1887

Chapter 27 : Plant Cell Wall and Chitin Degradation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Plant Cell Wall and Chitin Degradation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap27-2.gif

Abstract:

A large group of fungi has specialized in the degradation of the complex plant cell walls. The natural resistance of plant cell walls to microbial and enzymatic decomposition is largely responsible for the high cost of lignocellulose conversion. A polymer that is structurally related to the plant cell wall polysaccharide cellulose but does not occur in plants is chitin. Due to practical applications, most strategies to use plant cell walls in biotechnological processes exploit the cellulose and hemicellulose sugars following depolymerization. Most of the plant cell wall polysaccharides occur in the form of lignocelluloses. Xyloglucan is quantitatively the predominant hemicellulosic polysaccharide of dicotyledons and nongraminaceous monocotyledons, comprising up to 20% of the plant cell wall. Degradation and catabolism of the individual carbon sources present in complex mixtures follow a mainly energy-driven hierarchy, but adaptation of saprobic and plant pathogenic fungi to their habitats has resulted in species-specific carbon source priorities. A list of fungal glycoside hydrolases (GH) and carbohydrate esterases (CE) that are involved in the degradation of the side chains of plant cell wall polysaccharides is provided. Fungi depolymerize pectin by using not only hydrolytic enzymes (PGAs) but also enzymes that cleave polysaccharide chains via a β-elimination mechanism, resulting in the formation of a Δ-4,5-unsaturated bond at the newly formed, nonreducing end. Many aspects of chitin degradation resemble that of cellulose and have potential impacts on the development of second-generation (“lignocellulosic”) bioethanol. N-acetylglucosamine, the monomer of chitin, is an excellent carbon source for but only induces N-acetylglucosaminidases.

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27

Key Concept Ranking

Fungal Proteins
0.46293163
Gene Expression and Regulation
0.44807807
Amino Sugars
0.43885803
Chemicals
0.43416
Reverse Transcriptase PCR
0.43341634
0.46293163
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic structure of major hemicelluloses in plant cell walls. Hemicelluloses consist of branched polysaccharides that have a backbone composed of 1,4-linked β-D-pentosyl/ hexosyl residues. The predominant hemicellulose in many primary walls is xyloglucan, while the other hemicelluloses, including glucuronoxylan, arabinoxylan, arabinoglucuronoxylan, and galactoglucomannan, occur in both primary and secondary cell walls.

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cellulose degradation and regulation. Cellulose is extracellularly degraded by the enzymatic attack of three types of enzymes including cellbiohydrolase (CBH), endoglucanase (EG), and β-glucosidase (BGL). Swollenin (SWO) disrupts the crystalline structure of the cellulose and supports the enzymatic cellulose breakdown. Negative-acting (CRE1, HAP complex, and ACE1) and positive-acting (ACE2 and XYR1) regulators control cellulase expression on the level of transcription.

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic structure of different pectins. Rhamnogalacturonan I and homogalacturonan are the two main structures of the plant cell wall pectin. The main chain of rhamnogalacturonan I (shown on top) is decorated with different arabinan, galactan, and arabinogalactan side chains (hairy region), whereas on the main chain of homogalacturonan, only methyl and acetyl esters are found (smooth region).

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Fungal D-xylose and L-arabinose catabolism. The fungal catabolic pathway for D-xylose and L-arabinose is an interconnected pathway that channels both sugars in the pentose phosphate pathway. NADPH-dependent reductions alternate with NAD-dependent oxidations before D-xylulose is finally phosphorylated by xylulokinase to D-xylulose 5-phosphate. In the main enzyme for the first step in both pathways is the D-xylose reductase XYL1.

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Fungal D-galactose catabolism. D-Galactose occurs in nature in the two anomeric forms α- and β-D-galactose. The galactokinase of the classical Leloir pathway (left) is specific for α-D-galactose, and therefore, β-D-galactose has to be epimerized to the α-anomer before it can enter this pathway. A second pathway (right) was found recently in and . It starts with the reduction of both anomeric forms of D-galactose to galactitol. Two hypothetical drafts for the further degradation of galactitol are summarized.

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch27
1. Ademark, P.,, R. P. de Vries,, P. Hagglund,, H. Stalbrand, and, J. Visser. 2001. Cloning and characterization of Aspergillus niger genes encoding an α-galactosidase and a β-mannosidase involved in galactomannan degradation. Eur. J. Biochem. 268:29822990.
2. Aro, N.,, M. Ilmen,, A. Saloheimo, and, M. Penttilä. 2003. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 69:5665.
3. Aro, N.,, T. Pakula, and, M. Penttilä. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29:719739.
4. Aro, N.,, A. Saloheimo,, M. Ilmen, and, M. Penttilä. 2001. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 276:2430924314.
5. Aspinall, G. O. 1980. Chemistry of cell wall polysaccharides, p. 473–500. In J. Preiss (ed.), The Biochemistry of Plants. Academic Press, New York, NY.
6. Beguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44:219248.
7. Benen, J.,, L. Parenicova,, M. K. V. Someren,, H. Kester, and, J. Visser. 1996. Molecular genetic and biochemical aspects of pectin degradation in Aspergillus, p. 331–345. In J. Visser and A. G. J. Voragen (ed.), Progress in Biotechnology. Elsevier Science, Amsterdam, The Netherlands.
8. Berghall, S.,, S. Hilditch,, M. Penttilä, and, P. Richard. 2007. Identification in the mould Hypocrea jecorina of a gene encoding an NADP(+): D-xylose dehydrogenase. FEMS Microbiol. Lett. 277:249253.
9. Bhat, P. J., and, T. V. Murthy. 2001. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol. Microbiol. 40:10591066.
10. Biely, P.,, J. Benen,, K. Heinrichova,, H. C. Kester, and, J. Visser. 1996. Inversion of configuration during hydrolysis of a-1, 4-galacturonidic linkage by three Aspergillus polygalacturonases. FEBS Lett. 382:249255.
11. Boraston, A. B.,, D. N. Bolam,, H. J. Gilbert, and, G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382 (Pt. 3):769781.
12. Brameld, K. A., and, W. A. Goddard III. 1998. The role of enzyme distortion in the single displacement mechanism of family 19 chitinases. Proc. Natl. Acad. Sci. USA 95:42764281.
13. Brameld, K. A.,, W. D. Shrader,, B. Imperiali, and, W. A. Goddard III. 1998. Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J. Mol. Biol. 280:913923.
14. Canessa, P.,, J. M. Alvarez,, R. Polanco,, P. Bull, and, R. Vicuna. 2008. The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium. Microbiology 154(Pt. 2):491499.
15. Carpita, N. C., and, D. M. Gibeaut. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:130.
16. Chen, F., and, R. A. Dixon. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25:759761.
17. Collins, P. J.,, M. M. O’Brien, and, A. D. Dobson. 1999. Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from Trametes versicolor. Appl. Environ. Microbiol. 65:13431347.
18. Darvill, J. E.,, M. McNeil,, A. G. Darvill, and, P. Albersheim. 1980. Structure of plant cell walls. XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol. 66:11351139.
19. de Groot, M. J.,, P. J. van de Vondervoort,, R. P. de Vries,, P. A. vanKuyk,, G. J. Ruijter, and, J. Visser. 2003. Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology 149 (Pt. 5) :11831191.
20. de las Mercedes Dana, M.,, M. C. Limon,, R. Mejias,, R. L. Mach,, T. Benitez,, J. A. Pintor-Toro, and, C. P. Kubicek. 2001. Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr. Genet. 38:335342.
21. de Vries, R. P. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl. Microbiol. Biotechnol. 61:1020.
22. de Vries, R. P.,, M. J. A. Flipphi,, C. F. B. Witteveen, and, J. Visser. 1994. Characterization of an Aspergillus nidulans L-arabitol dehydrogenase mutant. FEMS Microbiol. Lett. 123:8390.
23. de Vries, R. P.,, J. Jansen,, G. Aguilar,, L. Parenicova,, V. Joosten,, F. Wulfert,, J. A. Benen, and, J. Visser. 2002a. Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett. 530:4147.
24. de Vries, R. P.,, L. Parenicova,, S. W. Hinz,, H. C. Kester,, G. Beldman,, J. A. Benen, and, J. Visser. 2002b. The β-1, 4-endogalactanase A gene from Aspergillus niger is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions. Eur. J. Biochem. 26920:49854993.
25. de Vries, R. P., and, J. Visser. 1999. Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appl. Environ. Microbiol. 65:55005503.
26. de Vries, R. P., and, J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65:497522.
27. Doyle, W. A.,, W. Blodig,, N. C. Veitch,, K. Piontek, and, A. T. Smith. 1998. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:1509715105.
28. Ebringerova, A., and, T. Hienze. 2000. Xylan and xylan derivates—biopolymers with valuable properties. 1. Naturally occurring xylans, isolation procedures and properties. Macromol. Rapid. Commun. 21:542556.
29. Eijsink, V. G.,, G. Vaaje-Kolstad,, K. M. Varum, and, S. J. Horn. 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol. 26:228235.
30. Enoki, A.,, H. Tanaka, and, S. Itakura. 2003. Physical and chemical characteristics of glycopeptides from wood decay fungi, p. 140–153. In B. Goodell, D. D. Nicholas, and T. P. Schultz (ed.), Wood Deterioration and Preservation: Advances in Our Changing World. American Chemical Society, Washington, DC.
31. Eriksson, K.-E. L.,, R. A. Blanchette, and, P. Ander. 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, Berlin, Germany.
32. Fekete, E.,, L. Karaffa,, E. Sandor,, I. Banyai,, B. Seiboth,, G. Gyemant,, A. Sepsi,, A. Szentirmai, and, C. P. Kubicek. 2004. The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose. Arch. Microbiol. 181:3544.
33. Fekete, E.,, B. Seiboth,, C. P. Kubicek,, A. Szentirmai, and, L. Karaffa. 2008. Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei): a key to cellulase gene expression on lactose. Proc. Natl. Acad. Sci. USA 105:71417146.
34. Flipphi, M. J.,, J. Sun,, X. Robellet,, L. Karaffa,, E. Fekete,, A. P. Zeng, and, C. P. Kubicek. 2009. Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. Fungal Genet. Biol. 46 (Suppl. 1) :S19S44.
35. Flipphi, M. J.,, J. Visser,, P. van der Veen, and, L. H. de Graaff. 1994. Arabinase gene expression in Aspergillus niger: indications for coordinated regulation. Microbiology 140 (Pt. 10):26732682.
36. Frey, P. A. 1996. The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 10:461470.
37. Gielkens, M.,, L. Gonzalez-Candelas,, P. Sanchez-Torres,, P. van de Vondervoort,, L. de Graaff,, J. Visser, and, D. Ramon. 1999. The abfB gene encoding the major α-L-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 145 (Pt. 3):735741.
38. Gold, M. H.,, H. L. Youngs, and, M. D. Gelpke. 2000. Manganese peroxidase. Met. Ions Biol. Syst. 37:559586.
39. Goodell, B. 2003. Brown-rot fungal degradation of wood: our evolving view, p. 97–118. In B. Goodell, D. D. Nicholas, and T. P. Schultz (ed.), Wood Deterioration and Preservation: Advances in Our Changing World. American Chemical Society, Washington, DC.
40. Gotesson, A.,, J. S. Marshall,, D. A. Jones, and, A. R. Hard-ham. 2002. Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol. Plant-Microbe Interact. 15:907921.
41. Grishutin, S. G.,, A. V. Gusakov,, A. V. Markov,, B. B. Ustinov,, M. V. Semenova, and, A. P. Sinitsyn. 2004. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674:268281.
42. Hall, D. R.,, C. S. Bond,, G. A. Leonard,, C. I. Watt,, A. Berry, and, W. N. Hunter. 2002. Structure of tagatose-1, 6-bisphosphate aldolase. Insight into chiral discrimination, mechanism, and specificity of class II aldolases. J. Biol. Chem. 277:2201822024.
43. Hammel, K. E.,, A. N. Kapich,, K. A. Jensen, and, Z. C. Ryan. 2002. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30:445453.
44. Harhangi, H. R.,, A. S. Akhmanova,, R. Emmens,, C. van der Drift,, W. T. de Laat,, J. P. van Dijken,, M. S. Jetten,, J. T. Pronk, and, H. J. Op den Camp. 2003. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch. Microbiol. 180:134141.
45. Hartl, L.,, C. P. Kubicek, and, B. Seiboth. 2007. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J. Biol. Chem. 282:1865418659.
46. Hasper, A. A.,, E. Dekkers,, M. van Mil,, P. J. van de Vondervoort, and, L. H. de Graaff. 2002. EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl. Environ. Microbiol. 68:15561560.
47. Hasper, A. A.,, L. M. Trindade,, D. van der Veen,, A. J. van Ooyen, and, L. H. de Graaff. 2004. Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology 150 (Pt. 5):13671375.
48. Hasper, A. A.,, J. Visser, and, L. H. de Graaff. 2000. The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. Mol. Microbiol. 36:193200.
49. Henrissat, B., and, A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293 (Pt. 3):781788.
50. Hilditch, S.,, S. Berghall,, N. Kalkkinen,, M. Penttilä, and, P. Richard. 2007. The missing link in the fungal D-galacturonate pathway: identification of the L-threo-3-deoxy-hexulosonate aldolase. J. Biol. Chem. 282:2619526201.
51. Himmel, M. E.,, S. Y. Ding,, D. K. Johnson,, W. S. Adney,, M. R. Nimlos,, J. W. Brady, and, T. D. Foust. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804807.
52. Holden, H. M.,, I. Rayment, and, J. B. Thoden. 2003. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 278:4388543888.
53. Horn, S. J.,, P. Sikorski,, J. B. Cederkvist,, G. Vaaje-Kolstad,, M. Sorlie,, B. Synstad,, G. Vriend,, K. M. Varum, and, V. G. Eijsink. 2006a. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc. Natl. Acad. Sci. USA 103:1808918094.
54. Horn, S. J.,, A. Sorbotten,, B. Synstad,, P. Sikorski,, M. Sorlie,, K. M. Varum, and, V. G. Eijsink. 2006b. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 273:491503.
55. Ilmen, M.,, A. Saloheimo,, M. L. Onnela, and, M. E. Penttilä. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63:12981306.
56. Ilmen, M.,, C. Thrane, and, M. Penttilä. 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet. 251:451460.
57. Izydorczyk, M. S., and, C. D. Biliaderis. 1995. Cereal arabinoxylans: advances in structure and physiochemical properties. Carbohydr. Polym. 28:3348.
58. Jenkins, J., and, R. Pickersgill. 2001. The architecture of parallel beta-helices and related folds. Prog. Biophys. Mol. Biol. 77:111175.
59. Jurnak, F.,, N. Kita,, M. Garret,, S. E. Heffron,, R. Scavetta,, C. Boyd, and, N. T. Keen. 1996. Functional implications of the three-dimensional structure of pectate lyases, p. 295–308. In J. Visser and A. G. Voragen (ed.), Pectin and Pectinases. Elsevier Science, Amsterdam, The Netherlands.
60. Karlsson, M., and, J. Stenlid. 2008. Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol. Bioinform. 4:4760.
61. Kersten, P., and, D. Cullen. 2007. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. 44:7787.
62. Kubicek, C. P.,, R. Messner,, F. Gruber,, M. Mandels, and, E. M. Kubicek-Pranz. 1993. Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited β-diglucoside permease. J. Biol. Chem. 268:1936419368.
63. Kubicek, C. P., and, M. E. Penttilä. 1998. Regulation of production of plant polysaccharide degrading enzymes by Trichoderma, p. 49–72. In G. E. Harman and C. P. Kubicek (ed.), Trichoderma and Gliocladium. Taylor and Francis Ltd., London, United Kingdom.
64. Kumar, M. J.,, M. S. Jamaluddin,, K. Natarajan,, D. Kaur, and, A. Datta. 2000. The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N- acetylglucosamine-inducible factors interact at the promoter of NAG1. Proc. Natl. Acad. Sci. USA 97:1421814223.
65. Kuorelahti, S.,, P. Jouhten,, H. Maaheimo,, M. Penttilä, and, P. Richard. 2006. L-galactonate dehydratase is part of the fungal path for D-galacturonic acid catabolism. Mol. Micro-biol. 61:10601068.
66. Kuorelahti, S.,, N. Kalkkinen,, M. Penttilä,, J. Londesborough, and, P. Richard. 2005. Identification in the mold Hypocrea jecorina of the first fungal D-galacturonic acid reductase. Biochemistry 44:1123411240.
67. Liepins, J.,, S. Kuorelahti,, M. Penttilä, and, P. Richard. 2006. Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina. FEBS J. 273:42294235.
68. MacCabe, A. P.,, M. Orejas,, J. A. Perez-Gonzalez, and, D. Ramon. 1998. Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. J. Bacteriol. 180:13311333.
69. Mach, R. L.,, C. K. Peterbauer,, K. Payer,, S. Jaksits,, S. L. Woo,, S. Zeilinger,, C. M. Kullnig,, M. Lorito, and, C. P. Kubicek. 1999. Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl. Environ. Microbiol. 65:18581863.
70. MacPherson, S.,, M. Larochelle, and, B. Turcotte. 2006. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol. Mol. Biol. Rev. 70:583604.
71. Margolles-Clark, E.,, M. Tenkanen,, E. Luonteri, and, M. Penttila. 1996. Three α-galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur. J. Biochem. 240:104111.
72. Markovic, O., and, S. Janecek. 2001. Pectin degrading glyco-side hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng. 14:615631.
73. Martinez, A. T. 2002. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30:425444.
74. Martinez, A. T.,, M. Speranza,, F. J. Ruiz-Duenas,, P. Ferreira,, S. Camarero,, F. Guillen,, M. J. Martinez,, A. Gutierrez, and, J. C. del Rio. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8:195204.
75. McDonough, M. A.,, R. Kadirvelraj,, P. Harris,, J. C. Poulsen, and, S. Larsen. 2004. Rhamnogalacturonan lyase reveals a unique three-domain modular structure for polysaccharide lyase family 4. FEBS. Lett. 565:188194.
76. McQueen-Mason, S., and, D. J. Cosgrove. 1995. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107:87100.
77. McQueen-Mason, S.,, D. M. Durachko, and, D. J. Cosgrove. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:14251433.
78. Nobelmann, B., and, J. W. Lengeler. 1995. Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim. Biophys. Acta 1262:6972.
79. O’Neil, M. A., and, W. S. York. 2003. The composition and structure of plant primary walls, p. 1–54. In J. K. C. Rose (ed.), The Plant Cell Wall. Blackwell, Oxford, England.
80. Pail, M.,, T. Peterbauer,, B. Seiboth,, C. Hametner,, I. Druzhinina, and, C. P. Kubicek. 2004. The metabolic role and evolution of L-arabinitol 4-dehydrogenase of Hypocrea jecorina. Eur. J. Biochem. 271:18641872.
81. Parenicova, L.,, H. C. Kester,, J. A. Benen, and, J. Visser. 2000. Characterization of a novel endopolygalacturonase from Aspergillus niger with unique kinetic properties. FEBS Lett. 467:333336.
82. Pauly, M.,, P. Albersheim,, A. Darvill, and, W. S. York. 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20:629639.
83. Pérez, S.,, K. Mazeau, and, C. H. du Penhoat. 2000. The three-dimensional structures of the pectic polysaccharides. Plant Physiol. Biochem. 38:3755.
84. Piontek, K.,, T. Glumoff, and, K. Winterhalter. 1993. Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Lett. 315:119124.
85. Piontek, K.,, A. T. Smith, and, W. Blodig. 2001. Lignin peroxidase structure and function. Biochem. Soc. Trans. 29 (Pt. 2):111116.
86. Platt, A.,, H. C. Ross,, S. Hankin, and, R. J. Reece. 2000. The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc. Natl. Acad. Sci. USA 97:31543159.
87. Polizeli, M. L.,, A. C. Rizzatti,, R. Monti,, H. F. Terenzi,, J. A. Jorge, and, D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67:577591.
88. Poulos, T. L.,, S. L. Edwards,, H. Wariishi, and, M. H. Gold. 1993. Crystallographic refinement of lignin peroxidase at 2 Å. J. Biol. Chem. 268:44294440.
89. Reizer, J.,, T. M. Ramseier,, A. Reizer,, A. Charbit, and, M. H. Saier, Jr. 1996. Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142 (Pt. 2):231250.
90. Ridley, B. L.,, M. A. O’Neil, and, D. Mohnen. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929967.
91. Roberts, C. F. 1963. The genetic analysis of carbohydrate utilization in Aspergillus nidulans. Gen. Microbiol. 31:4558.
92. Roberts, C. F. 1970. Enzyme lesions in galactose non-utilizing mutants of Aspergillus nidulans. Biochim. Biophys. Acta 201:267283.
93. Rollins, J. A. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant-Microbe Interact. 16:785795.
94. Rouvinen, J.,, T. Bergfors,, T. Teeri,, J. K. Knowles, and, T. A. Jones. 1990. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380386.
95. Saloheimo, A.,, N. Aro,, M. Ilmen, and, M. Penttilä. 2000. Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J. Biol. Chem. 275:58175825.
96. Saloheimo, M.,, M. Paloheimo,, S. Hakola,, J. Pere,, B. Swanson,, E. Nyyssonen,, A. Bhatia,, M. Ward, and, M. Penttila. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269:42024211.
97. Scheel, T.,, M. Hofer,, S. Ludwig, and, U. Holker. 2000. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. Appl. Microbiol. Biotechnol. 54:686691.
98. Schmoll, M., and, C. P. Kubicek. 2003. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol. Immunol. Hung. 50:125145.
99. Seiboth, B.,, C. Gamauf,, M. Pail,, L. Hartl, and, C. P. Kubicek. 2007. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol. Microbiol. 66:890900.
100. Seiboth, B.,, L. Hartl,, M. Pail,, E. Fekete,, L. Karaffa, and, C. P. Kubicek. 2004. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol. Microbiol. 51:10151025.
101. Seiboth, B.,, G. Hofmann, and, C. P. Kubicek. 2002a. Lactose metabolism and cellulase production in Hypocrea jecorina: the gal7 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction. Mol. Genet. Genomics 267:124132.
102. Seiboth, B.,, L. Karaffa,, E. Sandor, and, C. Kubicek. 2002b. The Hypocrea jecorina gal10 (uridine 5'-diphosphate-glucose 4-epimerase-encoding) gene differs from yeast homologues in structure, genomic organization and expression. Gene 295:143149.
103. Seidl, V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol. Rev. 22:3642.
104. Seidl, V.,, B. Huemer,, B. Seiboth, and, C. P. Kubicek. 2005. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J. 272:59235939.
105. Shoseyov, O.,, Z. Shain, and, I. Levy. 2006. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70:283295.
106. Smith, M.,, A. Shnyreva,, D. A. Wood, and, C. F. Thurston. 1998. Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144 (Pt. 4) :10631069.
107. Stephen, A. M. 1982. Other plant polysaccharides, p. 97–123. In G. O. Aspinall (ed.), The Polysaccharides. Academic Press, New York, NY.
108. Stricker, A. R.,, K. Grosstessner-Hain,, E. Wurleitner, and, R. L. Mach. 2006. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell 5:21282137.
109. Stricker, A. R.,, R. L. Mach, and, L. H. de Graaff. 2008. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78:211220.
110. Sundaramoorthy, M.,, K. Kishi,, M. H. Gold, and, T. L. Poulos. 1994. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J. Biol. Chem. 269:3275932767.
111. Sundaramoorthy, M.,, K. Kishi,, M. H. Gold, and, T. L. Poulos. 1997. Crystal structures of substrate binding site mutants of manganese peroxidase. J. Biol. Chem. 272:1757417580.
112. Teeri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15:160167.
113. ten Have, R., and, P. J. Teunissen. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101:33973413.
114. Tharanathan, R. N., and, F. S. Kittur. 2003. Chitin—the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43:6187.
115. Vanden Wymelenberg, A.,, G. Sabat,, M. Mozuch,, P. J. Kersten,, D. Cullen, and, R. A. Blanchette. 2006. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 72:48714877.
116. Vidal, S.,, T. Doco,, P. Williams,, P. Pellerin,, W. S. York,, M. A. O’Neill,, J. Glushka,, A. G. Darvill, and, P. Albersheim. 2000. Structural characterization of the pectic polysaccha-ride rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain. Carbohydr. Res. 326:277294.
117. Wong, K. K.,, L. U. Tan, and, J. N. Saddler. 1988. Multiplicity of b-1, 4-xylanases in microorganisms: functions and applications. Microbiol. Rev. 52:305317.
118. Yamazaki, H.,, A. Tanaka,, J. Kaneko,, A. Ohta, and, H. Horiuchi. 2008. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet. Biol. 45:963972.
119. Yaver, D. S.,, F. Xu,, E. J. Golightly,, K. M. Brown,, S. H. Brown,, M. W. Rey,, P. Schneider,, T. Halkier,, K. Mondorf, and, H. Dalboge. 1996. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl. Environ. Microbiol. 62:834841.
120. Zamocky, M.,, R. Ludwig,, C. Peterbauer,, B. M. Hallberg,, C. Divne,, P. Nicholls, and, D. Haltrich. 2006. Cellobiose dehydrogenase—a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr. Protein Pept. Sci. 7:255280.
121. Zeilinger, S.,, A. Ebner,, T. Marosits,, R. Mach, and, C. P. Kubicek. 2001. The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol. Genet. Genomics 266:5663.
122. Zhao, J., and, B. Janse. 1996. Comparison of H2O2 producing enzymes in selective white rot fungi. FEMS Microbiol. Lett. 139:215221.

Tables

Generic image for table
TABLE 1

Fungal glycoside hydrolases (GH) and carbohydrate esterases (CE) involved in the degradation of the side chains of plant cell wall polysaccharides

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27
Generic image for table
TABLE 2

Properties of fungal chitinases from phylogenetic subgroups A, B, and C

Citation: Kubicek C, Seidl V, Seiboth B. 2010. Plant Cell Wall and Chitin Degradation, p 396-413. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error