1887

Chapter 25 : Sulfur, Phosphorus, and Iron Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Sulfur, Phosphorus, and Iron Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap25-2.gif

Abstract:

This chapter focuses on the varied fungal responses to limitation for iron, phosphorus, and sulfur. Common threads include the versatility and resourcefulness of fungi in the acquisition of these nutrients. Further, transcriptional upregulation of high-affinity transporters is a repeated theme that allows for the scavenging under low and growth limiting nutrient element levels. Storage and macronutrient homeostasis, including regulatory aspects, are also briefly discussed. While and are considered overall in greater depth in the chapter, details of the metabolism of iron, phosphorus, and sulfur from other filamentous fungal species are included throughout. Release of cysteine and methionine from exogenous protein can also serve as a source of sulfur for many fungi. The uptake of sulfate into fungal cells is carried out by sulfate permeases, providing a primary sulfur source for the subsequent assimilation pathway. Most studies on sulfur transport in fungi have focused on sulfate permeases in , , and . Among the filamentous fungi, and have served as primary model systems for sulfur metabolism. Siderophore-mediated nonreductive iron uptake represents the second type of high-affinity system for iron acquisition. Siderophores, which can be classified as catecholates, phenolates, carboxylates, hydroxylates, and mixed types, are synthesized under iron limiting conditions to chelate ferric (Fe) iron.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25

Key Concept Ranking

Major Facilitator Superfamily
0.50549453
Fungal Proteins
0.41196865
0.50549453
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Pathway of sulfur acquisition leading to sulfur assimilation and cysteine biosynthesis in . Potential sulfur sources from the environment or internal stores (e.g., choline- sulfate) are indicated. EC designations are shown for each pathway step.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic diagram of the sulfur regulatory system. (A) Sulfur-limited conditions. Plus symbols represent a positive effect. (B) Sulfur-sufficient conditions. The bound SCON-2-CYS-3 condition and subsequent proteolysis of CYS-3 represent the action of the SCF complex.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

F-box regulator SCON-2 sequence alignment with a representative selection of fungal proteins showing homology. Species represented, from top to bottom, are , and . Numerical designations represent the gene identifiers in the Fungal Genome Initiative database at http://www.broad.mit.edu. Identical residues are shown as white on black, while similar residues are shown as white on gray.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

cystathionine γ-lyase sequence alignment with a representative selection of fungal proteins showing homology. Species represented, from top to bottom, are , and . Numerical designations represent the gene identifiers in the Fungal Genome Initiative database at http://www.broad.mit.edu Identical residues are shown as white on black, while similar residues are shown as white on gray.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

phosphate transporter sequence alignment with a representative selection of fungal proteins showing homology. Species represented, from top to bottom, are , and . Numerical designations represent the gene identifiers in the Fungal Genome Initiative database at http://www.broad.mit.edu Identical residues are shown as white on black, while similar residues are shown as white on gray.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic diagram of the phosphorus regulatory system. (A) Arrangement of pathway components demonstrating negative effect of P. (B) Model for NUC-1 translocation to the nucleus and subsequent activation of phosphorus acquisition gene expression.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

regulator PGOV sequence alignment with a representative selection of fungal proteins showing homology. Species represented, from top to bottom, are , and . Numerical designations represent the gene identifiers in the Fungal Genome Initiative database at http://www.broad.mit.edu. Identical residues are shown as white on black, while similar residues are shown as white on gray.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

iron-responsive GATA-factor Urbs1 sequence alignment with a representative selection of fungal proteins showing homology. Species represented, from top to bottom, are , (SRE), (RO3G 07659), and (Sfu1p). Numerical designations represent the gene identifiers in the Fungal Genome Initiative database at http://www.broad.mit.edu. Sequences are truncated to compare only zinc fingers and central conserved cysteine-rich region as defined by brackets with conserved cysteine residues indicated (ZF, zinc finger; CR, cysteine-rich region). Identical residues are shown as white on black, while similar residues are shown as white on gray.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Schematic diagram of the iron regulatory system. (A) Iron-sufficient (or iron excess) conditions. Sfu1p iron-responsive GATA factor interacts with corepressor Tup1 and represses the target gene. (B) Iron-limited conditions: no interaction of Sfu1p/Tup1 with target promoters and consequential derepression of gene expression.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Sequence alignment of putative mycoferritins RO3G 08744 and RO3G 14254 with human ferritin (FTH1). Numerical designations for sequences represent the identifiers in the Fungal Genome Initiative database at http://www.broad.mit.edu. Identical residues are shown as white on black, while similar residues are shown as white on gray.

Citation: Paietta J. 2010. Sulfur, Phosphorus, and Iron Metabolism, p 359-375. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch25
1. Abe, T.,, T. Hoshino,, A. Nakamura, and, N. Takaya. 2007. Anaerobic elemental sulfur reduction by fungus Fusarium oxysporum. Biosci. Biotechnol. Biochem. 71:24022407.
2. Allen, J. W., and, Y. Shacher-Hill. 2009. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol. 149:549560.
3. An, Z. Q.,, B. G. Mei,, W. M. Yuan, and, S. A. Leong. 1997a. The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J. 16:17421750.
4. An, Z.,, Q. Zhao,, J. McEvoy,, W. M. Yuan,, J. L. Markley, and, S. A. Leong. 1997b. The second finger of Urbs1 is required for iron-mediated repression of sid1 in Ustilago maydis. Proc. Natl. Acad. Sci. USA 94:58825887.
5. Apodaca, G., and, J. H. McKerrow. 1989. Regulation of Trichophyton rubrum proteolytic activity. Infect. Immun. 57:30813090.
6. Arst, H. N., Jr., and, J. Tilburn. 2004. Regulation of gene expression by ambient pH, p. 121–127. In R. Brambl and G. A. Marzluf (ed.), The Mycota III, Biochemistry and Molecular Biology, 2nd ed. Springer-Verlag, Heidelberg, Germany.
7. Askwith, C.,, D. Eide,, A. Van Ho,, P. S. Bernard,, L. T. Li,, S. Davis-Kaplan,, D. M. Sipe, and, J. Kaplan. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403410.
8. Badman, R. 1972. Deoxyribonuclease-deficient mutants of Ustilago maydis with altered recombination frequencies. Genet. Res. 20:213229.
9. Bai, C.,, P. Sen,, K. Hofmann,, L. Ma,, M. Goebl,, J. W. Harper, and, S. J. Elledge. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263274.
10. Beever, R. E., and, D. J. W. Burns. 1980. Phosphorus uptake storage and utilization by fungi. Adv. Bot. Res. 8:127219.
11. Beffa, T. 1993. Metabolism of elemental sulfur during fungal spore germination. Can. J. Microbiol. 39:736741.
12. Bieleski, R. L. 1973. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. Plant Mol. Biol. 24:225252.
13. Bolan, N. S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189207.
14. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. V. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
15. Boyce, K. J.,, M. Kretschmer, and, J. W. Kronstad. 2006. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis. Eukaryot. Cell 5:13991409.
16. Bruning, K. 1991. Effects of phosphorus limitation on the epidemiology of a chytrid phytoplankton parasite. Freshw. Biol. 25:409417.
17. Bun-ya, M.,, M. Nishimura,, S. Arracima, and, Y. Oshima. 1991. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell. Biol. 11:32293238.
18. Burton, E. G., and, R. L. Metzenberg. 1972. Novel mutation causing derepression of several enzymes of sulfur metabolism in Neurospora crassa. J. Bacteriol. 109:140151.
19. Caddick, M. X.,, A. G. Brownlee, and, H. N. Arst, Jr. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol. Gen. Genet. 203:346353.
20. Caddick, M. X., and, H. N. Arst, Jr. 1986. Structural genes for phosphatases in Aspergillus nidulans. Genet. Res. 47:8391.
21. Chen, X. Z.,, J. B. Peng,, A. Cohen,, H. Nelson, and, M. A. Hediger. 1999. Yeast SMF1 mediates H+-coupled iron uptake with concomitant coupled cation currents. J. Biol. Chem. 274:3508935094.
22. Craig, K. L., and, M. Tyers. 1999. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72:299328.
23. Cramer, C. L.,, L. E. Vaughn, and, R. H. Davis. 1980. Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools. J. Bacteriol. 142:945952.
24. Dancis, A.,, D. G. Roman,, G. J. Anderson,, A. G. Hinnebusch, and, R. D. Klausner. 1992. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89:38693873.
25. Davis, R. H. 2000. Neurospora. Contributions of a Model Organism. Oxford University Press, Oxford, England.
26. De Silva, D. M.,, C. C. Askwith,, D. Eide, and, J. Kaplan. 1995. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol. Chem. 270:10981101.
27. Dix, D. R.,, J. T. Bridgham,, M. A. Broderius,, C. A. Byers-dorfer, and, D. J. Eide. 1994. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J. Biol. Chem. 269:2609226099.
28. Dou, X.,, D. Wu,, W. An,, J. Davies,, S. B. Hashmi,, L. Ukil, and, S. A. Osmani. 2003. The PHOA and PHOB cyclin-dependent kinases perform an essential function in A. nidulans. Genetics 165:11051115.
29. Eichhorn, H.,, F. Lessing,, B. Winterberg,, J. Schirawski,, J. Kamper,, P. Muller, and, R. Kahmann. 2006. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:33323345.
30. Eide, D.,, S. Davis-Kaplan,, I. Jordan,, D. Sipe, and, J. Kaplan. 1992. Regulation of iron uptake in Saccharomyces cerevisiae: the ferrireductase and Fe(II) transporters are regulated independently. J. Biol. Chem. 267:2077420781.
31. Eisendle, M.,, M. Schrettl,, C. Kragl,, D. Muller,, P. Illmer, and, H. Haas. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot. Cell 5:15691603.
32. Ferreira, M. E. D.,, E. D. Marques,, I. Malavazi,, I. Torres,, A. Restrepo,, L. R. Numes,, R. C. de Olivveira,, M. H. S. Goldman, and, G. H. Goldman. 2006. Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis. Mol. Genet. Genomics 276:450463.
33. Foster, L. A. 2002. Utilization and cell-surface binding of hemin by Histoplasma capsulatum. Can. J. Microbiol. 48:437442.
34. Gavin, R. T.,, M. P. Kladde, and, R. T. Simpson. 2000. Tup1p represses MCM1p transcriptional activation and chromatin remodeling of an a-cell specific gene. EMBO J. 19:58755883.
35. Goodwin, P. H.,, J. Li, and, S. M. Jin. 2000. Evidence for sulfate derepression of an arylsulfatase gene of Colletotrichum gloeosporioides f. sp. malvae during infection of round-leaved mallow, Malva pusilla. Physiol. Mol. Plant Pathol. 57:169176.
36. Gras, D. E.,, H. C. S. Silveira,, N. M. Martinez-Rossi, and, A. Rossi. 2007. Identification of genes displaying differential expression in the nuc-2 mutant strain of the mold Neurospora crassa grown under phosphate starvation. FEMS Microbiol. Lett. 269:196200.
37. Haas, H.,, M. Schoeser,, E. Lesuisse,, J. F. Ernst,, W. Parson,, B. Abt,, G. Winkelmann, and, H. Oberegger. 2003. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem. J. 371:505513.
38. Haas, H. 2004. Molecular genetics of iron uptake and home-ostasis in fungi, p. 3–31. In R. Brambl and G. A. Marzluf (ed.), The Mycota III: Biochemistry and Molecular Biology, 2nd ed. Springer-Verlag, Berlin, Germany.
39. Haas, H.,, I. Zadra,, G. Stoffler, and, K. Angermayr. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 274:46134619.
40. Haas, H.,, M. Eisendle, and, B. G. Turgeon. 2008. Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46:149187.
41. Halliwell, B., and, J. M. C. Gutteridge. 1992. Biologically relevant metal ion-dependent hydroxyl radical generation-an update. FEBS Lett. 307:108112.
42. Han, S. W.,, E. Nahas, and, A. Rossi. 1987. Regulation of synthesis and secretion of acid and alkaline phosphatases in Neurospora crassa. Curr. Genet. 11:521527.
43. Hanson, M. A., and, G. A. Marzluf. 1975. Control of the synthesis of a single enzyme by multiple regulatory circuits in Neurospora crassa. Proc. Natl. Acad. Sci. USA 72:12401244.
44. Harold, F. M. 1966. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol. Rev. 30:772794.
45. Harold, F. M. 1962. Depletion and replenishment of the inorganic polyphosphate pool in Neurospora crassa. J. Bacteriol. 83:10471057.
46. Harrison, K. A., and, G. A. Marzluf. 2002. Characterization of DNA binding and the cysteine rich region of SRE, a GATA factor in Neurospora crassa involved in siderophore synthesis. Biochemistry 41:1528815295.
47. Hassett, R.,, D. R. Dix,, D. J. Eide, and, D. J. Kosman. 2000. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem. J. 351:477484.
48. Hasunuma, K. 1973. Repressible extracellular nucleases in Neurospora crassa. Biochim. Biophys. Acta 319:288293.
49. Hasunuma, K. T., and, T. Ishikawa. 1977. Control of the production and partial characterization of repressible extracellular 5'-nucleotidase and alkaline phosphatase in Neurospora crassa. Biochim. Biophys. Acta 480:178193.
50. Hof, C.,, K. Eisfeld,, K. Wetzel,, L. Antelo,, A. J. Foster, and, H. Anke. 2007. Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. Mol. Plant Pathol. 8:163172.
51. Hortschansky, P.,, M. Eisendle,, Q. Al-Abdallah,, A. D. Schmidt, and, S. Bergmann. 2007. Interaction of HApX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J. 26:31573168.
52. Hsaing, T., and, D. L. Baillie. 2005. Comparison of the yeast proteome to other fungal genomes to find core fungal genes. J. Mol. Evol. 60:475483.
53. Hwang, L. H.,, J. A. Mayfield,, J. Rine, and, A. Sil. 2008. Histo-plasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLOS Pathog. 4:e1000044.
54. Johnson, L. 2008. Iron and siderophores in fungal-host interactions. Mycol. Res. 112:170183.
55. Kafer, E., and, M. Fraser. 1979. Isolation and genetic analysis of nuclease halo (nuh) mutants of Neurospora crassa. Mol. Gen. Genet. 169:117127.
56. Kafer, E.,, A. Tittler, and, M. J. Fraser. 1989. A single, phosphate-repressible deoxyribonuclease, DNase-A, secreted in Aspergillus nidulans. Biochem. Genet. 27:153166.
57. Kaffman, A.,, I. Herskowitz,, R. Tjian, and, E. K. O’Shea. 1994. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science 263:11531156.
58. Kang, S. 1993. Functional domains of the transcriptional activator NUC-1 in Neurospora crassa. Gene 130:259264.
59. Kaur, J., and, A. K. Bachhawat. 2007. Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Genetics 176:877890.
60. Knight, S. A.,, G. Vilaire,, E. Lesuisse, and, A. Dancis. 2005. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect. Immun. 73:54825492.
61. Kulaev, I., and, T. Kulakovskay. 2000. Polyphosphate and phosphate pump. Annu. Rev. Microbiol. 54:709734.
62. Kulaev, I. S., and, V. M. Vagabov. 1983. Polyphosphate metabolism in microorganisms. Adv. Microb. Physiol. 24:83171.
63. Kumar, A., and, J. V. Paietta. 1995. The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats. Proc. Natl. Acad. Sci. USA 92:33433347.
64. Kumar, A., and, J. V. Paietta. 1998. An additional role for the F-box motif: gene regulation within the Neurospora crassa sulfur control network. Proc. Natl. Acad. Sci. USA 95:24172422.
65. Lan, C. Y.,, G. Rodarte,, L. A. Murillo,, T. Jones,, R. W. Davis,, J. Dungan,, G. Newport, and, N. Agabian. 2004. Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53:14511469.
66. Lohi, H.,, M. Kujala,, S. Makela,, E. Lehtonen,, M. Kestila,, U. Saarialho-Kere,, D. Markovich, and, J. Kere. 2002. Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J. Biol. Chem. 277:1424614254.
67. Lowendorf, H. S., and, C. W. Slayman. 1975. Genetic regulation of phosphate transport system II in Neurospora. Biochim. Biophys. Acta 413:95103.
68. Lowendorf, H. S.,, G. F. Bazinet, and, C. W. Slayman. 1975. Phosphate transport in Neurospora-derepression of a high-affinity transport system during phosphorus starvation. Biochim. Biophys. Acta 389:541549.
69. MacRae, W. D.,, F. P. Buxton,, S. Sibley,, S. Garven,, D. I. Gwynne,, R. W. Davies, and, H. N. Arst, Jr. 1988. A phosphate-repressible acid phosphatase gene from Aspergillus niger: its cloning, sequencing and transcriptional analysis. Gene 71:339348.
70. Mann, B. J.,, B. J. Bowman,, J. Grotelueschen, and, R. L. Metzenberg. 1989. Nucleotide sequence of pho-4+, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene 83:281289.
71. Maresca, B., and, G. S. Kobayashi. 1989. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol. Rev. 53:186209.
72. Martinez, P., and, B. L. Persson. 1998. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet. 258:628638.
73. Marzluf, G. A. 1997. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu. Rev. Microbiol. 51:7396.
74. Matzanke, B. F.,, E. Bill,, A. X. Trautwein, and, G. Winkel-mann. 1987. Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J. Bacteriol. 169:58735876.
75. Matzanke, B. F. 1994. Iron storage in fungi, p. 179–213. In G. Winkelmann and D. R. Winge (ed.), Metal Ions in Fungi. Dekker, New York, NY.
76. McCann, M. P., and, K. M. Snetselaar. 2008. A genome-based analysis of amino acid metabolism in the biotrophic plant pathogen Ustilago maydis. Fungal Genet. Biol. 45:S77S87.
77. McGuire, W. G., and, G. A. Marzluf. 1974. Developmental regulation of choline sulfatase and arylsulfatase in Neurospora crassa. Arch. Biochem. Biophys. 161:360368.
78. Menant, A.,, R. Barbey, and, D. Thomas. 2006. Substrate-mediated remodeling of methionine transport by multiple ubiquitin-dependent mechanisms in yeast cells. EMBO J. 25:44364447.
79. Metzenberg, R. L. 1979. Implications of some genetic control mechanisms in Neurospora. Microbiol. Rev. 43:361383.
80. Miethke, M., and, M. A. Marahiel. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71:413451.
81. Mollmann, U.,, L. Heinisch,, A. Bauernfeind,, T. Kohler, and, D. Ankel-Fuchs. 2009. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals DOI:10.1007/s10534-009-9219-2.
82. Monod, M. 2008. Secreted proteases from dermatophytes. Mycopathologica 166:285294.
83. Natorff, R.,, M. Piotrowska, and, A. Paszewski. 1998. The Aspergillus nidulans sulphur regulatory gene sconB encodes a protein with WD40 repeats and an F-box. Mol. Gen. Genet. 257:255263.
84. Natorff, R.,, M. Sienko,, J. Brzywczy, and, A. Paszewski. 2003. The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol. Microbiol. 49:10811094.
85. Nozawa, S. R.,, G. Thedei,, L. S. P. Crott,, J. E. Barbosa, and, A. Rossi. 2002. The synthesis of phosphate-repressible alkaline phosphatase does not appear to be regulated by ambient pH in the filamentous mould Neurospora crassa. Braz. J. Microbiol. 33:9295.
86. Ogawa, N.,, J. DeRisi, and, P. O. Brown. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11:43094321.
87. Oide, S.,, S. B. Krasnoff,, D. M. Gibson, and, B. G. Turgeon. 2007. Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot. Cell 6:13391353.
88. Paietta, J. V. 2004. Regulation of sulfur metabolism in mycelial fungi, p. 369–383. In R. Brambl and G. A. Marzluf (ed.), The Mycota: Biochemistry and Molecular Biology, vol. 3A. Springer-Verlag, Berlin, Germany.
89. Paietta, J. V. 2008. DNA-binding specificity of the CYS3 transcription factor of Neurospora crassa defined by binding-site selection. Fungal Genet. Biol. 45:11661171.
90. Pall, M. L. 1971. Amino acid transport in Neurospora crassa. IV. Properties and regulation of a methionine transport system. Biochim. Biophys. Acta 233:201214.
91. Pao, S. S.,, I. T. Paulsen, and, M. H. Saier, Jr. 1998. Major superfacilitator superfamily. Microbiol. Mol. Biol. Rev. 62:134.
92. Park, Y. S.,, J. H. Kim,, J. H. Cho,, H. I. Chang,, H. D. Paik,, C. W. Kang,, T. H. Kim,, H. C. Sung, and, C. W. Yun. 2007. Physical and functional interaction of FgFtr1/FgFet1 and FgFtr2/FgFet2 is required for iron uptake in Fusarium graminearum. Biochem. J. 408:97104.
93. Paszewski, A.,, J. Brzywczy, and, R. Natorff. 1994. Sulphur metabolism. Prog. Ind. Microbiol. 29:299319.
94. Paszewski, A.,, R. Natorff,, M. Piotrowska,, J. Brywczy,, M. Sienko,, M. Grynberg,, E. Pizzinini, and, G. Turner. 2000. Regulation of sulfur amino acid biosynthesis in Aspergillus nidulans: physiological and genetic aspects, p. 93–105. In C. Brunhold, H. Rennenberg, L. J. De Kok, I. Stulen, and J.-C. Davidian (ed.), Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Paul Haupt, Berlin, Germany.
95. Peleg, Y.,, R. Addison, R. Aramayo, and, R. L. Metzenberg. 1996a. Translocation of Neurospora crassa transcription factor Nuc-1 into the nucleus is induced by phosphorus limitation. Fungal Genet. Biol. 20:185191.
96. Peleg, Y.,, R. Aramayo,, S. Kang,, J. G. Hall, and, R. L. Metzenberg. 1996b. Nuc-2, a component of the phosphate-regulated signal transduction pathway in Neurospora crassa, is an ankyrin repeat protein. Mol. Gen. Genet. 252:709716,
97. Peleg, Y., and, R. L. Metzenberg. 1994. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor Nuc-1. Mol. Cell. Biol. 14:78167826.
98. Pelletier, B.,, A. Mercier,, M. Durand,, C. Peter,, M. Jbel,, J. Beaudoin, and, S. Labbe. 2007. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Yeast 24:883900.
99. Penalva, M. A., and, H. N. Arst, Jr. 2002. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66:426446.
100. Persson, B. L.,, J. O. Lagerstedt,, J. R. Pratt,, J. Pattison-Granberg,, K. Lundh,, S. Shokrollahzadeh, and, F. Lundh. 2003. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet. 43:225244.
101. Philpott, C. C. 2006. Iron uptake in fungi: a system for every source. Biochim. Biophys. Acta 1763:636645.
102. Philpott, C. C., and, O. Protchenko. 2008. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 7:2027.
103. Pilsyk, S.,, R. Natorff,, M. Sienko, and, A. Paszewski. 2007. Sulfate transport in Aspergillus nidulans: a novel gene encoding alternative sulfate transporter. Fungal Genet. Biol. 44:715725.
104. Piotrowska, M.,, R. Natorff, and, A. Paszewski. 2000. sconC, a gene involved in the regulation of sulphur metabolism in Aspergillus nidulans, belongs to the SKP1 gene family. Mol. Gen. Genet. 264:276282.
105. Radford, A. 2004. Metabolic highways of Neurospora crassa revisited. Adv. Genet. 52:165207.
106. Rangarajan, S., and, V. Shankar. 1999. Extracellular nuclease from Rhizopus stolonifer: purification and characteristics of single strand preferential deoxyribonuclease activity. Biochim. Biophys. Acta 1473:293304.
107. Roosenberg, J. M.,, Y. M. Lin,, Y. Lu, and, M. J. Miller. 2000. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7:159197.
108. Rouached, H.,, P. Berthomieu,, E. El Kassis,, N. Cathala,, V. Catherinot,, G. Labesse,, J. C. Davidian, and, P. Fourcroy. 2005. Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J. Biol. Chem. 280:1597615983.
109. Rouillon, A.,, Y. Surdin-Kerjan, and, D. Thomas. 1999. Transport of sulfonium compounds. Characterization of the S-adenosylmethionine and S-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274:2809628105.
110. Santos, R.,, N. Buisson,, S. Knight,, A. Dancis,, J. M. Cmamdro, and, E. Lesuisse. 2003. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149:579588.
111. Scazzocchio, C. 2000. The fungal GATA factors. Curr. Opin. Microbiol. 3:126131.
112. Schrettl, M.,, E. Bignell,, C. Kragl,, C. Joechl,, T. Rogers,, H. N. Arst,, K. Haynes, and, H. Haas. 2004. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 200:12131219.
113. Sizemore, S. T., and, J. V. Paietta. 2002. Cloning and characterization of scon-3+, a new member of the Neurospora crassa sulfur regulatory system. Eukaryot. Cell 1:875883.
114. Stearman, R.,, D. S. Yuan,, Y. Yamaguchi-Iwai,, R. D. Klaus-ner, and, A. Dancis. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:15521557.
115. Thieken, A., and, G. Winkelmann. 1992. Rhizoferrin: a complexone type siderophore of the Mucroales and Entomophtorales (Zygomycetes). FEMS Microbiol. Lett. 94:3742.
116. Thomas, D., and, Y. Surdin-Kerjan. 1997. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61:503522.
117. Uthman, A.,, M. Dockal,, J. Soltz-Szots, and, J. E. Tschachler. 2005. Fluconazole upregulates sconC expression and inhibits sulphur metabolism in Microsporum canis. Fungal Genet. Biol. 42:719725.
118. van de Kamp, M.,, T. A. Schuurs,, A. Vos,, T. R. van der Lende,, W. N. Konings, and, A. J. M. Driessen. 2000. Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl. Environ. Microbiol. 66:45364538.
119. Versaw, W. K., and, R. L. Metzenberg. 1995. Repressible cation-phosphate symporters in Neurospora crassa. Proc. Natl. Acad. Sci. USA 92:38843887.
120. Versaw, W. K. 1995. A phosphate-repressible high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene 153:135139.
121. Voisard, C.,, J. Wang,, J. L. McEvoy,, P. Xu, and, S. A. Leong. 1993. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol. Cell. Biol. 13:70917100.
122. Weissman, Z., and, D. Kornitzer. 2004. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol. Microbiol. 53:12091220.
123. Winkelmann, G. 2001. Siderophore transport in fungi, p. 463–479. In G. Winkelmann (ed.), Microbial Transport Systems. Wiley-VCH, Weinheim, Germany.
124. Winkelmann, G. 2007. Ecology of siderophores with special reference to the fungi. Biometals 20:379392.
125. Wu, D. L,, X. W. Dou,, S. B. Hashmi, and, S. A. Osmani. 2004. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J. Biol. Chem. 279:3769337703.
126. Wykoff, D. D.,, A. H. Rizvi,, J. M. Raser,, B. Margolin, and, E. K. O’Shea. 2007. Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Mol. Cell 27:10051013.
127. Zhou, L., and, G. A. Marzluf. 1999. Functional analysis of the two zinc fingers of SRE, a GATA-type factor that negatively regulates siderophore synthesis in Neurospora crassa. Biochemistry 38:43354341.
128. Zhou, L. W.,, H. Haas, and, G. A. Marzluf. 1998. Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa. Mol. Gen. Genet. 259:532540.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error