1887

Chapter 32 : Heat Shock Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Heat Shock Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap32-2.gif

Abstract:

Increased synthesis of heat shock proteins (hsps) was seen in response to physical and chemical stresses and during developmental transitions. Other stresses, particularly oxidative stress and osmotic stress, elicit characteristic changes in gene expression that overlap with one another and with heat stress. The same regulatory factors may be involved in multiple stress responses. These include the heat shock transcription factor and the stress mitogen-activated protein kinases (MAPKs) Hog1 and Slt2 of and their orthologs in other organisms. The importance of ubiquitin-dependent proteolysis to the heat shock response is shown by the restorative effect of over-expressing on survival of cells that are deficient in hsp synthesis. Heat shock transcription factor (HSF) binds as a trimer to heat shock elements (HSEs) within target gene promoters. The fundamental unit of the HSE is nGAAn repeated in tandem on alternating DNA strands (perfect HSE), with a minimum of three pentanucleotides being required in for activity and a five-nucleotide gap between two of the pentanucleotides still supporting induction (gapped HSE). If stress responses were unregulated, they would be detrimental, rather than helpful, as seen when there is a buildup of trehalose, particular sphingolipids, Hsp90, or a hyperactivated Hog1 MAPK.

Citation: Plesofsky N. 2010. Heat Shock Response, p 488-497. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch32

Key Concept Ranking

Cell Wall Components
0.4093707
0.4093707
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A phylogenetic tree generated by ClustalW2 ( ) based on multiple sequence alignment of the sHsps of , , and .

Citation: Plesofsky N. 2010. Heat Shock Response, p 488-497. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The major stress MAPK pathways of and . HK, histidine kinase.

Citation: Plesofsky N. 2010. Heat Shock Response, p 488-497. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch32
1. Alaamery, M. A., and, C. S. Hoffman. 2008. Schizosaccharomyces pombe Hsp90/Git10 is required for glucose/cAMP signaling. Genetics 178:19271936.
2. Bahn, Y. S.,, S. Geunes-Boyer, and, J. Heitman. 2007. Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans. Eukaryot. Cell 6:22782289.
3. Bali, M.,, B. Zhang,, K. A. Morano, and, C. A. Michels. 2003. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p. J. Biol. Chem. 278:4744147448.
4. Bannai, H.,, Y. Tamada,, O. Maruyama,, K. Nakai, and, S. Miyano. 2002. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298305.
5. Banno, S.,, R. Noguchi,, K. Yamashita,, F. Fukumori,, M. Kimura,, I. Yamaguchi, and, M. Fujimura. 2007. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr. Genet. 51:197208.
6. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
7. Cheetham, J.,, D. A. Smith,, A. da Silva Dantas,, K. S. Doris,, M. J. Patterson,, C. R. Bruce, and, J. Quinn. 2007. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol. Biol. Cell 18:46034614.
8. Choudhary, S.,, H.-C. Lee,, M. Maiti,, Q. He,, P. Cheng,, Q. Liu, and, Y. Liu. 2007. A double-stranded-RNA response program important for RNA interference efficiency. Mol. Cell. Biol. 27:39954005.
9. Conlin, L. K., and, H. C. M. Nelson. 2007. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol. Cell. Biol. 27:15051515.
10. Cowart, L. A., and, Y. A. Hannun. 2007. Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis. J. Biol. Chem. 282:1233012340.
11. Cowen, L. E.,, A. E. Carpenter,, O. Matangkasombut,, G. R. Fink, and, S. Lindquist. 2006. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot. Cell 5:21842188.
12. Cuéllar-Cruz, M.,, M. Briones-Martin-del-Campo,, I. CañasVillamar,, J. Montalvo-Arredondo,, L. Riego-Ruiz,, I. Castaño, and, A. De Las Peñas. 2008. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot. Cell 7:814825.
13. Dragovic, Z.,, S. A Broadley,, Y. Shomura,, A. Bracher, and, F. U. Hartl. 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25:25192528.
14. Du, Y.,, L. Walker,, P. Novick, and, S. Ferro-Novick. 2006. Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J. 25:44134422.
15. Eastmond, D. L., and, H. C. M. Nelson. 2006. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281:3290932921.
16. Enjalbert, B.,, D. A. Smith,, M. J. Cornell,, I. Alam,, S. Nicholls,, A. J. P. Brown, and, J. Quinn. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albi-cans. Mol. Biol. Cell 17:10181032.
17. Erkina, T. Y.,, P. A. Tschetter, and, A. M. Erkine. 2008. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Mol. Cell. Biol. 28:12071217.
18. Ferguson, S. B.,, E. S. Anderson,, R. B. Harshaw,, T. Thate,, N. L. Craig, and, H. C. M. Nelson. 2005. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:12031214.
19. Flández, M.,, I. C. Cosano,, C. Nombela,, H. Martín, and, M. Molina. 2004. Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J. Biol. Chem. 279:1102711034.
20. Forafonov, F.,, O. A. Toogun,, I. Grad,, E. Suslova,, B. C. Freeman, and, D. Picard. 2008. p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol. Cell. Biol. 28:34463456.
21. Franzmann, T. M.,, P. Menhorn,, S. Walter, and, J. Buchner. 2008. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol. Cell 29:207216.
22. Franzmann, T. M.,, M. Wuhr,, K. Richter,, S. Walter, and, J. Buchner. 2005. The activation mechanism of Hsp26 does not require dissociation of the oligomer. J. Mol. Biol. 350:10831093.
23. Freitas, F. Z.,, A. Chapeaurouge,, J. Perales, and, M. C. Bertolini. 2008. A systematic approach to identify STRE-binding proteins of the gsn glycogen synthase gene promoter in Neurospora crassa. Proteomics 8:20522061.
24. Friant, S.,, K. D. Meier, and, H. Riezman. 2003. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J. 22:37833791.
25. Furukawa, K.,, Y. Hoshi,, T. Maeda,, T. Nakajima, and, K. Abe. 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56:12461261.
26. Hahn, J. S., and, D. J. Thiele. 2002. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J. Biol. Chem. 277:2127821284.
27. Hahn, J. S., and, D. J. Thiele. 2004. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J. Biol. Chem. 279:51695176.
28. Harrison, J. C.,, T. R. Zyla,, E. S. G. Bardes, and, D. J. Lew. 2004. Stress-specific activation mechanisms for the “cell integrity” MAPK pathway. J. Biol. Chem. 279:26162622.
29. Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381:571579.
30. Haslbeck, M.,, N. Braun,, T. Stromer,, B. Richter,, N. Model,, S. Weinkauf, and, J. Buchner. 2004. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23:638649.
31. Huyer, G.,, W. F. Piluek,, Z. Fansler,, S. G. Kreft,, M. Hochstrasser,, J. L. Brodsky, and, S. Michaelis. 2004. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem. 279:3836938378.
32. Jenkins, G. M., and, Y. A. Hannun. 2001. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J. Biol. Chem. 276:85748581.
33. Kasuga, T.,, J. P. Townsend,, C. Tian,, L. B. Gilbert,, G. Mannhaupt,, J. W. Taylor, and, N. L. Glass. 2005. Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Res. 33:64696485.
34. Kaufman, B. A.,, J. E. Kolesar,, P. S. Perlman, and, R. A. Butow. 2003. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J. Cell Biol. 163:457461.
35. Larkin, M. A.,, G. Blackshields,, N. P. Brown,, R. Chenna,, P. A. McGettigan,, H. McWilliam,, F. Valentin,, I. M. Wallace,, A. Wilm,, R. Lopez,, J. D. Thompson,, T. J. Gibson, and, D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:29472948.
36. Leal, J.,, F. M. Squina,, J. S. Freitas,, E. M. Silva,, C. J. Ono,, N. M. Martinez-Rossi, and, A. Rossi. 2009. A splice variant of the Neurospora crassa hex-1 transcript, which encodes the major protein of the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Lett. 583:180184.
37. Lingelbach, L. B., and, K. B. Kaplan. 2004. The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol. Cell. Biol. 24:89388950.
38. Madrid, M.,, T. Soto,, H. K. Khong,, A. Franco,, J. Vicente,, P. Pérez,, M. Gacto, and, J. Cansado. 2006. Stress-induced response, localization, and regulation of the Pmk1 cell integrity pathway in Schizosaccharomyces pombe. J. Biol. Chem. 281:20332043.
39. Meier, K. D.,, O. Deloche,, K. Kajiwara,, K. Funato, and, H. Riezman. 2006. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol. Biol. Cell 17:11641175.
40. Millson, S. H.,, A. W. Truman,, V. King,, C. Prodromou,, L. H. Pearl, and, P. W. Piper. 2005. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot. Cell 4:849860.
41. Mishra, M.,, V. M. D’souza,, K. C. Chang,, Y. Huang, and, M. K. Balasubramanian. 2005. Hsp90 protein in fission yeast Swo1p and UCS protein Rng3p facilitate myosin II assembly and function. Eukaryot. Cell 4:567576.
42. Nicholls, S.,, M. Straffon,, B. Enjalbert,, A. Nantel,, S. Macaskill,, M. Whiteway, and, A. J. P. Brown. 2004. Msn2-and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot. Cell 3:11111123.
43. Nishikawa, S.,, S. W. Fewell,, Y. Kato,, J. L. Brodsky, and, T. Endo. 2001. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol. 153:10611070.
44. Noguchi, R.,, S. Banno,, R. Ichikawa,, F. Fukumori,, A. Ichiishi,, M. Kimura,, I. Yamaguchi, and, M. Fujimura. 2007. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet. Biol. 44:208218.
45. O’Rourke, S. M., and, I. Herskowitz. 2004. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell 15:532542.
46. Park, S. H.,, N. Bolender,, F. Eisele,, Z. Kostova,, J. Takeuchi,, P. Coffino, and, D. H. Wolf. 2007. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol. Biol. Cell 18:153165.
47. Parsell, D. A., and, S. Lindquist. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437496.
48. Peterbauer, C. K.,, D. Litscher, and, C. P. Kubicek. 2002. The Trichoderma atroviride seb1 (stress response element binding) gene encodes an AGGGG-binding protein which is involved in the response to high osmolarity stress. Mol. Genet. Genomics 268:223231.
49. Petzold, E. W.,, U. Himmelreich,, E. Mylonakis,, T. Rude,, D. Toffaletti,, G. M. Cox,, J. L. Miller, and, J. R. Perfect. 2006. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect. Immun. 74:58775887.
50. Plesofsky, N. 2004. Heat shock proteins and the stress response, p. 143–173. In R. Brambl and, G. A. Marzluf (ed.), The Mycota III, Biochemistry and Molecular Biology, 2nd ed. Springer-Verlag, Berlin, Germany.
51. Plesofsky, N. S.,, S. B. Levery,, S. A. Castle, and, R. Brambl. 2008. Stress-induced cell death is mediated by ceramide synthesis in Neurospora crassa. Eukaryot. Cell 7:21472159.
52. Raitt, D. C.,, A. L. Johnson,, A. M. Erkine,, K. Makino,, B. Morgan,, D. S. Gross, and, L. H. Johnston. 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol. Biol. Cell 11:23352347.
53. Röttgers, K.,, N. Zufall,, B. Guiard, and, W. Voos. 2002. The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J. Biol. Chem. 277:4582945837.
54. Sahi, C., and, E. A. Craig. 2007. Network of general and specialty J protein chaperones of the yeast cytosol. Proc. Natl. Acad. Sci. USA 104:71637168.
55. Sansó, M.,, M. Gogol,, J. Ayté,, C. Seidel, and, E. Hidalgo. 2008. Transcription factors Pcr1 and Atf1 have distinct roles in stress- and Sty1-dependent gene regulation. Eukaryot. Cell 7:826835.
56. Shaner, L.,, H. Wegele,, J. Buchner, and, K. A. Morano. 2005. The yeast Hsp110 Sse1 functionally interacts with the Hsp70 chaperones Ssa and Ssb. J. Biol. Chem. 280:4126241269.
57. Shivaswamy, S., and, V. R. Iyer. 2008. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol. Cell. Biol. 28:22212234.
58. Small, I.,, N. Peeters,, F. Legeai, and, C. Lurin. 2004. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:15811590.
59. Steel, G. J.,, D. M. Fullerton,, J. R. Tyson, and, C. J. Stirling. 2004. Coordinated activation of Hsp70 chaperones. Science 303:98101.
60. Tatebe, H., and, K. Shiozaki. 2003. Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Mol. Cell. Biol. 23:51325142.
61. Thompson, S.,, N. J. Croft,, A. Sotiriou,, H. D. Piggins, and, S. K. Crosthwaite. 2008. Neurospora crassa heat shock factor 1 is an essential gene; a second heat shock factor-like gene, hsf2, is required for asexual spore formation. Eukaryot. Cell 7:15731581.
62. Tremmel, D.,, M. Duarte,, A. Videira,, M. Tropschug. 2007. FKBP22 is part of chaperone/folding catalyst complexes in the endoplasmic reticulum of Neurospora crassa. FEBS Lett. 581:20362040.
63. Truman, A. W.,, S. H. Millson,, J. M. Nuttall,, M. Mollapour,, C. Prodromou, and, P. W. Piper. 2007. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity. Eukaryot. Cell 6:744752.
64. Walsh, P.,, D. Bursa,, Y. C. Law,, D. Cyr, and, T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5:567571.
65. Winkler, A.,, C. Arkind,, C. P. Mattison,, A. Burkholder,, K. Knoche, and, I. Ota. 2002. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot. Cell 1:163173.
66. Yamamoto, A.,, Y. Mizukami, and, H. Sakurai. 2005. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J. Biol. Chem. 280:1191111919.
67. Yamamoto, A.,, J. Ueda,, N. Yamamoto,, N. Hashikawa, and, H. Sakurai. 2007. Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 6:13731379.
68. Zaragoza, O.,, M. A. Blazquez, and, C. Gancedo. 1998. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 180:38093815.

Tables

Generic image for table
TABLE 1

Major Hsps of and homologs in

Citation: Plesofsky N. 2010. Heat Shock Response, p 488-497. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error