1887

Chapter 33 : Mating Systems and Sexual Morphogenesis in Ascomycetes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mating Systems and Sexual Morphogenesis in Ascomycetes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap33-2.gif

Abstract:

This chapter provides an up-to-date review of complex cellular transition steps in Pezizomycotina, from the differentiation of reproductive cells to the development of the fructification. Initiation of sexual reproduction in the sordariomycete , as it is for several ascomycetes, is clearly not dependent on a particular pH range. In many fungi, light is one of the prominent physical factors controlling sexual reproduction, either by stimulating or inhibiting the formation of reproductive structures. Although most Pezizomycotina can be classified as self-compatible or self-incompatible, some species present peculiar mating characteristics. There are several studies showing that pheromone and pheromone receptors are essential for the fusion of the trichogyne with the male cell in self-incompatible filamentous ascomycetes. Recent data have begun to shed light on the various molecular processes occurring during sexual reproduction in filamentous Ascomycetes. In addition to the well-known variety of body plan exhibited by Pezizomycotina fruiting bodies, sequencing has uncovered a large set of mating-type structures, all based on a common pattern. Indeed, it is now well established that MAT1-1-1 and MAT1-1-2 genes control fertilization by using pheromone/receptor genes in self-incompatible Pezizomycotina, but little is known about their roles after fertilization. The few indications that come from , , and indicate that they control the formation of biparental ascogenous hyphae and meiosis.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Fruiting body plan evolution in filamentous ascomycetes. (A) Representative fruiting bodies of major evolutionary lineages. Lineages in light gray do not produce multicellular fructifications; those underlined produce mostly apothecia or apothecia-like (e.g., truffles and others) fructifications. Laboulbeniomycetes and Sordariomycetes produce mostly perithecia, Dothideomycetes produce mostly pseudothecia, and Eurotiomycetes produce mostly cleistothecia and gymnothecia. Abbreviations: , ; , . , and photos are by P. Silar; images of and were kindly provided by J. L. Cheype, that of by B. G. Turgeon, and that of by Raymond Boyer. (B) Schematic representation of various Pezizomycotina fruiting bodies.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Life cycle and fruiting body development in Pezizomycotina. (A) Schematic representation of the major stages of the sexual cycle of a heterothallic pezizomycotina. The germinating ascospore (a) gives rise to a mycelium on which both male and female gametes differentiate(b). Fertilization occurs only between male and female gametes of opposite mating types (c). The trichogyne catches a microconidium (c, arrow), and the ascogonium develops into a perithecium(d). Inside the perithecium, dikaryotic ascogenous hyphae emerge from the plurinucleate dikaryotic cells. After one or two rounds of mitosis, the ascogenous hypha gives rise to a crozier (e). Karyogamy takes place in the upper cell (indicated by an asterisk) and is immediately followed by meiosis, a mitosis, and ascospore formation (f and g). (B) Schematic representation of various croziers (adapted from a drawing by M. Chadefaud [ ]). All these structures derive from a dikaryotic hypha. The cell in which karyogamy takes place is indicated by an asterisk. (a through d) Tricellular crozier. (a and b) Simple crozier; (c) crozier with a lateral cell which does not fuse with the basal one; (d) prototypical crozier. The lateral cell will fuse with the basal one to give rise to another crozier cell; (e and f) bicellular crozier. The lateral cell does not exist any more.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mating-type structure in Fungi. α1, genes encoding transcription factors with an α1 domain; PPF, genes encoding proteins with a PPF domain; HMG1 and HMG2, genes encoding transcription factors with an HMG domain (phylogenetically related genes are boxed); HOM1, genes encoding transcription factor with a TALE homeodomain (reviewed by ); HOM2, genes encoding a transcription factor with a typical homeodomain; other, genes encoding proteins with uncharacterized features. Mating-type structures from . , and were compiled from works of Butler and others ( ). The mating-type structures of , and were obtained from studies by ), and , respectively.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Amino acid alignment of the α1 domain of deduced MAT1-1-1 proteins of selected pezizomycotina with the MATα1 protein of . : . (AAC37478), . (CAA71623), . (CAA45519), . (EAQ89967), . (strain 70-6) (BAC65087), . (AAK83346), sp. W (BAE93750), sp. G (AB93756), . (AAC71055), . (AAG42809), . (BAC67541), . (CAA06844), . (AAX83122), . (EAA63189), . (AB087596), . (CAA48465), . (AAD33439), (AAR04470), and . (P01365). Stars indicate the residues of the α1 proteins that may interact with MCM1 (adapted from ). Fraction that must agree for shading is 0.7. Alignment was performed with Clustal version 2 ( ), and shading was done with BOXSHADE version 3.21.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Amino acid alignment of the PPF domain of deduced MAT1-1-2 proteins of various pezizomycotina: . (AAC37477), (CAA71626), . (CAA52052), . MAT1-1 (EAQ89966), . MAT1-2 (EAQ91646), . (strain 70-6) (BAC65088), . (AAK83345), sp. W mat1 (BAE93749), sp. W mat2 (BAE93752), sp. G mat1 (BAE93755), sp. G mat2 (BAE93758), . (AAC71054), . (( ), . (AAG42811), . (BAC67540), and . (BAD72603). Fraction that must agree for shading is 0.7. Alignment was performed with Clustal version 2 ( ), and shading was done with BOXSHADE version 3.21.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Amino acid alignment of the HMG domain of deduced MAT1-1-3 proteins of selected pezizomycotina. (AAC37476), (CAA52051), (EAQ89965), (BAC65085), (AAK83344), sp. W mat1 (BAE93748), sp. W mat2 (BAE93751), sp. G mat1 (BAE93754), sp. G mat2 (BAE93757), (AAC71053), (AAG42812), and (CAA06846). Fraction that must agree for shading is 0.7. Alignment was performed with Clustal version 2 ( ), and shading was done with BOXSHADE version 3.21.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Amino acid alignment of the HMG domain of deduced MAT1-2-1 proteins of selected pezizomycotina: (AAA33598), (CAA71624), (CAA45520), (EAQ91645), (BAC65090), (AAK83343), sp. W2 (BAE93753), sp. G2 (BAE93759), (AAC71056), (AAG42810), (BAC66503), (AAF00498), (CAA06843), (EAL92951), (AAQ07985), (ABO87595), (CAA48464), (AAD33439), () (AAR04483), (AAL30836). Fraction that must agree for shading is 0.7. Alignment was performed with Clustal version 2 ( ), and shading was done with BOXSHADE version 3.21.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Phylogenetic tree of deduced MAT1-1-3 and MAT1-2-1 proteins of selected pezizomycotina. The neighbor-joining tree for the HMG proteins encoded by mating types indicates that MAT1-1-3 and MAT1-2-1 transcription factors form two distinct families. For the accession numbers of proteins, see Fig. 6 and 7 . Phylogenetic analysis was conducted with MEGA 4 ( ).

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Structure of locus in selected self-incompatible and asexual pezizomycotina. The phylogenic tree has been built upon previous studies by . Mating-type locus structures are not to scale.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Structure of locus in self-compatible pezizomycotina. The phylogenic tree has been built upon previous studies by . Mating-type locus structures are not to scale.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Crozier formation in mutant strains. (A) Wild-type-like ascus development. Dikaryotic hyphae emerge from a plurinucleate cell and form, after one or two divisions, the crozier cells in which the two nuclei divide. This coordinate mitosis gives rise, after septum formation, to three cells: an upper binucleated cell (long arrow) and two uninucleated cells, one lateral (arrowhead) and one basal (arrow). Karyogamy will take place in the upper cells, which contain two nuclei of opposite mating types. Nuclear fusion is followed by meiosis and elongation of this upper cell, now called an ascus (a through d). A young small ascus where karyogamy has just occurred (a) and a midprophase ascus () are visible. (B) In a cross between a mutant and the wild type, uni-nucleated croziers are formed (arrow); the arrowhead points to an enlarged cell that might evolve into an ascus. (C) Crozier phenotype of a mutant cross. Most croziers are plurinucleated and often form giant croziers (arrow), in which nuclei divide synchronously, but no septa are formed. On the left of this large crozier is a smaller one (arrowhead), still containing an abnormally high number of nuclei but exhibiting a normal size (when compared with the wild-type crozier size in A). (D) Binucleated croziers issued from a ▵ mutant cross. Differentiation of the dikaryotic cells is similar to that in the wild type; however, instead of undergoing karyogamy, the two nuclei isolated in the upper binucleated cell (long arrows) divide again to form another crozier cell. Lateral and basal cells are indicated by an arrowhead and an arrow, respectively. Scale bar, 5 μm. Light micrographs are a kind gift from D. Zickler (IGM; Université Paris Sud-11, France); rosettes of asci are stained by hematoxylin (see , for details).

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Cross talk between mycelium and perithecium envelope. The model is based on data obtained with and . After differentiation, the ascogonium sends a signal to neighboring hyphae to form a protective envelope. The signaling pathway containing PaNox1, IDC1, and the PaMpk1 module is necessary to mobilize these hyphae. Then, in the absence of fertilization, development stops. After fertilization, the same signaling pathway is necessary for the development of the fructification. PaNox1 and IDC1 act in the wall of the fructification, whereas the MAPK module acts in the surrounding hyphae. Signaling then results in the transfer of nutrients to the developing fructification. At later stages of development, a neck is formed under the control of the BEK-1 transcription factor and GPR-1 receptor.

Citation: Debuchy R, Berteaux-Lecellier* V, Silar P. 2010. Mating Systems and Sexual Morphogenesis in Ascomycetes, p 501-535. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch33
1. Aguirre, J.,, M. Rios-Momberg,, D. Hewitt, and, W. Hansberg. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13:111118.
2. Arie, T.,, I. Kaneko,, T. Yoshida,, M. Noguchi,, Y. Nomura, and, I. Yamaguchi. 2000. Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Mol. Plant-Microbe Interact. 13:13301339.
3. Arnaise, S.,, E. Coppin,, R. Debuchy,, D. Zickler, and, M. Picard. 1995. Models for mating type genes functions in Podospora anserina. Abstract no. 23. Fungal Genet. Newsl. Suppl. 42:79.
4. Arnaise, S.,, D. Zickler,, S. Le Bilcot,, C. Poisier, and, R. Debuchy. 2001a. Mutations in mating-type genes of the heterothallic fungus Podospora anserina lead to self-fertility. Genetics 159:545556.
5. Arnaise, S.,, D. Zickler,, C. Poisier, and, R. Debuchy. 2001b. pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserina. Mol. Microbiol. 39:5464.
6. Asina, S.,, K. Jain, and, R. F. Cain. 1977. Factors influencing growth and ascocarp production in three species of Sporomiella. Can. J. Bot. 55:19151925.
7. Ballario, P.,, P. Vittorioso,, A. Magrelli,, C. Talora,, A. Cabibbo, and, G. Macino. 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15:16501657.
8. Barve, M. P.,, T. Arie,, S. S. Salimath,, F. J. Muehlbauer, and, T. L. Peever. 2003. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet. Biol. 39:151167.
9. Bayram, O.,, S. Krappmann,, M. Ni,, J. W. Bok,, K. Helmstaedt,, O. Valerius,, S. Braus-Stromeyer,, N. J. Kwon,, N. P. Keller,, J. H. Yu, and, G. H. Braus. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:15041516.
10. Beatty, N. P.,, M. L. Smith, and, N. L. Glass. 1994. Molecular characterization of mating type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella. Mycol. Res. 98:13091316.
11. Benjamin, C. R. 1955. Ascocarps of Aspergillus and Penicillium. Mycologia 47:669687.
12. Bennett, R. S.,, S. H. Yun,, T. Y. Lee,, B. G. Turgeon,, E. Arseniuk,, B. M. Cunfer, and, G. C. Bergstrom. 2003. Identity and conservation of mating type genes in geographically diverse isolates of Phaeosphaeria nodorum. Fungal Genet. Biol. 40:2537.
13. Bernet, J. 1986. Podospora mutations reducing cell survival following nutrient exhaustion. Curr. Microbiol. 14:133136.
14. Berteaux-Lecellier, V.,, M. Picard,, C. Thompson-Coffe,, D. Zickler,, A. Panvier-Adoutte, and, J. M. Simonet. 1995. A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81:10431051.
15. Berteaux-Lecellier, V.,, D. Zickler,, R. Debuchy,, A. PanvierAdoutte,, C. Thompson-Coffe, and, M. Picard. 1998. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO J. 17:12481258.
16. Bieszke, J. A.,, E. L. Braun,, L. E. Bean,, S. Kang,, D. O. Natvig, and, K. A. Borkovich. 1999a. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc. Natl. Acad. Sci. USA 96:80348039.
17. Bieszke, J. A.,, E. N. Spudich,, K. L. Scott,, K. A. Borkovich, and, J. L. Spudich. 1999b. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:1413814145.
18. Bistis, G. N. 1979. Some aspects of sexual reproduction in Nectria haematococca var. Cucurbitae. Mycologia 71:127143.
19. Bistis, G. N., and, J. R. Raper. 1963. Heterothallism and sexuality in Ascobolus stercorarius. Am. J. Bot. 50:880891.
20. Blumenstein, A.,, K. Vienken,, R. Tasler,, J. Purschwitz,, D. Veith,, N. Frankenberg-Dinkel, and, R. Fischer. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:18331838.
21. Bobrowicz, P.,, R. Pawlak,, A. Correa,, D. Bell-Pedersen, and, D. J. Ebbole. 2002. The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol. Microbiol. 45:795804.
22. Boisnard, S.,, G. Ruprich-Robert,, M. Picard, and, V. Berteaux-Lecellier. 2004. Peroxisomes, p. 61–78. In R. Brambl and, G. A. Marzluf (ed.), The Mycota III. Springer-Verlag, Berlin, Germany.
23. Bonnet, C.,, E. Espagne,, D. Zickler,, S. Boisnard,, A. Bourdais, and, V. Berteaux-Lecellier. 2006. The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle. Mol. Microbiol. 62:157169.
24. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
25. Bouhouche, K.,, D. Zickler,, R. Debuchy, and, S. Arnaise. 2004. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167:151159.
26. Bowden, R. L., and, J. F. Leslie. 1999. Sexual recombination in Gibberella zeae. Phytopathology 89:182188.
27. Bretzloff, C. W. 1954. The growth and fruiting of Sordaria fimicola. Am. J. Bot. 41:5867.
28. Bubnick, M., and, A. G. Smulian. 2007. The MAT1 locus of Histoplasma capsulatum is responsive in a mating type-specific manner. Eukaryot. Cell 6:616621.
29. Bürglin, T. R. 2005. Homeodomain proteins, p. 179–222. In R. A. Meyers (ed.), Encyclopedia of Molecular Cell Biology and Molecular Medicine. Wiley-VCH Verlag, Weinheim, Germany.
30. Busch, S., and, G. H. Braus. 2007. How to build a fungal fruit body: from uniform cells to specialized tissue. Mol. Microbiol. 64:873876.
31. Butler, G. 2007. The evolution of MAT: the Ascomycetes, p. 3–18. In J. Heitman,, J. W. Kronstad,, J. W. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
32. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and, K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl. Acad. Sci. USA 101:16321637.
33. Casselton, L. A. 2008. Fungal sex genes—searching for the ancestors. Bioessays 30:711714.
34. Cayley, D. M. 1931. The inheritance of the capacity for showing mutual aversion between mono-spore mycelia of Diaporthe perniciosa. J. Genet. 24:163.
35. Chadefaud, M. 1960a. Les mycomycophytes à asques ou ascomycètes, p. 462. In M. Chadefaud and, L. Emberger (ed.), Les végétaux non vasculaires (cryptogamie). Masson et Cie, Paris, France.
36. Chadefaud, M. 1960b. Les mycomycophytes à asques ou ascomycètes, p. 454. In M. Chadefaud and, L. Emberger (ed.), Les végétaux non vasculaires (cryptogamie). Masson et Cie, Paris, France.
37. Champe, S. P.,, D. L. Nagle, and, L. N. Yager. 1994. Sexual sporulation. Prog. Ind. Microbiol. 29:429454.
38. Cheng, P.,, Y. Yang,, L. Wang,, Q. He, and, Y. Liu. 2003. WHITE COLLAR-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J. Biol. Chem. 278:38013808.
39. Cisar, C. R., and, D. O. TeBeest. 1999. Mating system of the filamentous ascomycete, Glomerella cingulata. Curr. Genet. 35:127133.
40. Colot, H. V.,, G. Park,, G. E. Turner,, C. Ringelberg,, C. M. Crew,, L. Litvinkova,, R. L. Weiss,, K. A. Borkovich, and, J. C. Dunlap. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103:1035210357.
41. Coppin, E. 2002. The fle1 gene encoding a C2H2 zinc finger protein co-ordinates male and female sexual differentiation in Podospora anserina. Mol. Microbiol. 43:12551268.
42. Coppin, E.,, S. Arnaise,, K. Bouhouche,, X. Robellet,, D. Zickler, and, R. Debuchy. 2005a. Functional study of SMR1, a mating type gene which does not control self/non-self recognition in Podospora anserina. Abstract no. 467. Fungal Genet. Newsl. Suppl. 52:176.
43. Coppin, E.,, S. Arnaise,, V. Contamine, and, M. Picard. 1993. Deletion of the mating-type sequences in Podospora anserina abolishes mating without affecting vegetative functions and sexual differentiation. Mol. Gen. Genet. 241:409414.
44. Coppin, E.,, C. de Renty, and, R. Debuchy. 2005b. The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot. Cell 4:407420.
45. Coppin, E., and, P. Silar. 2007. Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina. Mycol. Res. 111:901908.
46. Dangeard, P. A. 1894. La reproduction sexuelle des Ascomycètes. Le Botaniste 4:2158.
47. Davey, J.,, K. Davis,, M. Hughes,, G. Ladds, and, D. Powner. 1998. The processing of yeast pheromones. Semin. Cell Dev. Biol. 9:1930.
48. Debuchy, R.,, S. Arnaise, and, G. Lecellier. 1993. The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol. Gen. Genet. 241:667673.
49. Debuchy, R., and, B. G. Turgeon. 2006. Mating-type structure, evolution and function in Euascomycetes, p. 293–323. In U. Kües and, R. Fischer (ed.), The Mycota I. Springer-Verlag, Berlin, Germany.
50. Degli-Innocenti, F., and, V. E. Russo. 1984. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J. Bacteriol. 159:757761.
51. Dehorter, B. 1972. Biologie et physiologie de la reproduction sexuée de Nectria galligena Bres. Ph. D. thesis no. 351. Université des Sciences et Techniques de Lille.
52. DeLange, A. M., and, A. J. Griffiths. 1980. Meiosis in Neurospora crassa. I. The isolation of recessive mutants defective in the production of viable ascospores. Genetics 96:367378.
53. Dengler, I. 1937. Entwicklungsgeschichtliche Untersuchungen an Sordaria macrospora Auersw., S. uvicola Viala et Mars. und S. Brefeldii Zopf. Jahrb. Wiss. Bot. 84:427448.
54. Desjardins, A. E.,, D. W. Brown,, S. H. Yun,, R. H. Proctor,, T. Lee,, R. D. Plattner,, S. W. Lu, and, B. G. Turgeon. 2004. Deletion and complementation of the mating type (MAT) locus of the wheat head blight pathogen Gibberella zeae. Appl. Environ. Microbiol. 70:24372444.
55. Drayton, F. L. 1932. The sexual function of the microconidia in certain discomycetes. Mycologia 24:345348.
56. Dyer, P.,, D. S. Ingram, and, K. Johnstone. 1992. Control of sexual morphogenesis in the Ascomycotina. Biol. Rev. 67:421458.
57. Dyer, P.,, D. S. Ingram, and, K. Johnstone. 1993. Evidence for the involvement of linoleic acid and other endogenous lipid factors in perithecial development of Nectria haematococca population. Mycol. Res. 97:485496.
58. Dyer, P. S. 2007. Sexual reproduction and significance of MAT in the aspergilli, p. 123–142. In J. Heitman,, J. W. Kronstad,, J. W. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
59. Dyer, P. S. 2008. Evolutionary biology: genomic clues to original sex in fungi. Curr. Biol. 18:R207R209.
60. Dyer, P. S., and, M. Paoletti. 2005. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med. Mycol. 43(Suppl. 1):S7S14.
61. Dyer, P. S.,, M. Paoletti, and, D. B. Archer. 2003. Genomics reveals sexual secrets of Aspergillus. Microbiology 149:23012303.
62. Ebbole, D. J., and, M. S. Sachs. 1990. A rapid and simple method for isolation of Neurospora crassa homokaryons using microconidia. Fungal Genet. Newsl. 37:1718.
63. Egel, R. 1992. Microbial genetics. Sexual identity and smut. Nature 357:2324.
64. Engh, I.,, C. Wurtz,, K. Witzel-Schlomp,, H. Y. Zhang,, B. Hoff,, M. Nowrousian,, H. Rottensteiner, and, U. Kuck. 2007. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot. Cell 6:831843.
65. Esser, K. 1974. The genetics of Podospora anserina, p. 531–551. In R. C. King (ed.), Handbook of Genetics. Plenum Press, New York, NY.
66. Esser, K., and, D. Graw. 1980. Homokaryotic fruiting in the bipolar-incompatible ascomycete Podospora anserina. Mycologia 72:534541.
67. Faretra, F., and, S. Pollastro. 1996. Genetic studies of the phytopathogenic fungus Botrytinia fuckeliana (Botrytis cinerea) by analysis of ordered tetrads. Mycol. Res. 100:620624.
68. Ferreira, A. V.,, Z. An,, R. L. Metzenberg, and, N. L. Glass. 1998. Characterization of mat A-2, mat A-3 and Δ matA mating-type mutants of Neurospora crassa. Genetics 148:10691079.
69. Fischer, R., and, W. E. Timberlake. 1995. Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J. Cell Biol. 128:485498.
70. Fleissner, A.,, S. Sarkar,, D. J. Jacobson,, M. G. Roca,, N. D. Read, and, N. L. Glass. 2005. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot. Cell 4:920930.
71. Foster, S. J., and, B. D. Fitt. 2003. Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis. Curr. Genet. 44:277286.
72. Fraser, J. A.,, J. E. Stajich,, E. J. Tarcha,, G. T. Cole,, D. O. Inglis,, A. Sil, and, J. Heitman. 2007. Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot. Cell 6:622629.
73. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
74. Gaümann, E. A. 1952. Class III. Ascomycetes, p. 179. In The Fungi. Hafner Publishing Company, New York, NY.
75. Gilles, T.,, A. M. Ashby,, B. D. Fitt, and, T. Cole. 2001. Development of Pyrenopeziza brassicae apothecia on agar and oilseed rape debris. Mycol. Res. 105:705714.
76. Glass, N. L.,, J. Grotelueschen, and, R. L. Metzenberg. 1990. Neurospora crassa A mating-type region. Proc. Natl. Acad. Sci. USA 87:49124916.
77. Glass, N. L., and, L. Lee. 1992. Isolation of Neurospora crassa A mating type mutants by repeat induced point (RIP) mutation. Genetics 132:125133.
78. Glass, N. L., and, M. L. Smith. 1994. Structure and function of a mating-type gene from the homothallic species Neurospora africana. Mol. Gen. Genet. 244:401409.
79. Glass, N. L.,, S. J. Vollmer,, C. Staben,, J. Grotelueschen,, R. L. Metzenberg, and, C. Yanofsky. 1988. DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 241:570573.
80. Goodrich-Tanrikulu, M.,, K. Howe,, A. Stafford, and, M. A. Nelson. 1998. Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology 144(Pt. 7):17131720.
81. Goodwin, S. B. 2002. The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza. Mycol. Res. 106:645654.
82. Graia, F.,, V. Berteaux-Lecellier,, D. Zickler, and, M. Picard. 2000. ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina. Genetics 155:633646.
83. Hall, R. 1971. Effect of carbon-nitrogen ratios on production of perithecia by Sordaria fimicola. Can. J. Microbiol. 17:132134.
84. Hallen, H. E.,, M. Huebner,, S. H. Shiu,, U. Guldener, and, F. Trail. 2007. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 44:11461156.
85. Hallen, H. E., and, F. Trail. 2008. The L-type calcium ion channel cch1 affects ascospore discharge and mycelial growth in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot. Cell 7:415424.
86. Han, K. H.,, D. B. Lee,, J. H. Kim,, M. Kim,, K. Y. Han,, W. S. Kim,, Y. S. Park,, H. B. Kim, and, D. M. Han. 2003. Environmental factors affecting development of Aspergillus nidulans. J. Microbiol. 41:3440.
87. Han, K. H.,, J. A. Seo, and, J. H. Yu. 2004. A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol. Microbiol. 51:13331345.
88. Hansberg, W., and, J. Aguirre. 1990. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J. Theor. Biol. 142:201221.
89. Harrington, T. C., and, D. L. McNew. 1997. Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete. Curr. Genet. 32:5259.
90. Herskowitz, I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature 342:749757.
91. Hirsch, S. M. 1954. Environmental factors influencing the differentiation of protoperithecia and their relation to tyrosinase and melanin formation in Neurospora crassa. Physiol. Plant. 7:7297.
92. Hix, S. M., and, R. Baker. 1964. Physiology of sexual reproduction in Hypomyces solani f. cucurbitae. I. Influence of carbon and nitrogen. Phytopathology 54:584586.
93. Hoffmann, B.,, S. E. Eckert,, S. Krappmann, and, G. H. Braus. 2001. Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157:141147.
94. Hutagalung, A. H.,, M. L. Landsverk,, M. G. Price, and, H. F. Epstein. 2002. The UCS family of myosin chaperones. J. Cell Sci. 115:39833990.
95. Hynes, M. J.,, S. L. Murray,, G. S. Khew, and, M. A. Davis. 2008. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics 178:13551369.
96. Idnurm, A.,, F. J. Walton,, A. Floyd, and, J. Heitman. 2008. Identification of the sex genes in an early diverged fungus. Nature 451:193196.
97. Inderbitzin, P.,, J. Harkness,, B. G. Turgeon, and, M. L. Berbee. 2005. Lateral transfer of mating system in Stem-phylium. Proc. Natl. Acad. Sci. USA 102:1139011395.
98. Inoue, Y., and, M. Furuya. 1970. Perithecial formation in Gelasinospora reticulispora. I. Effects of light at two different growth states. Dev. Growth Differ. 12:141150.
99. James, T. Y.,, F. Kauff,, C. L. Schoch,, P. B. Matheny,, V. Hofstetter,, C. J. Cox,, G. Celio,, C. Gueidan,, E. Fraker,, J. Miadlikowska,, H. T. Lumbsch,, A. Rauhut,, V. Reeb,, A. E. Arnold,, A. Amtoft,, J. E. Stajich,, K. Hosaka,, G. H. Sung,, D. Johnson,, B. O’Rourke,, M. Crockett,, M. Binder,, J. M. Curtis,, J. C. Slot,, Z. Wang,, A. W. Wilson,, A. Schussler,, J. E. Longcore,, K. O’Donnell,, S. Mozley-Standridge,, D. Porter,, P. M. Letcher,, M. J. Powell,, J. W. Taylor,, M. M. White,, G. W. Griffith,, D. R. Davies,, R. A. Humber,, J. B. Morton,, J. Sugiyama,, A. Y. Rossman,, J. D. Rogers,, D. H. Pfister,, D. Hewitt,, K. Hansen,, S. Hambleton,, R. A. Shoemaker,, J. Kohlmeyer,, B. Volkmann-Kohlmeyer,, R. A. Spotts,, M. Serdani,, P. W. Crous,, K. W. Hughes,, K. Matsuura,, E. Langer,, G. Langer,, W. A. Untereiner,, R. Lucking,, B. Budel,, D. M. Geiser,, A. Aptroot,, P. Diederich,, I. Schmitt,, M. Schultz,, R. Yahr,, D. S. Hibbett,, F. Lutzoni,, D. J. McLaughlin,, J. W. Spatafora, and, R. Vilgalys. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818822.
100. Jamet-Vierny, C.,, R. Debuchy,, M. Prigent, and, P. Silar. 2007. IDC1, a pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina. Fungal Genet. Biol. 44:12191230.
101. Johnson, T. E. 1976. Analysis of pattern formation in Neurospora perithecial development using genetic mosaics. Dev. Biol. 54:2336.
102. Kahmann, R.,, T. Romeis,, M. Bolker, and, J. Kamper. 1995. Control of mating and development in Ustilago maydis. Curr. Opin. Genet. Dev. 5:559564.
103. Kakkar, R. K., and, B. R. Mehrotra. 1971. Induced production of cleistothecia in Aspergillus unguis. Experientia 27:710721.
104. Kanamori, M.,, H. Kato,, N. Yasuda,, S. Koizumi,, T. L. Peever,, T. Kamakura,, T. Teraoka, and, T. Arie. 2007. Novel mating type-dependent transcripts at the mating type locus in Magnaporthe oryzae. Gene 403:617.
105. Kanematsu, S.,, Y. Adachi, and, T. Ito. 2007. Mating-type loci of heterothallic Diaporthe spp.: homologous genes are present in opposite mating-types. Curr. Genet. 52:1122.
106. Kelly, M.,, J. Burke,, M. Smith,, A. Klar, and, D. Beach. 1988. Four mating-type genes control sexual differentiation in the fission yeast. EMBO J. 7:15371547.
107. Kema, G. H.,, E. C. Verstappen,, M. Todorova, and, C. Waalwijk. 1996. Successful crosses and molecular tetrad and progeny analyses demonstrate heterothallism in Mycosphaerella graminicola. Curr. Genet. 30:251258.
108. Kicka, S.,, C. Bonnet,, A. K. Sobering,, L. P. Ganesan, and, P. Silar. 2006. A mitotically inheritable unit containing a MAP kinase module. Proc. Natl. Acad. Sci. USA 103:1344513450.
109. Kicka, S., and, P. Silar. 2004. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina. Genetics 166:12411252.
110. Kim, H., and, K. A. Borkovich. 2004. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol. Microbiol. 52:17811798.
111. Kim, H., and, K. A. Borkovich. 2006. Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot. Cell 5:544554.
112. Kim, H.,, R. L. Metzenberg, and, M. A. Nelson. 2002. Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot. Cell 1:987999.
113. Kim, H. K.,, T. Lee, and, S. H. Yun. 2008. A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet. Biol. 45:11881196.
114. Klebs, G. 1898. Zur Physiologie der Forplanzung einiger Pilze. Jb. Wiss. Bot. 33:513597.
115. Klix, V., and, S. Pöggeler. 2008. Analysis of the mating-type genes from the filamentous ascomycete Sordaria macrospora. In 9th Eur. Conf. Fungal Genet. Edinburgh, Scotland.
116. Kothe, G. O., and, S. J. Free. 1998. The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics 149:117130.
117. Krystofova, S., and, K. A. Borkovich. 2006. The predicted G-protein-coupled receptor GPR-1 is required for female sexual development in the multicellular fungus Neurospora crassa. Eukaryot. Cell 5:15031516.
118. Kuo, H. C.,, G. Roca,, C. Jeffree, and, N. D. Read. 2007. A new cell type produced by conidia that is involved in sexual reproduction in Neurospora crassa. Fungal Genet. Newsl. 54:284.
119. Kwon-Chung, K. J. 1969. Studies on sexuality on Nannizia. II.Morphogenesis of gametangia in N. incurvata. Mycologia 61:593605.
120. Kwon-Chung, K. J.,, R. J. Weeks, and, H. W. Larsh. 1974. Studies on Emmonsiella capsulata (Histoplasma capsulatum).II. Distribution of the two mating types in 13 endemic states of the United States. Am. J. Epidemiol. 99:4449.
121. Lacoste, L., and, L. Dujardin. 1972. La reproduction sexuée d’Arachniotus albicans apinis; influence de l’équilibre carbone-azote et du pH. Bull. Soc. Mycol. 88:514.
122. Laessoe, T., and, K. Hansen. 2007. Truffle trouble: what happened to the Tuberales? Mycol. Res. 111:10751099.
123. Lalucque, H., and, P. Silar. 2004. Incomplete penetrance and variable expressivity of a growth defect as a consequence of knocking out two K(+) transporters in the euascomycete fungus Podospora anserina. Genetics 166:125133.
124. Lambou, K.,, F. Malagnac,, C. Barbisan,, D. Tharreau,, M. H. Lebrun, and, P. Silar. 2008. The crucial role during ascospore germination of the Pls1 tetraspanin in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot. Cell 7:18091818.
125. Landvik, S.,, T. K. Schumacher,, O. E. Eriksson, and, S. T. Moss. 2003. Morphology and ultrastructure of Neolecta species. Mycol. Res. 107:10211031.
126. Lara-Ortiz, T.,, H. Riveros-Rosas, and, J. Aguirre. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:12411255.
127. Larkin, M. A.,, G. Blackshields,, N. P. Brown,, R. Chenna,, P. A. McGettigan,, H. McWilliam,, F. Valentin,, I. M. Wallace,, A. Wilm,, R. Lopez,, J. D. Thompson,, T. J. Gibson, and, D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:29472948.
128. Lee, J.,, T. Lee,, Y. W. Lee,, S. H. Yun, and, B. G. Turgeon. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50:145152.
129. Lee, J.,, J. F. Leslie, and, R. L. Bowden. 2008. Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryot. Cell 7:12111221.
130. Lee, R. H., and, S. M. Honigberg. 1996. Nutritional regulation of late meiotic events in Saccharomyces cerevisiae through a pathway distinct from initiation. Mol. Cell. Biol. 16:32223232.
131. Lev, S.,, A. Sharon,, R. Hadar,, H. Ma, and, B. A. Horwitz. 1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad. Sci. USA 96:1354213547.
132. Li, D.,, P. Bobrowicz,, H. H. Wilkinson, and, D. J. Ebbole. 2005. A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:10911104.
133. Lin, X., and, J. Heitman. 2007. Mechanism of homothallism in fungi and transitions between heterothallism and homothallism, p. 35–57. In J. Heitman,, J. W. Kronstad,, J. W. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
134. Lockwood, L. B. 1937. Hydrogen ion concentration and ascus formation. Mycologia 29:289290.
135. Lord, M.,, T. E. Sladewski, and, T. D. Pollard. 2008. Yeast UCS proteins promote actomyosin interactions and limit myosin turnover in cells. Proc. Natl. Acad. Sci. USA 105:80148019.
136. Lumbsch, H. T., and, S. M. Huhndorf. 2007. Whatever happened to the pyrenomycetes and loculoascomycetes? Mycol. Res. 111:10641074.
137. Lutzoni, F.,, M. Pagel, and, V. Reeb. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937940.
138. Machida, M.,, K. Asai,, M. Sano,, T. Tanaka,, T. Kumagai,, G. Terai,, K. Kusumoto,, T. Arima,, O. Akita,, Y. Kashiwagi,, K. Abe,, K. Gomi,, H. Horiuchi,, K. Kitamoto,, T. Kobayashi,, M. Takeuchi,, D. W. Denning,, J. E. Galagan,, W. C. Nierman,, J. Yu,, D. B. Archer,, J. W. Bennett,, D. Bhatnagar,, T. E. Cleveland,, N. D. Fedorova,, O. Gotoh,, H. Horikawa,, A. Hosoyama,, M. Ichinomiya,, R. Igarashi,, K. Iwashita,, P. R. Juvvadi,, M. Kato,, Y. Kato,, T. Kin,, A. Kokubun,, H. Maeda,, N. Maeyama,, J. Maruyama,, H. Nagasaki,, T. Nakajima,, K. Oda,, K. Okada,, I. Paulsen,, K. Sakamoto,, T. Sawano,, M. Takahashi,, K. Takase,, Y. Terabayashi,, J. R. Wortman,, O. Yamada,, Y. Yamagata,, H. Anazawa,, Y. Hata,, Y. Koide,, T. Komori,, Y. Koyama,, T. Minetoki,, S. Suharnan,, A. Tanaka,, K. Isono,, S. Kuhara,, N. Ogasawara, and, H. Kikuchi. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438:11571161.
139. Maerz, S.,, C. Ziv,, N. Vogt,, K. Helmstaedt,, N. Cohen,, R. Gorovits,, O. Yarden, and, S. Seiler. 2008. The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179:13131325.
140. Maheshwari, R. 1999. Microconidia of Neurospora crassa. Fungal Genet. Biol. 26:118.
141. Mainwaring, H. R. 1971. Changes in chromosome morphology during the mitotic prophase in the ascus of the apomictic ascomycete, Podospora arizonensis. Arch. Microbiol. 75:296303.
142. Mainwaring, H. R., and, I. M. Wilson. 1968. The life cycle and cytology of an apomictic Podospora. Trans. Brit. Mycol. Soc. 51:663677.
143. Malagnac, F.,, B. Klapholz, and, P. Silar. 2007. PaTrx1 and PaTrx3, two cytosolic thioredoxins of the filamentous ascomycete Podospora anserina involved in sexual development and cell degeneration. Eukaryot. Cell 6:23232331.
144. Malagnac, F.,, H. Lalucque,, G. Lepere, and, P. Silar. 2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 41:982997.
145. Mandel, M. A.,, B. M. Barker,, S. Kroken,, S. D. Rounsley, and, M. J. Orbach. 2007. Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot. Cell 6:11891199.
146. Masloff, S.,, S. Poggeler, and, U. Kuck. 1999. The pro1(+ ) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152:191199.
147. Mathieson, M. J. 1952. Ascospore dimorphism and mating type in Chromocrea spinulosa (Fuckel) Petch n. comb. Ann. Bot. 16:449466.
148. Mayrhofer, S., and, S. Poggeler. 2005. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. Eukaryot. Cell 4:661672.
149. Mayrhofer, S.,, J. M. Weber, and, S. Poggeler. 2006. Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics 172:15211533.
150. Metin, B.,, S.-W. Lu, and, B. G. Turgeon. 2007. Does the single Dothideomycete MAT1-1-1 protein harbor domains for activities performed by multiple MAT1-1 proteins from Sordariomycetes. Abstract no. 5. Fungal Genet. Newsl. Suppl. 54:42.
151. Metzenberg, R. L., and, N. L. Glass. 1990. Mating type and mating strategies in Neurospora. Bioessays 12:5359.
152. Miller, A. N., and, S. M. Huhndorf. 2005. Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Mol. Phylogenet. Evol. 35:6075.
153. Miller, K. Y.,, A. Nowell, and, B. Miller. 2005. Differential regulation of fruiting body development and meiosis by the unlinked Aspergillus nidulans mating type loci. Abstract no. 493. Fungal Genet. Newsl. Suppl. 52:185.
154. Mooney, J. L., and, L. N. Yager. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4:14731482.
155. Moore-Landecker, E. 1992. Physiology and biochemistry of ascocarp induction and development. Mycol. Res. 96:14731482.
156. Nolting, N., and, S. Poggeler. 2006. A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot. Cell 5:10431056.
157. Nowrousian, M.,, S. Frank,, S. Koers,, P. Strauch,, T. Weitner,, C. Ringelberg,, J. C. Dunlap,, J. J. Loros, and, U. Kuck. 2007. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol. Microbiol. 64:923937.
158. Oda, K., and, K. Hasunuma. 1997. Genetic analysis of signal transduction through light-induced protein phosphorylation in Neurospora crassa perithecia. Mol. Gen. Genet. 256:593601.
159. O’Gorman, C. M.,, H. T. Fuller, and, P. S. Dyer. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471474.
160. Pandey, A.,, M. G. Roca,, N. D. Read, and, N. L. Glass. 2004. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot. Cell 3:348358.
161. Paoletti, M.,, C. Rydholm,, E. U. Schwier,, M. J. Anderson,, G. Szakacs,, F. Lutzoni,, J. P. Debeaupuis,, J. P. Latge,, D. W. Denning, and, P. S. Dyer. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15:12421248.
162. Paoletti, M.,, F. A. Seymour,, M. J. Alcocer,, N. Kaur,, A. M. Calvo,, D. B. Archer, and, P. S. Dyer. 2007. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr. Biol. 17:13841389.
163. Pel, H. J.,, J. H. de Winde,, D. B. Archer,, P. S. Dyer,, G. Hofmann,, P. J. Schaap,, G. Turner,, R. P. de Vries,, R. Albang,, K. Albermann,, M. R. Andersen,, J. D. Bendtsen,, J. A. Benen,, M. van den Berg,, S. Breestraat,, M. X. Caddick,, R. Contreras,, M. Cornell,, P. M. Coutinho,, E. G. Danchin,, A. J. Debets,, P. Dekker,, P. W. van Dijck,, A. van Dijk,, L. Dijkhuizen,, A. J. Driessen,, C. d’Enfert,, S. Geysens,, C. Goosen,, G. S. Groot,, P. W. de Groot,, T. Guillemette,, B. Henrissat,, M. Herweijer,, J. P. van den Hombergh,, C. A. van den Hondel,, R. T. van der Heijden,, R. M. van der Kaaij,, F. M. Klis,, H. J. Kools,, C. P. Kubicek,, P. A. van Kuyk,, J. Lauber,, X. Lu,, M. J. van der Maarel,, R. Meulenberg,, H. Menke,, M. A. Mortimer,, J. Nielsen,, S. G. Oliver,, M. Olsthoorn,, K. Pal,, N. N. van Peij,, A. F. Ram,, U. Rinas,, J. A. Roubos,, C. M. Sagt,, M. Schmoll,, J. Sun,, D. Ussery,, J. Varga,, W. Vervecken,, P. J. van de Vondervoort,, H. Wedler,, H. A. Wosten,, A. P. Zeng,, A. J. van Ooyen,, J. Visser, and, H. Stam. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25:221231.
164. Peraza-Reyes, L.,, D. Zickler, and, V. Berteaux-Lecellier. 2008. The peroxisome RING-Finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 9:11982009.
165. Perkins, D. D. 1987. Mating-type switching in filamentous ascomycetes. Genetics 115:215216.
166. Picard, M.,, R. Debuchy, and, E. Coppin. 1991. Cloning the mating types of the heterothallic fungus Podospora anserina: developmental features of haploid transformants carrying both mating types. Genetics 128:539547.
167. Platta, H. W., and, R. Erdmann. 2007. The peroxisomal protein import machinery. FEBS Lett. 581:28112819.
168. Pöggeler, S. 2002. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr. Genet. 42:153160.
169. Pöggeler, S. 2007. MAT and its role in the homothallic ascomycete Sordaria macrospora, p. 171–188. In J. Heitman,, J. W. Kronstad,, J. W. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
170. Pöggeler, S., and, U. Kück. 2000. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol. Gen. Genet. 263:292301.
171. Pöggeler, S., and, U. Kück. 2001. Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:917.
172. Pöggeler, S.,, M. Nowrousian, and, U. Kück. 2006a. Fruiting body development in Ascomycetes, p. 325–355. In U. Kües and R. Fischer (ed.), The Mycota I. Springer-Verlag, Berlin, Germany.
173. Pöggeler, S.,, M. Nowrousian,, C. Ringelberg,, J. J. Loros,, J. C. Dunlap, and, U. Kück. 2006b. Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol. Genet. Genomics 275:492503.
174. Pöggeler, S.,, S. Risch,, U. Kück, and, H. D. Osiewacz. 1997. Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567580.
175. Pontecorvo, G.,, J. A. Roper,, L. M. Hemmons,, K. D. Macdonald, and, A. W. Bufton. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5:141238.
176. Pyrzak, W.,, K. Y. Miller, and, B. L. Miller. 2008. Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans. Eukaryot. Cell 7:10291040.
177. Raju, N. B. 1980. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 23:208223.
178. Raju, N. B. 1987. A Neurospora mutant with abnormal crozier, giant ascospores, and asci having multiple apical pores. Mycologia 79:696706.
179. Raju, N. B. 1992. Genetic control of the sexual cycle in Neurospora. Mycol. Res. 96:241262.
180. Raju, N. B., and, D. Newmeyer. 1977. Giant ascospores and abnormal crozier in a mutant of Neurospora crassa. Exp. Mycol. 1:152165.
181. Raju, N. B., and, D. D. Perkins. 1994. Diverse programs of ascus development in pseudohomothallic species of Neurospora, Gelasinospora, and Podospora. Dev. Genet. 15:104118.
182. Raper, J. R. 1966. The Fungi, an advanced treatise, p. 473–511. In G. C. Ainsworth and, A. S. Sussman (ed.), The Fungal Organism. Academic Press, New York, NY.
183. Rasmussen, C. G., and, N. L. Glass. 2005. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa. Eukaryot. Cell 4:19131925.
184. Read, N. D., and, A. Beckett. 1996. Ascus and ascospore morphogenesis. Mycol. Res. 100:12811314.
185. Reumann, S. 2000. The structural properties of plant peroxisomes and their metabolic significance. Biol. Chem. 381:639648.
186. Reynolds, D. R., and, J. W. Taylor (ed.). 1993. The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB Int., Wallingford, United Kingdom.
187. Robertson, J. A., and, R. Emerson. 1982. Two new members of the blastocladiaceae. II. Morphogenetic responses to O2 and CO2. Am. J. Bot. 69:812817.
188. Robertson, S. J.,, D. J. Bond, and, N. D. Read. 1998. Homothallism and heterothallism in Sordaria brevicollis. Mycol. Res. 102:12151223.
189. Rossier, C.,, T.-C. Ton-That, and, G. Turian. 1977. Microcycle microconidiation in Neurospora crassa. Exp. Mycol. 1:5262.
190. Rydholm, C.,, P. S. Dyer, and, F. Lutzoni. 2007. DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot. Cell 6:868874.
191. Sautter, C., and, B. Hock. 1982. Crozier formation in Byssochlamis nivea. Mycologia 74:256264.
192. Scazzocchio, C. 2006. Aspergillus genomes: secret sex and the secrets of sex. Trends Genet. 22:521525.
193. Seo, J. A.,, K. H. Han, and, J. H. Yu. 2004. The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol. Microbiol. 53:16111623.
194. Seo, J. A., and, J. H. Yu. 2006. The phosducin-like protein PhnA is required for Gbetagamma-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans. Eukaryot. Cell 5:400410.
195. Sharon, A.,, K. Yamaguchi,, S. Christiansen,, B. A. Horwitz,, O. C. Yoder, and, B. G. Turgeon. 1996. An asexual fungus has the potential for sexual development. Mol. Gen. Genet. 251:6068.
196. Shen, W. C.,, P. Bobrowicz, and, D. J. Ebbole. 1999. Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet. Biol. 27:253263.
197. Shiu, P. K.,, N. B. Raju,, D. Zickler, and, R. L. Metzenberg. 2001. Meiotic silencing by unpaired DNA. Cell 107:905916.
198. Shrestha, B.,, H. K. Kim,, G. H. Sung,, J. W. Spatafora, and, J. M. Sung. 2004. Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol. Bioprocess Eng. 9:440446.
199. Simonet, J.-M., and, D. Zickler. 1978. Genes involved in caryogamy and meiosis in Podospora anserina. Mol. Gen. Genet. 162:237242.
200. Simonet, J. M., and, D. Zickler. 1972. Mutations affecting meiosis in Podospora anserina. I. Cytological studies. Chromosoma 37:327351.
201. Singh, G., and, A. M. Ashby. 1998. Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein. Mol. Microbiol. 30:799806.
202. Soullier, S.,, P. Jay,, F. Poulat,, J. M. Vanacker,, P. Berta, and, V. Laudet. 1999. Diversification pattern of the HMG and SOX family members during evolution. J. Mol. Evol. 48:517527.
203. Spatafora, J. W.,, G. H. Sung,, D. Johnson,, C. Hesse,, B. O’Rourke,, M. Serdani,, R. Spotts,, F. Lutzoni,, V. Hofstetter,, J. Miadlikowska,, V. Reeb,, C. Gueidan,, E. Fraker,, T. Lumbsch,, R. Lucking,, I. Schmitt,, K. Hosaka,, A. Aptroot,, C. Roux,, A. N. Miller,, D. M. Geiser,, J. Hafellner,, G. Hestmark,, A. E. Arnold,, B. Budel,, A. Rauhut,, D. Hewitt,, W. A. Untereiner,, M. S. Cole,, C. Scheidegger,, M. Schultz,, H. Sipman, and, C. L. Schoch. 2006. A five-gene phylogeny of Pezizomycotina. Mycologia 98:10181028.
204. Stchigel, A. M., and, J. Guarro. 2007. A reassessment of cleistothecia as a taxonomic character. Mycol. Res. 111:11001115.
205. Sugiyama, J.,, K. Hosaka, and, S. O. Suh. 2006. Early diverging Ascomycota: phylogenetic divergence and related evolutionary enigmas. Mycologia 98:9961005.
206. Suh, S. O.,, M. Blackwell,, C. P. Kurtzman, and, M. A. Lachance. 2006. Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 98:10061017.
207. Swart, K.,, D. van Heemst,, M. Slakhorst,, F. Debets, and, C. Heyting. 2001. Isolation and characterization of sexual sporulation mutants of Aspergillus nidulans. Fungal Genet. Biol. 33:2535.
208. Tamura, K.,, J. Dudley,, M. Nei, and, S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:15961599.
209. Taylor, J.,, D. Jacobson, and, M. Fisher. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phytopathol. 37:197246.
210. Taylor, J. W., and, M. L. Berbee. 2006. Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838849.
211. Terlecky, S. R., and, V. I. Titorenko. 2009. Emergent Functions of the Peroxisomes. Research Signpost, Kerala, India.
212. Tharreau, D.,, J.-L. Notteghem, and, M. H. Lebrun. 1997. Mutations affecting perithecium development and sporulation in Magnaporthe grisea. Fungal Genet. Biol. 21:206213.
213. Thompson-Coffe, C.,, G. Borioli,, D. Zickler, and, A. L. Rosa. 1999. Pyruvate decarboxylase filaments are associated with the cortical cytoskeleton of asci and spores over the sexual cycle of filamentous ascomycetes. Fungal Genet. Biol. 26:7180.
214. Thompson-Coffe, C., and, D. Zickler. 1994. How the cytoskeleton recognizes and sorts nuclei of opposite mating type during the sexual cycle in filamentous ascomycetes. Dev. Biol. 165:257271.
215. Thon, M.,, Q. Al-Abdallah,, P. Hortschansky, and, A. A. Brakhage. 2007. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. J. Biol. Chem. 282:2725927269.
216. Titorenko, V. I., and, R. A. Rachubinski. 2004. The peroxi-some: orchestrating important developmental decisions from inside the cell. J. Cell Biol. 164:641645.
217. Todd, R. B.,, M. J. Hynes, and, A. Andrianopoulos. 2006. The Aspergillus nidulans rcoA gene is required for veA-dependent sexual development. Genetics 174:16851688.
218. Trail, F. 2007. Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiol. Lett. 276:1218.
219. Tsitsigiannis, D. I.,, T. M. Kowieski,, R. Zarnowski, and, N. P. Keller. 2004a. Endogenous lipogenic regulators of spore balance in Aspergillus nidulans. Eukaryot. Cell 3:13981411.
220. Tsitsigiannis, D. I.,, T. M. Kowieski,, R. Zarnowski, and, N. P. Keller. 2005. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:18091821.
221. Tsitsigiannis, D. I.,, R. Zarnowski, and, N. P. Keller. 2004b. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J. Biol. Chem. 279:1134411353.
222. Turgeon, B. G.,, H. Bohlmann,, L. M. Ciuffetti,, S. K. Christiansen,, G. Yang,, W. Schafer, and, O. C. Yoder. 1993. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol. Gen. Genet. 238:270284.
223. Turgeon, B. G., and, R. Debuchy. 2007. Cochliobolus and Podospora: mechanism of sex determination and the evolution of reproductive lifestyle, p. 93–121. In J. Heitman,, J. W. Kronstad,, J. W. Taylor, and, L. A. Casselton (ed.), Sex in Fungi, Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
224. Turgeon, B. G., and, O. C. Yoder. 2000. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet. Biol. 31:15.
225. Turina, M.,, A. Prodi, and, N. K. Alfen. 2003. Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet. Biol. 40:242251.
226. Uhm, J. Y., and, H. Fujii. 1983. Heterothallism and mating type mutation in Sclerotinia trifoliorum. Phytopathology 73:569572.
227. van den Bosch, H.,, R. B. Schutgens,, R. J. Wanders, and, J. M. Tager. 1992. Biochemistry of peroxisomes. Annu. Rev. Biochem. 61:157197.