Chapter 28 : Light Sensing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Light Sensing, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap28-2.gif


This chapter summarizes the current knowledge of the mechanism of light sensing in fungi, including a description of fungal photoreceptors and their mechanism of action, and describes the fungal responses that are mediated by these photoreceptors. Blue-light responses in include the induction of sporulation, sexual development, synthesis of mycelial carotenoids, and the regulation of the circadian clock; all of these responses require the products of the -1 and -2 genes. WC- 1 and WC-2 interact through their PAS domains to form a WC complex that binds the promoter of light-inducible genes. In order to understand the molecular mechanism of light-dependent gene regulation, most research has focused on the behavior and activity of the WC complex during and after exposure to light. Light transduction seems to be reduced to a minimum in and other fungi using WC-type photoreceptors. The regulation by light of fungal development (photomorphogenesis) can be measured precisely, allowing the determination of useful parameters, such as thresholds. The carotenoid pathways in filamentous fungi coincide in the first steps, namely, the formation of the colorless phytoene from the condensation of two geranylgeranyl pyrophosphate (GGPP) molecules, a reaction catalyzed by phytoene synthase. Fungal photobiology provides a unique opportunity to investigate the effect of light on a wide group of microbial eukaryotes without the complexities related to photosynthesis and other energy-oriented light perception mechanisms.

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28

Key Concept Ranking

Gene Expression and Regulation
Nitric Oxide Synthase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Photoreceptor proteins in . Shown are the LOV-domain photoreceptors WC-1 and VIVID (VVD) together with WC-2, the protein that interacts with WC-1 to form the photoresponsive WC complex. Other photoreceptors identified in the genome are a rhodopsin (NOP-1), a cryptochrome (CRY), and two phytochromes (PHY-1 and PHY-2). LOV-domain photoreceptors contain the flavin chromophore-binding domain (LOV) and may also contain the protein-interaction domains (PAS), and the Zn finger domain. Rhodopsins contain the retinal-binding domain. Cryptochromes contain the FAD chromophore-binding domain and the domain for binding the antenna cofactor. Phytochromes contain an amino-terminal sensory domain and a carboxy-terminal output domain. The sensory domain involved in binding the bilin chromophore is composed of three domains (PAS, GAF, and PHY). The output domain is composed of the histidine kinase domain (HK), the ATPase domain, and the response regulator domain (REC), which is likely involved in relaying the light signal to other proteins. The identity and the position of the domains were predicted using the SMART database (http://smart.embl-heidelberg.de/) ( ) and the Conserved Domain Database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) ( ).

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

A simplified model for the photoactivation of gene expression by the WC complex. The model shows the WC complex with proteins WC-1 and WC-2, and the promoter and ORF of a light-responsive gene. The proteins that interact with the WC complex in the dark (FRQ, RNA helicase FRH, and PKC) are not shown for simplicity. Light reception at the FAD chromophore of WC-1 triggers the formation of a flavin-cysteinyl adduct causing a conformational change that leads to WC complex aggregation and promoter binding, chromatin remodeling (not shown), and the activation of gene transcription. Gene photoactivation is transient. After further light exposure, WC-1 is phosphorylated (black dots) leading to exclusion of the WC complex from the promoter and termination of gene transcription. The protein VIVID (VVD) is required for the transient gene photoactivation, but the mechanism is not known. The excluded WC complex is dephosphorylated and partially degraded, probably through interaction with PKC. The stability, activity, and nuclear localization of the WC complex are controlled by PKA, but the details of this regulation are not known. After a certain period in the dark the WC complex, probably with the addition of newly synthesized WC-1 and WC-2, is ready for gene photoactivation again. Kinases and phosphatases responsible for the light-dependent phosphorylation of WC-1 have not been identified and are not shown.

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Photomorphogenesis in : light inhibition of microphore initiation and development in . Microphores are short sporangiophores, 1 to 2 mm in length, containing a dark ball on top (sporangia) with matured spores. The fungus was grown under continuous light or in the dark. Microphores appeared only in the mycelial surface of cultures kept in the dark. Photographs by L. M. Corrochano.

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Inhibition of microphorogenesis, stimulation of macrophorogenesis, and stimulation of β-carotene accumulation by blue-light pulses. Standard dark cultures, 2 days old, received pulses of blue light of the fluence given in the abscissa. The number of microphores (m) and the dry weight of macrophores (M) were determined 2 days later and given relative to the values found in dark cultures. β-Carotene content was estimated from the absorbance at 452 nm in mycelial samples 12 h after the end of blue-light illumination. The continuous lines represent computer-fitted algebraic expressions ( ).

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Carotenoid biosynthetic pathways in , and . The reactions and genes encoding the responsible enzymes for each species are indicated following the code shown in the box. In contrast to other carotenogenic species, phytoene synthesis from GGPP and cyclization reactions are achieved in fungi by a bifunctional protein, encoded here by the gene , or . All the genes displayed are regulated by light except has not been investigated. Trisporic acids are apocarotenoid-derived sexual hormones synthesized from β-carotene in zygomycetes.

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, T. H.,, J. K. Wieser, and, J. H. Yu. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:3554.
2. Almeida, E. R., and, E. Cerdá-Olmedo. 2008. Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr. Genet. 53:129137.
3. Ambra, R.,, B. Grimaldi,, S. Zamboni,, P. Filetici,, G. Macino, and, P. Ballario. 2004. Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa. Fungal Genet. Biol. 41:688697.
4. Arpaia, G.,, J. J. Loros,, J. C. Dunlap,, G. Morelli, and, G. Macino. 1995. Light induction of the clock-controlled gene ccg-1 is not transduced through the circadian clock in Neurospora crassa. Mol. Gen. Genet. 247:157163.
5. Arpaia, G.,, F. Cerri,, S. Baima, and, G. Macino. 1999. Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol. Gen. Genet. 262:314322.
6. Arrach, N.,, R. Fernandez-Martin,, E. Cerda-Olmedo, and, J. Avalos. 2001. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc. Natl. Acad. Sci. USA 98:16871692.
7. Avalos, J., and, E. L. Schrott. 1990. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol. Lett. 66:295298.
8. Avalos, J., and, E. Cerdá-Olmedo. 2004. Fungal carotenoid production, p. 367–378. In D. K. Arora (ed.), Handbook of Fungal Biotechnology, 2nd. ed. Marcel Dekker, Inc., New York, NY.
9. Bahn, Y. S.,, C. Xue,, A. Idnurm,, J. C. Rutherford,, J. Heitman, and, M. E. Cardenas. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5:5769.
10. Baima, S.,, G. Macino, and, G. Morelli. 1991. Photoregulation of the albino-3 gene in Neurospora crassa. J. Photochem. Photobiol. B 11:107115.
11. Baima, S.,, A. Carattoli,, G. Macino, and, G. Morelli. 1992. Photoinduction of albino-3 gene expression in Neurospora crassa conidia. J. Photochem. Photobiol. B 15:233238.
12. Ballario, P.,, P. Vittorioso,, A. Magrelli,, C. Talora,, A. Cabibbo, and, G. Macino. 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15:16501657.
13. Ballario, P.,, C. Talora,, D. Galli,, H. Linden, and, G. Macino. 1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol. Microbiol. 29:719729.
14. Bayram, O.,, C. Biesemann,, S. Krappmann,, P. Galland, and, G. H. Braus. 2008a. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol. Biol. Cell 19:32543262.
15. Bayram, O.,, S. Krappmann,, M. Ni,, J. W. Bok,, K. Helmstaedt,, O. Valerius,, S. Braus-Stromeyer,, N. J. Kwon,, N. P. Keller,, J. H. Yu, and, G. H. Braus. 2008b. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:15041506.
16. Bayram, O.,, S. Krappmann,, S. Seiler,, N. Vogt, and, G. H. Braus. 2008c. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet. Biol. 45:127138.
17. Bayram, O.,, F. Sari,, G. H. Braus, and, S. Irniger. 2009. The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production in Aspergillus nidulans. Mol. Microbiol. 71:12781295.
18. Bejarano, E. R.,, J. Avalos,, E. D. Lipson, and, E. CerdáOlmedo. 1990. Photoinduced accumulation of carotene in Phycomyces. Planta 183:19.
19. Belden, W. J.,, J. J. Loros, and, J. C. Dunlap. 2007. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25:587600.
20. Bell-Pedersen, D.,, J. C. Dunlap, and, J. J. Loros. 1996. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol. Cell. Biol. 16:513521.
21. Bergman, K.,, P. V. Burke,, E. Cerdá-Olmedo,, C. N. David,, M. Delbrück,, K. W. Foster,, E. W. Goodell,, M. Heisenberg,, G. Meissner,, M. Zalokar,, D. S. Dennison, and, W. Shropshire, Jr. 1969. Phycomyces. Bacteriol. Rev. 33:99157.
22. Bergman, K.,, A. P. Eslava, and, E. Cerdá-Olmedo. 1973. Mutants of Phycomyces with abnormal phototropism. Mol. Gen. Genet. 123:116.
23. Bergo, V.,, E. N. Spudich,, J. L. Spudich, and, K. J. Rothschild. 2002. A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins. Photochem. Photobiol. 76:341349.
24. Berrocal-Tito, G.,, L. Sametz-Baron,, K. Eichenberg,, B. A. Horwitz, and, A. Herrera-Estrella. 1999. Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J. Biol. Chem. 274:1428814294.
25. Berrocal-Tito, G. M.,, T. Rosales-Saavedra,, A. Herrera-Estrella, and, B. A. Horwitz. 2000. Characterization of blue-light and developmental regulation of the photolyase gene phr1 in Trichoderma harzianum. Photochem. Photobiol. 71:662668.
26. Berrocal-Tito, G. M.,, E. U. Esquivel-Naranjo,, B. A. Horwitz, and, A. Herrera-Estrella. 2007. Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Eukaryot. Cell 6:16821692.
27. Bieszke, J. A.,, E. L. Braun,, L. E. Bean,, S. Kang,, D. O. Natvig, and, K. A. Borkovich. 1999a. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc. Natl. Acad. Sci. USA 96:80348039.
28. Bieszke, J. A.,, E. N. Spudich,, K. L. Scott,, K. A. Borkovich, and, J. L. Spudich. 1999b. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:1413814145.
29. Bieszke, J. A.,, L. Li, and, K. A. Borkovich. 2007. The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa. Curr. Genet. 52:149157.
30. Blasco, J. L.,, D. Roessink,, E. A. Iturriaga,, A. P. Eslava, and, P. Galland. 2001. Photocarotenogenesis in Phycomyces: expression of the carB gene encoding phytoene dehydrogenase. J. Plant Res. 114:2531.
31. Blumenstein, A.,, K. Vienken,, R. Tasler,, J. Purschwitz,, D. Veith,, N. Frankenberg-Dinkel, and, R. Fischer. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:18331838.
32. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
33. Brandt, S.,, D. von Stetten,, M. Günther,, P. Hildebrandt, and, N. Frankenberg-Dinkel. 2008. The fungal phytochrome FphA from Aspergillus nidulans. J. Biol. Chem. 283:3460534614.
34. Briggs, W. R., and, J. L. Spudich (ed.). 2005. Handbook of Photosensory Receptors. Wiley-VCH, Weinheim, Germany.
35. Brown, L. S.,, A. K. Dioumaev,, J. K. Lanyi,, E. N. Spudich, and, J. L. Spudich. 2001. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J. Biol. Chem. 276:3249532505.
36. Brown, L. S. 2004. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 3:555565.
37. Brown, L. S., and, K. H. Jung. 2006. Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem. Photobiol. Sci. 5:538546.
38. Brudler, R.,, K. Hitomi,, H. Daiyasu,, H. Toh,, K. Kucho,, M. Ishiura,, M. Kanehisa,, V. A. Roberts,, T. Todo,, J. A. Tainer, and, E. D. Getzoff. 2003. Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11:5967.
39. Brunner, M., and, T. Schafmeier. 2006. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev. 20:10611074.
40. Brunner, M., and, K. Káldi. 2008. Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol. Microbiol. 68:255262.
41. Busch, S.,, S. E. Eckert,, S. Krappmann, and, G. H. Braus. 2003. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 49:717730.
42. Calvo, A. M. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45:10531061.
43. Campuzano, V.,, P. Galland,, H. Senger,, M. I. Alvarez, and, A. P. Eslava. 1994. Isolation and characterization of phototropism mutants of Phycomyces insensitive to ultraviolet light. Curr. Genet. 26:4953.
44. Campuzano, V.,, P. Galland,, A. P. Eslava, and, M. I. Alvarez. 1995. Genetic characterization of two phototropism mutants of Phycomyces with defects in the genes madI and madJ. Curr. Genet. 27:524527.
45. Campuzano, V.,, P. Galland,, M. I. Alvarez, and, A. P. Eslava. 1996. Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Photochem. Photobiol. 63:686694.
46. Carattoli, A.,, E. Kato,, M. Rodriguez-Franco,, W. D. Stuart, and, G. Macino. 1995. A chimeric light-regulated amino acid transport system allows the isolation of blue light regulator (blr) mutants of Neurospora crassa. Proc. Natl. Acad. Sci. USA 92:66126616.
47. Casas-Flores, S.,, M. Ríos-Momberg,, M. Bibbins,, P. Ponce-Noyola, and, A. Herrera-Estrella. 2004. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:35613569.
48. Casas-Flores, S.,, M. Ríos-Momberg,, T. Rosales-Saavedra,, P. Martínez-Hernandez,, V. Olmedo-Monfil, and, A. Herrera-Estrella. 2006. Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot. Cell 5:499506.
49. Cerdá-Olmedo, E., and, E. D. Lipson (ed.). 1987. Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
50. Cerdá-Olmedo, E. 2001. Phycomyces and the biology of light and color. FEMS Microbiol. Rev. 25:503512.
51. Cha, J.,, S. S. Chang,, G. Huang,, P. Cheng, and, Y. Liu. 2008. Control of WHITE COLLAR localization by phosphorylation is a critical step in the circadian negative feedback process. EMBO J. 27:32463255.
52. Chen, C., and, M. B. Dickman. 2002. Colletotrichum trifolii TB3 kinase, a COT1 homolog, is light inducible and becomes localized in the nucleus during hyphal elongation. Eukaryot. Cell 1:626633.
53. Chen, C. H.,, C. S. Ringelberg,, R. H. Gross,, J. C. Dunlap, and, J. J. Loros. 2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 28:10291042.
54. Cheng, P.,, Y. Yang,, C. Heintzen, and, Y. Liu. 2001a. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20:101108.
55. Cheng, P.,, Y. Yang, and, Y. Liu. 2001b. Interlocked feedback loops contribute to the robustness of the Neurospora circa-dian clock. Proc. Natl. Acad. Sci. USA 98:74087413.
56. Cheng, P.,, Y. Yang,, K. H. Gardner, and, Y. Liu. 2002. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol. Cell. Biol. 22:517524.
57. Cheng, P.,, Q. He,, Y. Yang,, L. Wang, and, Y. Liu. 2003a. Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA 100:59385943.
58. Cheng, P.,, Y. Yang,, L. Wang,, Q. He, and, Y. Liu. 2003b. WHITE COLLAR-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J. Biol. Chem. 278:38013808.
59. Cheng, P.,, Q. He,, Q. He,, L. Wang, and, Y. Liu. 2005. Regulation of the Neurospora circadian clock by an RNA heli-case. Genes Dev. 19:234241.
60. Christie, J. M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58:2145.
61. Collett, M. A.,, N. Garceau,, J. C. Dunlap, and, J. J. Loros. 2002. Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2. Genetics 160:149158.
62. Corrochano, L., and, E. Cerdá-Olmedo. 1991. Photomorpho-genesis in Phycomyces and in other fungi. Photochem. Photo-biol. 54:319327.
63. Corrochano, L. M., and, E. Cerdá-Olmedo. 1988. Photomorphogenesis in Phycomyces: dependence on environmental conditions. Planta 174:309314.
64. Corrochano, L. M.,, P. Galland,, E. D. Lipson, and, E. CerdáOlmedo. 1988. Photomorphogenesis in Phycomyces: fluence-response curves and action spectra. Planta 174:315320.
65. Corrochano, L. M., and, E. Cerdá-Olmedo. 1990a. Photomorphogenesis in Phycomyces: competence period and stimulus-response relationships. J. Photochem. Photobiol. B 5:255266.
66. Corrochano, L. M., and, E. Cerdá-Olmedo. 1990b. Photomorphogenesis in behavioural and colour mutants of Phycomyces. J. Photochem. Photobiol. B 6:325335.
67. Corrochano, L. M., and, E. Cerdá-Olmedo. 1992. Sex, light and carotenes: the development of Phycomyces. Trends Genet. 8:268274.
68. Corrochano, L. M.,, F. R. Lauter,, D. J. Ebbole, and, C. Yanofsky. 1995. Light and developmental regulation of the gene con-10 of Neurospora crassa. Dev. Biol. 167:190200.
69. Corrochano, L. M. 2002. Photomorphogenesis in Phycomyces: differential display of gene expression by PCR with arbitrary primers. Mol. Genet. Genomics 267:424428.
70. Corrochano, L. M., and, P. Galland. 2006. Photomorphogenesis and gravitropism in fungi, p. 233–259. In U. Kües and R. Fischer (ed.), The Mycota I. Growth, Differentiation and Sexuality, 2nd ed., vol. I. Springer-Verlag, Berlin, Germany.
71. Corrochano, L. M. 2007. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem. Photobiol. Sci. 6:725736.
72. Crosthwaite, S. K.,, J. J. Loros, and, J. C. Dunlap. 1995. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81:10031012.
73. Daiyasu, H.,, T. Ishikawa,, K. Kuma,, S. Iwai,, T. Todo, and, H. Toh. 2004. Identification of cryptochrome DASH from vertebrates. Genes Cells 9:479495.
74. De Fabo, E. C.,, R. W. Harding, and, W. Shropshire. 1976. Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol. 57:440445.
75. Degli-Innocenti, F.,, U. Pohl, and, V. E. A. Russo. 1983. Photoinduction of protoperithecia in Neurospora crassa by blue light. Photochem. Photobiol. 37:4951.
76. Denault, D. L.,, J. J. Loros, and, J. C. Dunlap. 2001. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 20:109117.
77. Dunlap, J. C., and, J. J. Loros. 2004. The Neurospora circadian system. J. Biol. Rhythms 19:414424.
78. Dunlap, J. C., and, J. J. Loros. 2005. Neurospora photoreceptors, p. 371–389. In W. R. Briggs and J. L. Spudich (ed.), Handbook of Photosensory Receptors. Wiley-VCH, Weinheim, Germany.
79. Dunlap, J. C. 2006. Proteins in the Neurospora circadian clockworks. J. Biol. Chem. 281:2848928493.
80. Estrada, A. F., and, J. Avalos. 2008. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photo-carotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet. Biol. 45:705718.
81. Estrada, A. F.,, L. Youssar,, D. Scherzinger,, S. Al-Babili, and, J. Avalos. 2008. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol. Microbiol. 69:12071220.
82. Estrada, A. F., and, J. Avalos. 2009. Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J. Mol. Biol. 387:5973.
83. Fernández-Martín, R.,, E. Cerdá-Olmedo, and, J. Avalos. 2000. Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol. Gen. Genet. 263:838845.
84. Fischer, R., and, U. Kües. 2006. Asexual sporulation in mycelial fungi, p. 263–292. In U. Kües and R. Fischer (ed.), The Mycota I. Growth, Differentiation and Sexuality, 2nd ed., vol. I. Springer-Verlag, Berlin, Germany.
85. Flores, R., E. Cerdá-Olmedo, and, L. M. Corrochano. 1998. Separate sensory pathways for photomorphogenesis in Phycomyces. Photochem. Photobiol. 67:467472.
86. Franchi, L.,, V. Fulci, and, G. Macino. 2005. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol. Microbiol. 56:334345.
87. Friedl, M. A.,, M. Schmoll,, C. P. Kubicek, and, I. S. Druzhinina. 2008. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154:12291241.
88. Froehlich, A. C.,, Y. Liu,, J. J. Loros, and, J. C. Dunlap. 2002. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815819.
89. Froehlich, A. C.,, J. J. Loros, and, J. C. Dunlap. 2003. Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proc. Natl. Acad. Sci. USA 100:59145919.
90. Froehlich, A. C.,, B. Noh,, R. D. Vierstra,, J. Loros, and, J. C. Dunlap. 2005. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot. Cell 4:21402152.
91. Fukshansky, L. 1993. Intracellular processing of a spatially non-uniform stimulus: case-study of phototropism in Phycomyces. J. Photochem. Photobiol. B 19:161186.
92. Furutani, Y.,, A. G. Bezerra, Jr.,, S. Waschuk,, M. Sumii,, L. S. Brown, and, H. Kandori. 2004. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Biochemistry 43:96369646.
93. Furutani, Y.,, M. Sumii,, Y. Fan,, L. Shi,, S. A. Waschuk,, L. S. Brown, and, H. Kandori. 2006. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump. Biochemistry 45:1534915358.
94. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. P. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
95. Galland, P. 1983. Action spectra of photogeotropic equilibrium in Phycomyces wild type and three behavioral mutants. Photochem. Photobiol. 37:221228.
96. Galland, P., and, E. D. Lipson. 1985. Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH. Photochem. Photobiol. 41:331335.
97. Galland, P., and, E. D. Lipson. 1987. Blue-light reception in Phycomyces phototropism: evidence for two photosystems operating in low- and high-intensity ranges. Proc. Natl. Acad. Sci. USA 84:104108.
98. Galland, P. 1990. Phototropism of the Phycomyces sporangiophore: a comparison with higher plants. Photochem. Photo-biol. 52:233248.
99. Galland, P. 1991. Photosensory adaptation in aneural organisms. Photochem. Photobiol. 54:11191134.
100. Galland, P. 2001. Phototropism in Phycomyces, p. 621–657. In M. L. D. P. Häder (ed.), Photomovement, vol. 1. Elsevier, Amsterdam, The Netherlands.
101. Gorovits, R.,, O. Propheta,, M. Kolot,, V. Dombradi, and, O. Yarden. 1999. A mutation within the catalytic domain of COT1 kinase confers changes in the presence of two COT1 isoforms and in Ser/Thr protein kinase and phosphatase activities in Neurospora crassa. Fungal Genet. Biol. 27:264274.
102. Grimaldi, B.,, P. Coiro,, P. Filetici,, E. Berge,, J. R. Dobosy,, M. Freitag,, E. U. Selker, and, P. Ballario. 2006. The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol. Biol. Cell 17:45764583.
103. Harding, R. W. 1974. The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa. Plant Physiol. 54:142147.
104. Harding, R. W., and, R. V. Turner. 1981. Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol. 68:745749.
105. Harding, R. W., and, S. Melles. 1983. Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol. 72:9961000.
106. He, Q.,, P. Cheng,, Y. Yang,, L. Wang,, K. H. Gardner, and, Y. Liu. 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840843.
107. He, Q., and, Y. Liu. 2005. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev. 19:28882899.
108. He, Q.,, H. Shu,, P. Cheng,, S. Chen,, L. Wang, and, Y. Liu. 2005. Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop. J. Biol. Chem. 280:1752617532.
109. He, Q.,, J. Cha,, Q. He,, H. C. Lee,, Y. Yang, and, Y. Liu. 2006. CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev. 20:25522565.
110. Heintzen, C.,, J. J. Loros, and, J. C. Dunlap. 2001. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453464.
111. Hellingwerf, K. J. 2002. The molecular basis of sensing and responding to light in microorganisms. Antonie van Leeuwenhoek 81:5159.
112. Herrera-Estrella, A., and, B. A. Horwitz. 2007. Looking through the eyes of fungi: molecular genetics of photoreception. Mol. Microbiol. 64:515.
113. Homann, V.,, K. Mende,, C. Arntz,, V. Ilardi,, G. Macino,, G. Morelli,, G. Bose, and, B. Tudzynski. 1996. The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr. Genet. 30:232239.
114. Horwitz, B. A.,, A. Perlman, and, J. Gressel. 1990. Induction of Trichoderma sporulation by nanosecond laser pulses: evidence against cryptochrome cycling. Photochem. Photobiol. 51:99104.
115. Huang, G.,, S. Chen,, S. Li,, J. Cha,, C. Long,, L. Li,, Q. He, and, Y. Liu. 2007. Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. Genes Dev. 21:32833295.
116. Idnurm, A., and, B. J. Howlett. 2001. Characterization of an opsin gene from the ascomycete Leptosphaeria maculans. Genome 44:167171.
117. Idnurm, A., and, J. Heitman. 2005a. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3:e95.
118. Idnurm, A., and, J. Heitman. 2005b. Photosensing fungi: phytochrome in the spotlight. Curr. Biol. 15:R829R832.
119. Idnurm, A.,, J. Rodríguez-Romero,, L. M. Corrochano,, C. Sanz,, E. A. Iturriaga,, A. P. Eslava, and, J. Heitman. 2006. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc. Natl. Acad. Sci. USA 103:45464551.
120. Iino, M., and, M. Schäfer. 1984. Phototropic response of the stage I Phycomyces sporangiophore to a pulse of blue light. Proc. Natl. Acad. Sci. USA 81:71037107.
121. Jayaram, M.,, L. Leutwiler, and, M. Delbrück. 1980. Light-induced carotene synthesis in mutants of Phycomyces with abnormal phototropism. Photochem. Photobiol. 32:241245.
122. Káldi, K.,, B. H. González, and, M. Brunner. 2006. Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output. EMBO Rep. 7:199204.
123. Kamada, T. 2002. Molecular genetics of sexual development in the mushroom Coprinus cinereus. Bioessays 24:449459.
124. Karniol, B.,, J. R. Wagner,, J. M. Walker, and, R. D. Vierstra. 2005. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem. J. 392:103116.
125. Kertesz-Chaloupkova, K.,, P. J. Walser,, J. D. Granado,, M. Aebi, and, U. Kües. 1998. Blue light overrides repression of asexual sporulation by mating type genes in the basidiomycete Coprinus cinereus. Fungal Genet. Biol. 23:95109.
126. Kihara, J.,, A. Moriwaki,, N. Tanaka,, M. Ueno, and, S. Arase. 2007. Characterization of the BLR1 gene encoding a putative blue-light regulator in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol. Lett. 266:110118.
127. Kim, H.,, K. Han,, K. Kim,, D. Han,, K. Jahng, and, K. Chae. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37:7280.
128. Kritsky, M. S.,, V. E. Russo,, S. Y. Filippovich,, T. P. Afanasieva, and, G. P. Bachurina. 2002. The opposed effect of 5-azacytidine and light on the development of reproductive structures in Neurospora crassa. Photochem. Photobiol. 75:7983.
129. Kües, U.,, J. D. Granado,, R. Hermann,, R. P. Boulianne,, K. Kertesz-Chaloupkova, and, M. Aebi. 1998. The A mating type and blue light regulate all known differentiation processes in the basidiomycete Coprinus cinereus. Mol. Gen. Genet. 260:8191.
130. Kües, U. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64:316353.
131. Kües, U.,, P. J. Walser,, M. J. Klaus, and, M. Aebi. 2002. Influence of activated A and B mating-type pathways on developmental processes in the basidiomycete Coprinus cinereus. Mol. Genet. Genomics 268:262271.
132. Kumagai, T. 1989. Temperature and mycochrome system in near-UV light inducible and blue light reversible photoinduction of conidiation in Alternaria tomato. Photochem. Photobiol. 50:793798.
133. Lamb, J. S.,, B. D. Zoltowski,, S. A. Pabit,, B. R. Crane, and, L. Pollack. 2008. Time-resolved dimerization of a PASLOV protein measured with photocoupled small angle X-ray scattering. J. Am. Chem. Soc. 130:1222612227.
134. Lang-Feulner, J., and, W. Rau. 1975. Redox dyes as artificial photoreceptors in light-dependent carotenoid synthesis. Photochem. Photobiol. 21:179183.
135. Lauter, F. R., and, V. E. A. Russo. 1991. Blue light induction of conidiation-specific genes in Neurospora crassa. Nucleic Acids Res. 19:68836886.
136. Lauter, F. R.,, V. E. A. Russo, and, C. Yanofsky. 1992. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 6:23732381.
137. Lauter, F. R., and, C. Yanofsky. 1993. Day/night and circa-dian rhythm control of con gene expression in Neurospora. Proc. Natl. Acad. Sci. USA 90:82498253.
138. Lauter, F. R.,, C. T. Yamashiro, and, C. Yanofsky. 1997. Light stimulation of conidiation in Neurospora crassa: studies with the wild-type strain and mutants wc-1, wc-2 and acon-2. J. Photochem. Photobiol. B 37:203211.
139. Lauter, F. R.,, U. Marchfelder,, V. E. Russo,, C. T. Yamashiro,, E. Yatzkan, and, O. Yarden. 1998. Photoregulation of cot-1, a kinase-encoding gene involved in hyphal growth in Neurospora crassa. Fungal Genet. Biol. 23:300310.
140. Lee, B.,, Y. Yoshida, and, K. Hasunuma. 2006a. Photomorphogenetic characteristics are severely affected in nucleoside diphosphate kinase-1 (ndk-1)-disrupted mutants in Neurospora crassa. Mol. Genet. Genomics 275:917.
141. Lee, B. N., and, T. H. Adams. 1994. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 8:641651.
142. Lee, K., and, D. J. Ebbole. 1998. Analysis of two transcription activation elements in the promoter of the developmentally regulated con-10 gene of Neurospora crassa. Fungal Genet. Biol. 23:259268.
143. Lee, K.,, J. J. Loros, and, J. C. Dunlap. 2000. Interconnected feedback loops in the Neurospora circadian system. Science 289:107110.
144. Lee, K.,, P. Singh,, W. C. Chung,, J. Ash,, T. S. Kim,, L. Hang, and, S. Park. 2006b. Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet. Biol. 43:694706.
145. Letunic, I.,, R. R. Copley,, B. Pils,, S. Pinkert,, J. Schultz, and, P. Bork. 2006. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34:D257D260.
146. Lewis, Z. A.,, A. Correa,, C. Schwerdtfeger,, K. L. Link,, X. Xie,, R. H. Gomer,, T. Thomas,, D. J. Ebbole, and, D. Bell-Pedersen. 2002. Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol. Microbiol. 45:917931.
147. Lin, C., and, T. Todo. 2005. The cryptochromes. Genome Biol. 6:220.
148. Linden, H.,, P. Ballario, and, G. Macino. 1997a. Blue light regulation in Neurospora crassa. Fungal Genet. Biol. 22:141150.
149. Linden, H., and, G. Macino. 1997. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 16:98109.
150. Linden, H.,, M. Rodríguez-Franco, and, G. Macino. 1997b. Mutants of Neurospora crassa defective in regulation of blue light perception. Mol. Gen. Genet. 254:111118.
151. Liu, Y.,, Q. He, and, P. Cheng. 2003. Photoreception in Neurospora: a tale of two White Collar proteins. Cell. Mol. Life Sci. 60:21312138.
152. Liu, Y., and, D. Bell-Pedersen. 2006. Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot. Cell 5:11841193.
153. Lombardi, L. M., and, S. Brody. 2005. Circadian rhythms in Neurospora crassa: clock gene homologues in fungi. Fungal Genet. Biol. 42:887892.
154. López-Díaz, I., and, E. Cerdá-Olmedo. 1980. Relationship of photocarotenogenesis to other behavioural and regulatory responses in Phycomyces. Planta 150:134139.
155. Lorca-Pascual, J. M.,, L. Murcia-Flores,, V. Garre,, S. Torres-Martínez, and, R. M. Ruiz-Vázquez. 2004. The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis. Mol. Microbiol. 52:14631474.
156. Losi, A. 2004. The bacterial counterparts of plant phototropins. Photochem. Photobiol. Sci. 3:566574.
157. Lu, B. C. 2000. The control of meiosis progression in the fungus Coprinus cinereus by light/dark cycles. Fungal Genet. Biol. 31:3341.
158. Lu, Y. K.,, K. H. Sun, and, W. C. Shen. 2005. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol. Microbiol. 56:480491.
159. Madi, L.,, D. J. Ebbole,, B. T. White, and, C. Yanofsky. 1994. Mutants of Neurospora crassa that alter gene expression and conidia development. Proc. Natl. Acad. Sci. USA 91:62266230.
160. Madi, L.,, S. A. McBride,, L. A. Bailey, and, D. J. Ebbole. 1997. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499508.
161. Maier, J., and, H. Ninnemann. 1995. Inhibition of light-dependent photomorphogenesis of sporangiophores from Phycomyces blakesleeanus by application of pteridine biosynthesis inhibitors. Photochem. Photobiol. 61:206209.
162. Maier, J.,, R. Hecker,, P. Rockel, and, H. Ninnemann. 2001. Role of nitric oxide synthase in the light-induced development of sporangiophores in Phycomyces blakesleeanus. Plant Physiol. 126:13231330.
163. Marchler-Bauer, A., and, S. H. Bryant. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32:W327W331.
164. Martin-Rojas, V.,, H. Greiner,, T. Wagner,, L. Fukshansky, and, E. Cerda-Olmedo. 1995. Specific tropism caused by ultraviolet C radiation in Phycomyces. Planta 197:6368.
165. Mende, K.,, V. Homann, and, B. Tudzynski. 1997. The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol. Gen. Genet. 255:96105.
166. Merrow, M.,, L. Franchi,, Z. Dragovic,, M. Görl,, J. Johnson,, M. Brunner,, G. Macino, and, T. Roenneberg. 2001. Circa-dian regulation of the light input pathway in Neurospora crassa. EMBO J. 20:307315.
167. Mooney, J. L.,, D. E. Hassett, and, L. N. Yager. 1990. Genetic analysis of suppressors of the veA1 mutation in Aspergillus nidulans. Genetics 126:869874.
168. Mooney, J. L., and, L. N. Yager. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4:14731482.
169. Moriwaki, A.,, H. Katsube,, M. Ueno,, S. Arase, and, J. Kihara. 2008. Cloning and characterization of the BLR2, the homologue of the blue-light regulator of Neurospora crassa WC-2, in the phytopathogenic fungus Bipolaris oryzae. Curr. Microbiol. 56:115121.
170. Murillo, F. J.,, S. Torres-Martínez,, C. M. Aragón, and, E. Cerdá-Olmedo. 1981. Substrate transfer in carotene biosynthesis in Phycomyces. Eur. J. Biochem. 119:511516.
171. Navarro, E.,, V. L. Ruiz-Perez, and, S. Torres-Martinez. 2000. Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides. Eur. J. Biochem. 267:800807.
172. Navarro-Sampedro, L.,, C. Yanofsky, and, L. M. Corrochano. 2008. A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics 178:171183.
173. Neiss, A.,, T. Schafmeier, and, M. Brunner. 2008. Transcriptional regulation and function of the Neurospora clock gene white collar 2 and its isoforms. EMBO Rep. 9:788794.
174. Nelson, M. A.,, G. Morelli,, A. Carattoli,, N. Romano, and, G. Macino. 1989. Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol. Cell. Biol. 9:12711276.
175. Ninnemann, H. 1991. Photostimulation of conidiation in mutants of Neurospora crassa. J. Photochem. Photobiol. B 9:189199.
176. Ninnemann, H., and, J. Maier. 1996. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem. Photobiol. 64:393398.
177. Ogura, Y.,, Y. Yoshida,, K. Ichimura,, C. Aoyagi,, N. Yabe, and, K. Hasunuma. 1999. Isolation and characterization of Neurospora crassa nucleoside diphosphate kinase NDK-1. Eur. J. Biochem. 266:709714.
178. Ogura, Y.,, Y. Yoshida,, N. Yabe, and, K. Hasunuma. 2001. A point mutation in nucleoside diphosphate kinase results in a deficient light response for perithecial polarity in Neurospora crassa. J. Biol. Chem. 276:2122821234.
179. Omer, C. A., and, J. B. Gibbs. 1994. Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol. Microbiol. 11:219225.
180. Orejas, M.,, M. I. Peláez,, M. I. Alvarez, and, A. P. Eslava. 1987. A genetic map of Phycomyces blakesleeanus. Mol. Gen. Genet. 210:6976.
181. Page, R. M. 1962. Light and the asexual reproduction of Pilobolus. Science 138:12381245.
182. Pöggeler, S.,, M. Nowrousian, and, U. Kück. 2006. Fruiting-body development in ascomycetes, p. 325–355. In U. Kües and R. Fischer (ed.), The Mycota I. Growth, Differentiation and Sexuality, 2nd ed., vol. I. Springer-Verlag, Berlin, Germany.
183. Polak, E.,, R. Hermann,, U. Kües, and, M. Aebi. 1997. Asexual sporulation in Coprinus cinereus: structure and development of oidiophores and oidia in an amut bmut homokaryon. Fungal Genet. Biol. 22:112126.
184. Prado, M. M.,, A. Prado-Cabrero,, R. Fernández-Martín, and, J. Avalos. 2004. A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr. Genet. 46:4758.
185. Prado-Cabrero, A.,, A. F. Estrada,, S. Al-Babili, and, J. Avalos. 2007. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol. Microbiol. 64:448460.
186. Purschwitz, J.,, S. Muller,, C. Kastner, and, R. Fischer. 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 9:566571.
187. Purschwitz, J.,, S. Muller,, C. Kastner,, M. Schoser,, H. Haas,, E. A. Espeso,, A. Atoui,, A. M. Calvo, and, R. Fischer. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 18:255259.
188. Purschwitz, J.,, S. Müller, and, R. Fischer. 2009. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol. Genet. Genomics 281:3542.
189. Querfurth, C.,, A. Diernfellner,, F. Heise,, L. Lauinger,, A. Neiss,, O. Tataroglu,, M. Brunner, and, T. Schafmeier. 2007. Posttranslational regulation of Neurospora circadian clock by CK1a-dependent phosphorylation. Cold Spring Harb. Symp. Quant. Biol. 72:177183.
190. Quiles-Rosillo, M. D.,, R. M. Ruiz-Vazquez,, S. Torres-Martínez, and, V. Garre. 2005. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet. Biol. 42:141153.
191. Rau, W. 1967. Untersuchungen über die lichtabhängige Carotinoidsynthese. I. Das Wirkungsspektrum von Fusarium aquaeductuum. Planta 72:1428.
192. Rau, W.,, B. Feuser, and, A. Rau-Hund. 1967. Substitution of p-chloro- or p-hydroxymercuribenzoate for light in carotenoid synthesis by Fusarium aquaeductuum. Biochim. Biophys. Acta 136:589590.
193. Rau, W. 1969. Untersuchungen über die lichtabhängige Carotinoidsynthese. IV. Die Rolle des Sauerstoffs bei der Lichtinduktion. Planta 84:3042.
194. Rockwell, N. C.,, Y. S. Su, and, J. C. Lagarias. 2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837858.
195. Rodríguez-Romero, J., and, L. M. Corrochano. 2004. The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Curr. Genet. 46:295303.
196. Rodríguez-Romero, J., and, L. M. Corrochano. 2006. Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol. Microbiol. 61:10491059.
197. Rodríguez-Saiz, M.,, B. Paz,, J. L. De La Fuente,, M. J. López-Nieto,, W. Cabri, and, J. L. Barredo. 2004. Blakeslea trispora genes for carotene biosynthesis. Appl. Environ. Microbiol. 70:55895594.
198. Rosales-Saavedra, T.,, E. U. Esquivel-Naranjo,, S. Casas-Flores,, P. Martínez-Hernández,, E. Ibarra-Laclette,, C. Cortes-Penagos, and, A. Herrera-Estrella. 2006. Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152:33053317.
199. Ruiz-Roldán, M. C.,, V. Garre,, J. Guarro,, M. Mariné, and, M. I. Roncero. 2008. Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot. Cell 7:12271230.
200. Saelices, L.,, L. Youssar,, I. Holdermann,, S. Al-Babili, and, J. Avalos. 2007. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol. Genet. Genomics 278:527537.
201. Salomon, M.,, J. M. Christie,, E. Knieb,, U. Lempert, and, W. R. Briggs. 2000. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:94019410.
202. Sánchez-Murillo, R. I.,, M. Torre-Martínez,, J. Aguirre-Linares, and, A. Herrera-Estrella. 2004. Light-regulated asexual reproduction in Paecilomyces fumosoroseus. Microbiology 150:311319.
203. Sandmann, G., and, N. Misawa. 2002. Fungal carotenoids, p. 247–262. In H. D. Osiewacz (ed.), The Mycota X. Industrial Applications. Springer Verlag, Berlin, Germany.
204. Sano, H.,, T. Narikiyo,, S. Kaneko,, T. Yamazaki, and, K. Shishido. 2007. Sequence analysis and expression of a blue-light photoreceptor gene, Le.phrA from the basidiomycetous mushroom Lentinula edodes. Biosci. Biotechnol. Biochem. 71:22062213.
205. Sanz, C.,, J., Rodríguez-Romero,, A. Idnurm,, J. M. Christie,, J. Heitman,, L. M. Corrochano, and, A. P. Eslava. 2009. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc. Natl. Acad. Sci. USA 106:70957100.
206. Saranak, J., and, K. W. Foster. 1997. Rhodopsin guides fungal phototaxis. Nature 387:465466.
207. Schafmeier, T.,, A. Haase,, K. Kaldi,, J. Scholz,, M. Fuchs, and, M. Brunner. 2005. Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122:235246.
208. Schafmeier, T.,, K. Káldi,, A. Diernfellner,, C. Mohr, and, M. Brunner. 2006. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 20:297306.
209. Schafmeier, T.,, A. Diernfellner,, A. Schäfer,, O. Dintsis,, A. Neiss, and, M. Brunner. 2008. Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo-cytoplasmic shuttling. Genes Dev. 22:33973402.
210. Schmidhauser, T. J.,, F. R. Lauter,, V. E. Russo, and, C. Yanofsky. 1990. Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol. Cell. Biol. 10:50645070.
211. Schmidhauser, T. J.,, F. R. Lauter,, M. Schumacher,, W. Zhou,, V. E. A. Russo, and, C. Yanofsky. 1994. Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J. Biol. Chem. 269:1206012066.
212. Schmoll, M.,, L. Franchi, and, C. P. Kubicek. 2005. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot. Cell 4:19982007.
213. Schmoll, M.,, A. Schuster,, R. N. Silva, and, C. P. Kubicek. 2009. The G-Alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot. Cell 8:410420.
214. Schrott, E. L. 1980. Fluence response relationship of caroteno-genesis in Neurospora crassa. Planta 150:174179.
215. Schrott, E. L. 1981. The biphasic fluence response of carotenogenesis in Neurospora crassa: temporary insensitivity of the photoreceptor system. Planta 151:371374.
216. Schrott, E. L.,, A. Huber-Willer, and, W. Rau. 1982. Is phytochrome involved in the light-mediated carotenogenesis in Fusarium aquaeductuum and Neurospora crassa? Photochem. Photobiol. 35:213216.
217. Schuster, A.,, C. P. Kubicek,, M. A. Friedl,, I. S. Druzhinina, and, M. Schmoll. 2007. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 8:449.
218. Schwerdtfeger, C., and, H. Linden. 2000. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur. J. Biochem. 267:414422.
219. Schwerdtfeger, C., and, H. Linden. 2001. Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol. Microbiol. 39:10801087.
220. Schwerdtfeger, C., and, H. Linden. 2003. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22:48464855.
221. Selby, C. P., and, A. Sancar. 2006. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. USA 103:1769617700.
222. Sharma, A. K.,, J. L. Spudich, and, W. F. Doolittle. 2006. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 14:463469.
223. Shrode, L. B.,, Z. A. Lewis,, L. D. White,, D. Bell-Pedersen, and, D. J. Ebbole. 2001. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol. 32:169181.
224. Silva, F.,, S. Torres-Martínez, and, V. Garre. 2006. Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol. Microbiol. 61:10231037.
225. Silva, F.,, E. Navarro,, A. Peñaranda,, L. Murcia-Flores,, S. Torres-Martínez, and, V. Garre. 2008. A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol. Microbiol. 70:10261036.
226. Springer, M. L. 1993. Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays 15:365374.
227. Spudich, J. L.,, C. S. Yang,, K. H. Jung, and, E. N. Spudich. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16:36592.
228. Spudich, J. L. 2006. The multitalented microbial sensory rhodopsins. Trends Microbiol. 14:480487.
229. Stinnett, S. M.,, E. A. Espeso,, L. Cobeño,, L. Araújo-Bazán, and, A. M. Calvo. 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 63:242255.
230. Sumii, M.,, Y. Furutani,, S. A. Waschuk,, L. S. Brown, and, H. Kandori. 2005. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Biochemistry 44:1515915166.
231. Sutter, R. P. 1970. Trisporic acid synthesis in Blakeslea trispora. Science 168:15901592.
232. Talora, C.,, L. Franchi,, H. Linden,, P. Ballario, and, G. Macino. 1999. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 18:49614968.
233. Terashima, K.,, K. Yuki,, H. Muraguchi,, M. Akiyama, and, T. Kamada. 2005. The dst1 gene involved in mushroom photo-morphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics 171:101108.
234. Theimer, R. R., and, W. Rau. 1969. Mutants of Fusarium aquaeductuum lacking photoregulation of carotenoid synthesis. Biochim. Biophys. Acta 177:180181.
235. Theimer, R. R., and, W. Rau. 1970. Untersuchungen über die lichtabhängige Carotinoidsynthese. V. Aufhebung der Lichtinduktion dutch Reduktionsmittel und Ersatz des Lichts durch Wasserstoffperoxid. Planta 92:129137.
236. Theimer, R. R., and, W. Rau. 1972. Untersuchungen über die lichtabhängige Carotinoidsynthese. VIII. Die unterschiedlichen Wirkungsmechanismen von Licht und Mercuribenzoat. Planta 106:331343.
237. Thewes, S.,, A. Prado-Cabrero,, M. M. Prado,, B. Tudzynski, and, J. Avalos. 2005. Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol. Genet. Genomics 274:217228.
238. Tsolakis, G.,, E. Parashi,, P. Galland, and, K. Kotzabasis. 1999. Blue light signaling chains in Phycomyces: phototransduction of carotenogenesis and morphogenesis involves distinct protein kinase/phosphatase elements. Fungal Genet. Biol. 28:201213.
239. Tsolakis, G.,, N. K. Moschonas,, P. Galland, and, K. Kotzabasis. 2004. Involvement of G proteins in the mycelial photoresponses of Phycomyces. Photochem. Photobiol. 79:360370.
240. Velayos, A.,, J. L. Blasco,, M. I. Alvarez,, E. A. Iturriaga, and, A. P. Eslava. 2000a. Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938946.
241. Velayos, A.,, A. P. Eslava, and, E. A. Iturriaga. 2000b. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur. J. Biochem. 267:55095519.
242. Veluchamy, S., and, J. A. Rollins. 2008. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet. Biol. 45:12651276.
243. Waschuk, S. A.,, A. G. Bezerra, Jr.,, L. Shi, and, L. S. Brown. 2005. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl. Acad. Sci. USA 102:68796883.
244. Weinkove, D.,, J. A. Poyatos,, H. Greiner,, E. Oltra,, J. Avalos,, L. Fukshansky,, A. F. Barrero, and, E. Cerdá-Olmedo. 1998. Mutants of Phycomyces with decreased gallic acid content. Fungal Genet. Biol. 25:196203.
245. Wösten, H. A. B., and, J. G. H. Wessels. 2006. The emergence of fruiting bodies in basidiomycetes, p. 393–414. In U. Kües and R. Fischer (ed.), The Mycota I. Growth, Differentiation and Sexuality, 2nd ed., vol. I. Springer-Verlag, Berlin, Germany.
246. Yager, L. N.,, H. O. Lee,, D. L. Nagle, and, J. E. Zimmerman. 1998. Analysis of fluG mutations that affect light-dependent conidiation in Aspergillus nidulans. Genetics 149:17771786.
247. Yamashiro, C. T.,, D. J. Ebbole,, B. U. Lee,, R. E. Brown,, C. Bourland,, L. Madi, and, C. Yanofsky. 1996. Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol. Cell. Biol. 16:62186228.
248. Yamazaki, Y.,, H. Kataoka,, A. Miyazaki,, M. Watanabe, and, T. Ootaki. 1996. Action spectra for photoinhibition of sexual development in Phycomyces blakesleeanus. Photochem. Photobiol. 64:387392.
249. Yarden, O.,, M. Plamann,, D. J. Ebbole, and, C. Yanofsky. 1992. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 11:21592166.
250. Yeh, Y. L.,, Y. S. Lin,, B. J. Su, and, W. C. Shen. 2009. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans. Fungal Genet. Biol. 46:4254.
251. Yoshida, Y., and, K. Hasunuma. 2004. Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J. Biol. Chem. 279:69866993.
252. Yoshida, Y., and, K. Hasunuma. 2006. Light-dependent sub-cellular localization of nucleoside diphosphate kinase-1 in Neurospora crassa. FEMS Microbiol. Lett. 261:6468.
253. Yoshida, Y.,, Y. Ogura, and, K. Hasunuma. 2006. Interaction of nucleoside diphosphate kinase and catalases for stress and light responses in Neurospora crassa. FEBS Lett. 580:32823286.
254. Zalokar, M. 1954. Studies on biosynthesis of carotenoids in Neurospora crassa. Arch. Biochem. Biophys. 50:7180.
255. Zalokar, M. 1955. Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch. Biochem. Biophys. 56:318325.
256. Zoltowski, B. D.,, C. Schwerdtfeger,, J. Widom,, J. J. Loros,, A. M. Bilwes,, J. C. Dunlap, and, B. R. Crane. 2007. Conformational switching in the fungal light sensor Vivid. Science 316:10541057.
257. Zoltowski, B. D., and, B. R. Crane. 2008. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 47:70127019.


Generic image for table

Effects of light on fungi

Citation: Corrochano L, Avalos J. 2010. Light Sensing, p 417-441. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch28