amino-acid substitutions in the zinc finger of NIT2, the nitrogen regulatory protein of Neurospora crassa, alter promoter element recognition. Curr. Genet. 24:212218.
150. Yamada, T.,, K. Makimura, and, S. Abe. 2006. Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med. Mycol. 44:243252.
151. Young, J. L.,, G. Jarai,, Y. H. Fu, and, G. A. Marzluf. 1990. Nucleotide sequence and analysis of NMR, a negative-acting regulatory gene in the nitrogen circuit of Neurospora crassa. Mol. Gen. Genet. 222:120128.
152. Yuan, G. F.,, Y. H. Fu, and, G. A. Marzluf. 1991. nit-4, a pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol. Cell. Biol. 11:57355745.
153. Zhang, Q.,, D. W. Piston, and, R. H. Goodman. 2002. Regulation of corepressor function by nuclear NADH. Science 295:18951897.

Tables

Generic image for table
TABLE 1

Conservation of nitrogen regulators in filamentous ascomycetes

Citation: Davis M, Wong K. 2010. Nitrogen Metabolism in Filamentous Fungi, p 325-338. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error