1887

Chapter 31 : Regulation of Gene Expression by Ambient pH

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Gene Expression by Ambient pH, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap31-2.gif

Abstract:

Ambient pH regulation of gene expression is a transcriptional regulatory system that enables the presence of gene products appropriate to the pH of the environment and prevents those that are inappropriate to the environmental pH. Much of the progress in elucidating the mechanism of ambient pH gene regulation has been made using , and there are a number of reasons why this organism is particularly favorable for the study of pH regulation. This chapter discusses some of these reasons and presents a brief description of the current model of fungal pH regulation. Mutations resulting in gene expression appropriate to acidic environments confer intense staining for acid phosphatase activity even with growth at alkaline pH but prevent staining for alkaline phosphatase activity. The product of the signaling proteolysis, PacC, is thought to be accessible to the processing protease due to an open conformation assumed in the absence of interacting region C, and the processing proteolysis occurs in a pH-independent manner, removing a further ~250 C-terminal residues to form PacC. In and in unicellular yeasts, the pH signaling pathway involves six dedicated proteins. Significant advances in one's current understanding of pH signaling have come from research using budding yeast as an experimental model. Compelling evidence obtained in studies of and strongly supports the existence of a second pH signaling complex associated to the endosomal sorting complex required for transport (ESCRT) complexes on endosomal membranes.

Citation: Tilburn J, Arst, Jr. H, Peñalva M. 2010. Regulation of Gene Expression by Ambient pH, p 480-487. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch31

Key Concept Ranking

Gene Expression and Regulation
0.7014665
Signal Transduction
0.49221948
Signalling Pathway
0.47614646
Plasma Membrane
0.43431133
Gene Expression
0.4199649
0.7014665
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of PacC features. GPA, Gly-Pro-Ala rich region; PED, processing efficiency determinant. The sequences of the three CysHis zinc fingers are shown above the scheme; zinc-chelating residues are shown in bold, and the putative monopartite NLS is shaded. The putative bipartite NLS is shown. Circled Ks indicate the Lys252, Lys253, Lys267, and Lys337 residues, whose simultaneous substitution by Arg residues impairs PacC processing.

Citation: Tilburn J, Arst, Jr. H, Peñalva M. 2010. Regulation of Gene Expression by Ambient pH, p 480-487. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

pH signal transduction pathway proteins: nomenclature of dedicated pH signal transduction pathway proteins in and .

Citation: Tilburn J, Arst, Jr. H, Peñalva M. 2010. Regulation of Gene Expression by Ambient pH, p 480-487. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Summary of ambient alkaline pH signaling and PacC processing. The known or hypothesized locations of the six dedicated Pal proteins of the pH signal transduction pathway are indicated along with those of the ESCRT-III protein Vps32 and the PacC transcription factor in the two complexes involved in the signal transduction process. Interacting regions A, B, and C of PacC are shown as rectangles, the signaling protease box is indicated by a small square, and the PalA-binding YPXL/I motifs are shown as small circles. Conversion of full-length PacC to PacC by the signaling protease (PalB) and on to PacC by the processing protease (the proteasome) is shown. Although the great majority of PacC is in the closed, inaccessible conformation, trace amounts are apparently in an open conformation, accessible to the processing protease, and can be converted directly to PacC without the participation of pH signal transduction (indicated in pale gray). (Reproduced from , with permission, having been updated and modified from .)

Citation: Tilburn J, Arst, Jr. H, Peñalva M. 2010. Regulation of Gene Expression by Ambient pH, p 480-487. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch31
1. Arst, H. N., Jr.,, E. Bignell, and, J. Tilburn. 1994. Two new genes involved in signaling ambient pH in Aspergillus nidulans. Mol. Gen. Genet. 245:787790.
2. Arst, H. N., Jr., and, D. J. Cove. 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 126:111141.
3. Arst, H. N., Jr., and, M. A. Peñalva. 2003. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet. 19:224231.
4. Babst, M.,, D. J. Katzmann,, E. J. Estepa-Sabal,, T. Meerloo, and, S. D. Emr. 2002. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3:271282.
5. Barwell, K. J.,, J. H. Boysen,, W. Xu, and, A. P. Mitchell. 2005. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell 4:890899.
6. Blanchin-Roland, S.,, G. Da Costa, and, C. Gaillardin. 2005. ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. Microbiology 151:36273637.
7. Blanchin-Roland, S.,, G. Da Costa, and, C. Gaillardin. 2008. Ambient pH signaling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. Microbiology 154:16681676.
8. Boysen, J. H., and, A. P. Mitchell. 2006. Control of Bro1domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol. Biol. Cell 17:13441353.
9. Caddick, M. X., and, H. N. Arst, Jr. 1986. Structural genes for phosphatases in Aspergillus nidulans. Genet. Res. 47:8391.
10. Caddick, M. X.,, A. G. Brownlee, and, H. N. Arst, Jr. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol. Gen. Genet. 203:346353.
11. Calcagno-Pizarelli, A. M.,, S. Negrete-Urtasun,, S. H. Denison,, J. D. Rudnicka,, H. J. Bussink,, T. Munera-Huertas,, L. Stanton,, A. Hervás-Aguilar,, E. A. Espeso,, J. Tilburn,, H. N. Arst, Jr., and, M. A. Peñalva. 2007. Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot. Cell 6:23652375.
12. Cornet, M.,, F. Bidard,, P. Schwarz,, G. Da Costa,, S. Blanchin-Roland,, F. Dromer, and, C. Gaillardin. 2005. Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans. Infect. Immun. 73:79777987.
13. Denison, S. H.,, S. Negrete-Urtasun,, J. M. Mingot,, J. Tilburn,, W. A. Mayer,, A. Goel,, E. A. Espeso,, M. A. Peñalva, and, H. N. Arst, Jr. 1998. Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous. Mol. Microbiol. 30:259264.
14. Denison, S. H.,, M. Orejas, and, H. N. Arst, Jr. 1995. Signaling of ambient pH in Aspergillus involves a cysteine protease. J. Biol. Chem. 270:2851928522.
15. DeWire, S. M.,, S. Ahn,, R. J. Lefkowitz, and, S. K. Shenoy. 2007. β-Arrestins and cell signaling. Annu. Rev. Physiol. 69:483510.
16. Díez, E.,, J. Álvaro,, E. A. Espeso,, L. Rainbow,, T. Suárez,, J. Tilburn,, H. N. Arst, Jr., and, M. A. Peñalva. 2002. Activation of the Aspergillus PacC zinc-finger transcription factor requires two proteolytic steps. EMBO J. 21:13501359.
17. Dorn, G. 1965a. Genetic analysis of the phosphatases in Aspergillus nidulans. Genet. Res. 6:1326.
18. Dorn, G. 1965b. Phosphatase mutants in Aspergillus nidulans. Science 150:11831184.
19. Doyotte, A.,, A. Mironov,, E. McKenzie, and, P. Woodman. 2008. The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc. Natl. Acad. Sci. USA 105:63086313.
20. Espeso, E. A., and, H. N. Arst, Jr. 2000. On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol. Cell. Biol. 20:33553363.
21. Espeso, E. A., and, M. A. Peñalva. 1996. Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J. Biol. Chem. 271:2882528830.
22. Espeso, E. A.,, T. Roncal,, E. Díez,, L. Rainbow,, E. Bignell,, J. Álvaro,, T. Suárez,, S. H. Denison,, J. Tilburn,, H. N. Arst, Jr., and, M. A. Peñalva. 2000. On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J. 19:719728.
23. Espeso, E. A.,, J. Tilburn,, L. Sánchez-Pulido,, C. V. Brown,, A. Valencia,, H. N. Arst, Jr., and, M. A. Peñalva. 1997. Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J. Mol. Biol. 274:466480.
24. Fernández-Martínez, J.,, C. V. Brown,, E. Díez,, J. Tilburn,, H. N. Arst, Jr.,, M. A. Peñalva, and, E. A. Espeso. 2003. Overlap of nuclear localization signal and specific DNA binding residues within the zinc finger domain of PacC. J. Mol. Biol. 334:667684.
25. Futai, E.,, T. Kubo,, H. Sorimachi,, K. Suzuki, and, T. Maeda. 2001. Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim. Biophys. Acta 1517:316319.
26. Futai, E.,, T. Maeda,, H. Sorimachi,, K. Kitamoto,, S. Ishiura, and, K. Suzuki. 1999. The protease activity of a calpain-like cysteine protease in Saccharomyces cerevisiae is required for alkaline adaptation and sporulation. Mol. Gen. Genet. 260:559568.
27. Galindo, A.,, A. Hervás-Aguilar,, O. Rodríguez-Galán,, O. Vincent,, H. N. Arst, Jr.,, J. Tilburn, and, M. A. Peñalva. 2007. PalC, one of two Bro1 domain proteins in the fungal pH signaling pathway, localizes to cortical structures and binds Vps32. Traffic 8:13461364.
28. Hayashi, M.,, T. Fukuzawa,, H. Sorimachi, and, T. Maeda. 2005. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol. Cell. Biol. 25:94789490.
29. Herranz, S.,, J. M. Rodríguez,, H. J. Bussink,, J. C. SánchezFerrero,, H. N. Arst, Jr.,, M. A. Peñalva, and, O. Vincent. 2005. Arrestin-related proteins mediate pH signaling in fungi. Proc. Natl. Acad. Sci. USA 102:1214112146.
30. Hervás-Aguilar, A.,, J. M. Rodríguez,, J. Tilburn,, H. N. Arst, Jr., and, M. A. Peñalva. 2007. Evidence for the direct involvement of the proteasome in the proteolytic processing of the Aspergillus nidulans zinc finger transcription factor PacC. J. Biol. Chem. 282:3473534747.
31. Hierro, A.,, J. Sun,, A. S. Rusnak,, J. Kim,, G. Prag,, S. D. Emr, and, J. H. Hurley. 2004. Structure of the ESCRT-II endosomal trafficking complex. Nature 431:221225.
32. Hurley, J. H., and, S. D. Emr. 2006. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35:277298.
33. Hutchings, H.,, K. Stahmann,, S. Roels,, E. A. Espeso,, W. E. Timberlake,, H. N. Arst, Jr., and, J. Tilburn. 1999. The multiply-regulated gabA gene encoding the GABA permease of Aspergillus nidulans: a score of exons. Mol. Microbiol. 32:557568.
34. Ito, T.,, T. Chiba,, R. Ozawa,, M. Yoshida,, M. Hattori, and, Y. Sakaki. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98:45694574.
35. Jans, D. A.,, C. Y. Xiao, and, M. H. Lam. 2000. Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 22:532544.
36. Katzmann, D. J.,, G. Odorizzi, and, S. D. Emr. 2002. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3:893905.
37. Kim, J.,, S. Sitaraman,, A. Hierro,, B. M. Beach,, G. Odorizzi, and, J. H. Hurley. 2005. Structural basis for endosomal targeting by the Bro1 domain. Dev. Cell 8:937947.
38. Kudla, B.,, M. X. Caddick,, T. Langdon,, N. M. Martínez-Rossi,, C. F. Bennet,, S. Sibley,, R. W. Davies, and, H. N. Arst, Jr. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9:13551364.
39. Kullas, A. L.,, M. Li, and, D. A. Davis. 2004. Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot. Cell 3:16091618.
40. Lefkowitz, R. J., and, S. K. Shenoy. 2005. Transduction of receptor signals by α-arrestins. Science 308:512517.
41. Li, M.,, S. J. Martin,, V. M. Bruno,, A. P. Mitchell, and, D. A. Davis. 2004. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot. Cell 3:741751.
42. Li, W. S., and, A. P. Mitchell. 1997. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:6373.
43. Luhtala, N., and, G. Odorizzi. 2004. Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J. Cell Biol. 166:717729.
44. Maccheroni, W.,, G. S. May,, N. M. Martinez-Rossi, and, A. Rossi. 1997. The sequence of palF, an environmental pH response gene in Aspergillus nidulans. Gene 194:163167.
45. Mingot, J. M.,, E. A. Espeso,, E. Díez, and, M. A. Peñalva. 2001. Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol. Cell. Biol. 21:16881699.
46. Mingot, J. M.,, J. Tilburn,, E. Díez,, E. Bignell,, M. Orejas,, D. A. Widdick,, S. Sarkar,, C. V. Brown,, M. X. Caddick,, E. A. Espeso,, H. N. Arst, Jr., and, M. A. Peñalva. 1999. Specificity determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from the processing site, and processing occurs in yeast if pH signaling is bypassed. Mol. Cell. Biol. 19:13901400.
47. Mitchell, A. P. 2008. A VAST staging area for regulatory proteins. Proc. Natl. Acad. Sci. USA 105:71117112.
48. Negrete-Urtasun, S.,, S. H. Denison, and, H. N. Arst, Jr. 1997. Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J. Bacteriol. 179:18321835.
49. Negrete-Urtasun, S.,, W. Reiter,, E. Díez,, S. H. Denison,, J. Tilburn,, E. A. Espeso,, M. A. Peñalva, and, H. N. Arst, Jr. 1999. Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol. Microbiol. 33:9941003.
50. Nikko, E., and, B. Andre. 2007. Evidence for a direct role of the Doa4 deubiquitinating enzyme in protein sorting into the MVB pathway. Traffic 8:566581.
51. Nikko, E.,, A. M. Marini, and, B. André. 2003. Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J. Biol. Chem. 278:5073250743.
52. Odorizzi, G. 2006. The multiple personalities of Alix. J. Cell Sci. 119:30253032.
53. Odorizzi, G.,, D. J. Katzmann,, M. Babst,, A. Audhya, and, S. D. Emr. 2003. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci. 116:18931903.
54. Orejas, M.,, E. A. Espeso,, J. Tilburn,, S. Sarkar,, H. N. Arst, Jr., and, M. A. Peñalva. 1995. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 9:16221632.
55. Pavletich, N. P., and, C. O. Pabo. 1993. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:17011707.
56. Peñalva, M. A., and, H. N. Arst, Jr. 2002. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66:426446.
57. Peñalva, M. A., and, H. N. Arst, Jr. 2004. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol. 58:425451.
58. Peñalva, M. A.,, J. Tilburn,, E. Bignell, and, H. N. Arst, Jr. 2008. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 16:298300.
59. Peñas, M. M.,, A. Hervás-Aguilar,, T. Múnera-Huertas,, E. Reoyo,, M. A. Peñalva,, H. N. Arst, Jr., and, J. Tilburn. 2007. Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot. Cell 6:960970.
60. Rothfels, K.,, J. C. Tanny,, E. Molnar,, H. Friesen,, C. Commisso, and, J. Segall. 2005. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 25:67726788.
61. Sorimachi, H.,, S. Ishiura, and, K. Suzuki. 1997. Structure and physiological functions of calpains. Biochem. J. 328:721732.
62. Springael, J. Y.,, E. Nikko,, B. André, and, A. M. Marini. 2002. Yeast Npi3/Bro1 is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett. 517:103109.
63. Suzuki, K.,, S. Hata,, Y. Kawabata, and, H. Sorimachi. 2004. Structure, activation, and biology of calpain. Diabetes 53(Suppl. 1):S12S18.
64. Tian, L.,, R. A. Holmgren, and, A. Matouschek. 2005. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol. 12:10451053.
65. Tilburn, J.,, J. C. Sánchez-Ferrero,, E. Reoyo,, H. N. Arst, Jr., and, M. A. Peñalva. 2005. Mutational analysis of the pH signal transduction component PalC of Aspergillus nidulans supports distant similarity to BRO1 domain family members. Genetics 171:393401.
66. Tilburn, J.,, S. Sarkar,, D. A. Widdick,, E. A. Espeso,, M. Orejas,, J. Mungroo,, M. A. Peñalva, and, H. N. Arst, Jr. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 14:779790.
67. Vincent, O.,, L. Rainbow,, J. Tilburn,, H. N. Arst, Jr., and M. A. Peñalva. 2003. YPXL/I is a protein interaction motif recognized by Aspergillus PalA and its human homologue AIP1/Alix. Mol. Cell. Biol. 23:16471655.
68. Williams, R. L., and, S. Urbe. 2007. The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol. 8:355368.
69. Xu, W., and, A. P. Mitchell. 2001. Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J. Bacteriol. 183:69176923.
70. Xu, W.,, F. J. Smith, Jr.,, R. Subaran, and, A. P. Mitchell. 2004. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol. Biol. Cell 15:55285537.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error