1887

Chapter 34 : Mating and Sexual Morphogenesis in Basidiomycete Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mating and Sexual Morphogenesis in Basidiomycete Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap34-2.gif

Abstract:

The mating pathways of filamentous ascomycete and basidiomycete fungi are clearly similar, relying on pheromones and cognate receptors for cell communication as well as specific transcription factors to regulate gene expression. Fungal mating-type (MAT) genes encode critical transcription factors, but in basidiomycetes, unlike ascomycetes, they also encode the pheromones and receptors. The reason for this difference between the two major divisions of the Dikarya will become evident when specific aspects of the basidiomycete lifestyle are considered. Understanding the role that these genes play in cell-specific gene expression and mate attraction is particularly relevant to understanding mating in all other members of the Dikarya, even though the lifestyles of these fungi and the actual genes at the loci may differ. The pheromones encoded at the loci of all basidiomycete fungi studied belong to the a lipopeptide pheromone family, and the receptors are correspondingly members of the Ste3p family. Signal transduction processes during mating are initiated by the binding of pheromones to their cognate receptors. Thereby, specific signaling cascades that trigger defined cellular events such as increased pheromone secretion or cell cycle arrest are elicited. Besides pheromones and cognate receptors, genes encoding the basidiomycete homologues of the a1 and α2 proteins of are found at the second locus, called MATb in and MATA in hymenomycetes. Isolating mutants defective in morphogenesis has been simplified by the use of special strains with self-compatible mutations in both sets of genes.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Life cycles of the filamentous hymenomycete (A) and the dimorphic heterobasidiomycete (B). Details are given in the text.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Organization and function of genes at the locus. (A) The locus in cells encodes a single protein, a1, that plays no role in regulating cell-specific genes. The idiomorphic locus in cells encodes two proteins, α1, which activates cell-specific α genes, and α2, which represses cell-specific genes. (B) In diploid cells with both alleles of , α2 represses cell-specific genes, and a new transcription factor generated by heterodimerization between α2 and a1 proteins represses all genes required for haploid mating functions.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Organization of the basidiomycete loci encoding pheromones and receptor genes: (A); (B); (C); and (D). The receptor genes are designated and in , and in , and in ; and and in . The prefix is used to denote the pheromone genes of and in , and or in . Different fill motifs represent different alleles of genes in and and paralogous genes in different subloci in and and in the and locus encode mitochondrial proteins, likely involved in uniparental inheritance. A compatible pheromone-receptor interaction that activates the pheromone response is shown for .

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Pheromone signaling network during mating in . Components of a conserved MAPK module (hexagons) communicate with a conserved cAMP signaling pathway (left). Phosphorylation of Prf1 through PKA and MAPK signaling (circled P) is used to differentiate between and gene expression. The novel MAPK Crk1 as well as HMG box transcription factors Rop1 and Prf1 regulated expression transcriptionally (see the text for details) (figure modified from ).

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Organization of the basidiomycete loci encoding homeodomain proteins in (A) and (B). Different fill motifs are used to represent different alleles of genes in both and and paralogous genes in , and are genes, and , and are genes. Crossed lines indicate compatible gene combinations. (C) Hypothetical heterodimer that results from heterodimerization between compatible HD1 and HD2 proteins.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Organization of mating-type loci of bipolar species (A), (B), and (C). Pheromones, receptors, and homeodomain proteins are indicated with the same symbols as in Fig. 3 and 5 . Large gaps between mating-type loci are indicated with the distance in kilobases. Pheromone and receptor genes shown for are unlinked to .

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Comparative regulation of the sexual cycle in heterothallic basidiomycetes and ascomycetes. Evolution of heterothallism resulted in critical genes required to initiate the sexual cycle being localized to a locus. In ascomycetes, the genes at are translational activators that regulate differential expression of pheromone precursor and pheromone receptor genes and the many other genes required for processing the pheromones to active species. In basidiomycetes, the pheromone precursor and pheromone receptor genes are localized to the locus.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Suggested steps in the evolution of loci in ascomycetes and basidiomycetes. Refer to the text for details.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch34
1. Anderson, J. B., and, L. Kohn. 2007. Dikaryons, diploids and evolution, p. 333–348. In J. Heitman,, J. W. Kronstad,, J. H. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
2. Andrews, D. L.,, J. D. Egan,, M. E. Mayorga, and, S. E. Gold. 2000. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol. Plant-Microbe Interact. 13:781786.
3. Asante-Owusu, R. N.,, A. H. Banham,, H. U. Bohnert,, E. J. Mellor, and, L. A. Casselton. 1996. Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene 172:2531.
4. Badalyan, S. M.,, E. Polak,, R. Hermann,, M. Aebi, and, U. Kües. 2004. Role of peg formation in clamp cell fusion of homobasidiomycete fungi. J. Basic Microbiol. 44:167177.
5. Bakkeren, G.,, B. Gibbard,, A. Yee,, E. Froeliger,, S. Leong, and, J. Kronstad. 1992. The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. Mol. Plant-Microbe Interact. 5:347355.
6. Bakkeren, G.,, G. Jiang,, R. L. Warren,, Y. Butterfield,, H. Shin,, R. Chiu,, R. Linning,, J. Schein,, N. Lee,, G. Hu,, D. M. Kupfer,, Y. Tang,, B. A. Roe,, S. Jones,, M. Marra, and, J. W. Kronstad. 2006. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Fungal Genet. Biol. 43:655666.
7. Bakkeren, G., and, J. W. Kronstad. 1994. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc. Natl. Acad. Sci. USA 91:70857089.
8. Banham, A. H.,, R. N. Asante-Owusu,, B. Gottgens,, S. Thompson,, C. S. Kingsnorth,, E. Mellor, and, L. A. Casselton. 1995. An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell 7:773783.
9. Banuett, F. 1995. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29:179208.
10. Banuett, F. 2007. History of the mating types in Ustilago maydis, p. 351–375. In J. Heitman,, J. W. Kronstad,, J. H. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
11. Banuett, F., and, I. Herskowitz. 1994. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev. 8:13671378.
12. Baptista-Ferreira, J. L.,, A. Economou, and, L. A. Casselton. 1983. Mitochondrial genetics of Coprinus: recombination of mitochondrial genomes. Curr. Genet. 7:405407.
13. Becht, P.,, J. König, and, M. Feldbrügge. 2006. The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J. Cell Sci. 119:49644973.
14. Becht, P.,, E. Vollmeister, and, M. Feldbrügge. 2005. A role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot. Cell 4:121133.
15. Bennett, R. J.,, M. A. Uhl,, M. G. Miller, and, A. D. Johnson. 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23:81898201.
16. Bölker, M.,, S. Genin,, C. Lehmler, and, R. Kahmann. 1995. Genetic regulation of mating, and dimorphism in Ustilago maydis. Can. J. Bot. 73:320325.
17. Bölker, M.,, M. Urban, and, R. Kahmann. 1992. The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441450.
18. Bortfeld, M.,, K. Auffarth,, R. Kahmann, and, C. W. Basse. 2004. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. Plant Cell 16:22332248.
19. Brachmann, A.,, J. Schirawski,, P. Müller, and, R. Kahmann. 2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22:21992210.
20. Brachmann, A.,, G. Weinzierl,, J. Kämper, and, R. Kahmann. 2001. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 42:10471063.
21. Brefort, T.,, P. Müller, and, R. Kahmann. 2005. The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Eukaryot. Cell 4:379391.
22. Buller, H. R. 1931. Further observations on the Coprini together with some investigations on social organisation and sex in the hymenomycetes. Researches on Fungi IV. Hafner Publishing Co, New York, NY.
23. Bürglin, T. R. 1994. A comprehensive classification of homeobox genes, p. 27–71. In D. Duboule (ed.), Guidebook to the Homeobox Genes. Oxford University Press, Oxford, England.
24. Butler, G. 2007. The evolution of MAT: the Ascomycetes, p. 3–18. In J. Heitman,, J. W. Kronstad,, J. H. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
25. Casselton, L. A. 2008. Fungal sex genes—searching for the ancestors. Bioessays 30:711714.
26. Casselton, L. A., and, A. Condit. 1972. A mitochondrial mutant of Coprinus lagopus. J. Gen. Microbiol. 72:521527.
27. Casselton, L. A., and, U. Kües. 2007. Origin of multiple mating types in the model mushrooms Coprinopsis cinerea and Schizophyllum commune, p. 283–300. In J. Heitman,, J. W. Kronstad,, J. H. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
28. Casselton, L. A., and, N. S. Olesnicky. 1998. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol. Mol. Biol. Rev. 62:5570.
29. Chen, P.,, S. K. Sapperstein,, J. D. Choi, and, S. Michaelis. 1997. Biogenesis of the Saccharomyces cerevisiae mating pheromone a-factor. J. Cell Biol. 136:251269.
30. Coppin, E.,, R. Debuchy,, S. Arnaise, and, M. Picard. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61:411428.
31. Davey, J. 1998. Fusion of a fission yeast. Yeast 14:15291566.
32. Day, P. R. 1961. The structure of the A mating-type locus of Coprinus lagopus. Genetics 45:641650.
33. Day, P. R. 1963. Mutations of the A mating type factor in Coprinus lagopus. Nat. New Biol. 231:1920.
34. Debuchy, R., and, E. Coppin. 1992. The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol. Gen. Genet. 233:113121.
35. Dürrenberger, F.,, K. Wong, and, J. W. Kronstad. 1998. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc. Natl. Acad. Sci. USA 95:56845689.
36. Elion, E. A. 2000. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3:573581.
37. Elliott, T. J. 1978. Comparative sexuality in Agaricus species. J. Gen. Microbiol. 107:113122.
38. Feldbrügge, M.,, M. Bölker,, G. Steinberg,, J. Kämper, and, R. Kahmann. 2006. Regulatory and structural networks orchestrating mating, dimorphism, cell shape, and pathogenesis in Ustilago maydis, p. 375–391. In U. Kües and, R. Fischer (ed.), The Mycota I. Springer-Verlag, Berlin, Germany.
39. Feldbrügge, M.,, J. Kämper,, G. Steinberg, and, R. Kahmann. 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7:666672.
40. Feldbrügge, M.,, K. Zarnack,, E. Vollmeister,, S. Baumann,, J. Koepke,, J. König,, M. Münsterkötter, and, G. Mannhaupt. 2008. The posttranscriptional machinery of Ustilago maydis. Fungal Genet. Biol. 45:S40S46.
41. Fowler, T. J.,, S. M. DeSimone,, M. F. Mitton,, J. Kurjan, and, C. A. Raper. 1999. Multiple sex pheromones and receptors of a mushroom-producing fungus elicit mating in yeast. Mol. Biol. Cell 10:25592572.
42. Fowler, T. J.,, M. F. Mitton,, E. I. Rees, and, C. A. Raper. 2004. Crossing the boundary between the Balpha and Bbeta mating-type loci in Schizophyllum commune. Fungal Genet. Biol. 41:89101.
43. Fowler, T. J.,, M. F. Mitton,, L. J. Vaillancourt, and, C. A. Raper. 2001. Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. Genetics 158:14911503.
44. Frazer, J. A., and, J. Heitman. 2005. Chromosomal sex-determining regions in animals, plants and fungi. Curr. Opin. Genet. Dev. 15:641651.
45. Fuchs, U.,, I. Manns, and, G. Steinberg. 2005. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol. Biol. Cell 16:27462758.
46. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
47. Garcia-Muse, T.,, G. Steinberg, and, J. Pérez-Martín. 2003. Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot. Cell 2:494500.
48. Garcia-Muse, T.,, G. Steinberg, and, J. Pérez-Martín. 2004. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. J. Cell Sci. 117:487506.
49. Garcia-Pedrajas, M. D.,, M. Nadal,, M. Bölker,, S. E. Gold, and, M. H. Perlin. 2008. Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis. Fungal. Genet. Biol. 45:S22S30.
50. Garrido, E.,, U. Voϐ,, P. Müller,, R. Kahmann, and, J. Pérez-Martín. 2004. The induction of sexual development and virulence in the smut fungus Ustilago maydis on Crk1, a novel MAPK protein. Genes Dev. 18:31173130.
51. Gieser, P. T., and, G. May. 1994. Comparison of two b1 alleles from within the A mating-type of the basidiomycete Coprinus cinereus. Gene 146:167176.
52. Giesy, R. M., and, P. R. Day. 1965. The septal pores of Coprinus lagopus (Fr.) sensu Buller in relation to nuclear migration. Am. J. Bot. 52:287294.
53. Gillissen, B.,, J. Bergemann,, C. Sandmann,, B. Schroeer,, M. Bölker, and, R. Kahmann. 1992. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68:647657.
54. Giraud, T.,, R. Yockteng,, M. López-Villavicencio,, G. Refrégier, and, M. E. Hood. 2008. Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. Eukaryot. Cell 7:765775.
55. Gold, S. E.,, S. M. Brogdon,, M. E. Mayorga, and, J. W. Kronstad. 1997. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9:15851594.
56. Gold, S. E.,, G. Duncan,, K. Barrett, and, J. Kronstad. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8:28052816.
57. Halsall, J. R.,, M. J. Milner, and, L. A. Casselton. 2000. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154:11151123.
58. Hanna, W. F. 1929. Studies in the physiology and cytology of Ustilago zeae and Sorosporium reilianum. Phytopathology 19:415441.
59. Hartmann, H. A.,, R. Kahmann, and, M. Bölker. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15:16321641.
60. Hartmann, H. A.,, J. Krüger,, F. Lottspeich, and, R. Kah-mann. 1999. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:12931306.
61. Haylock, R. W.,, A. Economou, and, L. A. Casselton. 1980. Dikaryon formation in Coprinus cinereus: selection and identification of B factor mutants. J. Gen. Microbiol. 121:1726.
62. Herskowitz, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:536553.
63. Ho, C. Y.,, J. G. Adamson,, R. S. Hodges, and, M. Smith. 1994. Heterodimerization of the yeast MAT a1 and MAT alpha 2 proteins is mediated by two leucine zipper-like coiled-coil motifs. EMBO J. 13:14031413.
64. Hsueh, Y. P.,, A. Idnurm, and, J. Heitman. 2006. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet. 2:e184.
65. Hull, C. M.,, M. J. Boily, and, J. Heitman. 2005. Sex-specific homeodomain proteins Sxi1alpha and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 4:526535.
66. Hull, C. M., and, J. Heitman. 2002. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36:557615.
67. Idnurm, A.,, Y. S. Bahn,, K. Nielsen,, X. Lin,, J. A. Fraser, and, J. Heitman. 2005. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3:753764.
68. Inada, K.,, Y. Morimoto,, T. Arima,, Y. Murata, and, T. Kamada. 2001. The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157:133140.
69. James, T. Y.,, U. Kües,, S. A. Rehner, and, R. Vilgalys. 2004. Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi. Fungal Genet. Biol. 41:381390.
70. James, T. Y.,, P. Srivilai,, U. Kües, and, R. Vilgalys. 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:18771891.
71. Johnson, A. D. 1995. Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5:552558.
72. Kaffarnik, F.,, P. Müller,, M. Leibundgut,, R. Kahmann, and, M. Feldbrügge. 2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J. 22:58175826.
73. Kahmann, R., and, J. Kämper. 2004. Ustilago maydis: how its biology relates to pathogenic development. New Phytol. 164:3142.
74. Kahmann, R., and, J. Schirawski. 2007. Mating in the smut fungi: from a to b to the downstream cascades, p. 337–387. In J. Heitman,, J. W. Kronstad,, J. H. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
75. Kämper, J.,, M. Reichmann,, T. Romeis,, M. Bölker, and, R. Kahmann. 1995. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:7383.
76. Klosterman, S. J.,, A. D. Martinez-Espinoza,, D. L. Andrews,, J. R. Seay, and, S. E. Gold. 2008. Ubc2, an ortholog of the yeast Ste50p adaptor, possesses a basidiomycete-specific carboxy terminal extension essential for pathogenicity independent of pheromone response. Mol. Plant-Microbe Interact. 21:110121.
77. Kniep, H. 1928. Die Sexualität der niederen Pflanzen. Fischer, Jena, Germany.
78. Koltin, Y., and, J. R. Raper. 1967. The genetic structure of incompatibility factors of Schizophyllum commune: three functionally distinct classes of B factors. Proc. Natl. Acad. Sci. USA 58:12201226.
79. Koltin, Y.,, J. Stamberg, and, P. A. Lemke. 1972. Genetic structure and evolution of the incompatibility factors in higher fungi. Bacteriol. Rev. 36:156171.
80. Koppitz, M.,, T. Spellig,, R. Kahmann, and, H. Kessler. 1996. Lipoconjugates: structure-activity studies for pheromone analogues of Ustilago maydis with varied lipophilicity. Int. J. Pept. Protein Res. 48:377390.
81. Kronstad, J. W., and, S. A. Leong. 1990. The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev. 4:13841395.
82. Krüger, J.,, G. Loubradou,, E. Regenfelder,, A. Hartmann, and, R. Kahmann. 1998. Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol. Gen. Genet. 260:193198.
83. Kües, U. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64:316353.
84. Kües, U.,, R. N. Asante-Owusu,, E. S. Mutasa,, A. M. Tymon,, E. H. Pardo,, S. F. O’Shea,, B. Gottgens, and, L. A. Casselton. 1994. Two classes of homeodomain proteins specify the multiple A mating types of the mushroom Coprinus cinereus. Plant Cell 6:14671475.
85. Kües, U., and, L. A. Casselton. 1992. Homeodomains and regulation of sexual development in basidiomycetes. Trends Genet. 8:154155.
86. Kurjan, J. 1993. The pheromone response pathway in Saccharomyces cerevisiae. Annu. Rev. Genet. 27:147179.
87. Kwon-Chung, K. J., and, J. E. Bennett. 1978. Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol. 108:337340.
88. Lee, N., and, J. W. Kronstad. 2002. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell 1:954966.
89. Martin, F.,, A. Aerts,, D. Ahren,, A. Brun,, E. G. Danchin,, F. Duchaussoy,, J. Gibon,, A. Kohler,, E. Lindquist,, V. Pereda,, A. Salamov,, H. J. Shapiro,, J. Wuyts,, D. Blaudez,, M. Buee,, P. Brokstein,, B. Canback,, D. Cohen,, P. E. Courty,, P. M. Coutinho,, C. Delaruelle,, J. C. Detter,, A. Deveau,, S. Di-Fazio,, S. Duplessis,, L. Fraissinet-Tachet,, E. Lucic,, P. Frey-Klett,, C. Fourrey,, I. Feussner,, G. Gay,, J. Grimwood,, P. J. Hoegger,, P. Jain,, S. Kilaru,, J. Labbe,, Y. C. Lin,, V. Legue,, F. Le Tacon,, R. Marmeisse,, D. Melayah,, B. Montanini,, M. Muratet,, U. Nehls,, H. Niculita-Hirzel,, M. P. Oudot-Le Secq,, M. Peter,, H. Quesneville,, B. Rajashekar,, M. Reich,, N. Rouhier,, J. Schmutz,, T. Yin,, M. Chalot,, B. Henrissat,, U. Kues,, S. Lucas,, Y. Van de Peer,, G. K. Podila,, A. Polle,, P. J. Pukkila,, P. M. Richardson,, P. Rouze,, I. R. Sanders,, J. E. Stajich,, A. Tunlid,, G. Tuskan, and, I. V. Grigoriev. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:8892.
90. Mayorga, M. E., and, S. E. Gold. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34:485497.
91. Mayorga, M. E., and, S. E. Gold. 2001. The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol. Microbiol. 41:13651379.
92. McClelland, C. M.,, Y. C. Chang,, A. Varma, and, K. J. Kwon-Chung. 2004. Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol. 12:208212.
93. Moore, D. 1996. Inside the developing mushroom-cells, tissues and tissue pattern, p. 1–36. In S. W. Chiu and, D. Moore (ed.), Patterns in Fungal Development. Cambridge University Press, Cambridge, United Kingdom.
94. Müller, P.,, C. Aichinger,, M. Feldbrügge, and, R. Kahmann. 1999. The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol. Microbiol. 34:10071017.
95. Müller, P.,, J. D. Katzenberger,, G. Loubradou, and, R. Kah-mann. 2003a. Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot. Cell 2:609617.
96. Müller, P.,, A. Leibbrandt,, H. Teunissen,, S. Cubasch,, C. Aichinger, and, R. Kahmann. 2004. The Gβ-subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis. Eukaryot. Cell 3:806814.
97. Müller, P.,, G. Weinzierl,, A. Brachmann,, M. Feldbrügge, and, R. Kahmann. 2003b. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot. Cell 2:11871199.
98. Murata, Y.,, M. Fujii,, M. E. Zolan, and, T. Kamada. 1998. Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149:17531761.
99. Olesnicky, N. S.,, A. J. Brown,, S. J. Dowell, and, L. A. Casselton. 1999. A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus. EMBO J. 18:27562763.
100. Olesnicky, N. S.,, A. J. Brown,, Y. Honda,, S. L. Dyos,, S. J. Dowell, and, L. A. Casselton. 2000. Self-compatible B mutants in Coprinus with altered pheromone-receptor specificities. Genetics 156:10251033.
101. O’Shea, S. F.,, P. T. Chaure,, J. R. Halsall,, N. S. Olesnicky,, A. Leibbrandt,, I. F. Connerton, and, L. A. Casselton. 1998. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148:10811090.
102. Pardo, E. H.,, S. F. O’Shea, and, L. A. Casselton. 1996. Multiple versions of the A mating type locus of Coprinus cinereus are generated by three paralogous pairs of multiallelic home-obox genes. Genetics 144:8794.
103. Pöggeler, S., and, U. Kück. 2000. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol. Gen. Genet. 263:292301.
104. Pukkila, P. J. 1994. Meiosis in mycelial fungi, p. 267–282. In J. G., H. Wessels and, F. Meinhardt (ed.), The Mycota: Growth, Differentiation and Sexuality. Springer-Verlag, Berlin, Germany.
105. Quintanilha, A., and, J. Pinto-Lopes. 1950. Aperçu sur l’état actuel de nos connaissances concernant la conduite sexuelle des espéces d’Hymenomycetes. Bol. Soc. Broteriana 2e ser. 24:115290.
106. Raper, C. A., and, J. R. Raper. 1973. Mutational analysis of a regulatory gene for morphogenesis in Schizophyllum. Proc. Natl. Acad. Sci. USA 70:14271431.
107. Raper, J. R. 1966. Genetics of Sexuality in Higher Fungi. Ronald Press, New York, NY.
108. Regenfelder, E.,, T. Spellig,, A. Hartmann,, S. Lauenstein,, M. Bölker, and, R. Kahmann. 1997. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 16:19341942.
109. Riquelme, M.,, M. P. Challen,, L. A. Casselton, and, A. J. Brown. 2005. The origin of multiple B mating specificities in Coprinus cinereus. Genetics 170:11051119.
110. Roberts, C. J.,, B. Nelson,, M. J. Marton,, R. Stoughton,, M. R. Meyer,, H. A. Bennett,, Y. D. He,, H. Dai,, W. L. Walker,, T. R. Hughes,, M. Tyers,, C. Boone, and, S. H. Friend. 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873880.
111. Romeis, T.,, A. Brachmann,, R. Kahmann, and, J. Kämper. 2000. Identification of a target gene for the bE-bW home-odomain protein complex in Ustilago maydis. Mol. Microbiol. 37:5466.
112. Rowell, J. B. 1955. Functional role of compatibility factors in an in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology 45:370374.
113. Rowell, J. B., and, J. E. DeVay. 1954. Genetics of Ustilago zeae in relation to basic problems of its pathogenicity. Phytopathology 44:356362.
114. Scherer, M.,, K. Heimel,, V. Starke, and, J. Kämper. 2006. The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:23882401.
115. Schirawski, J.,, B. Heinze,, M. Wagenknecht, and, R. Kah-mann. 2005. Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot. Cell 4:13171327.
116. Shen, G.-P.,, D. C. Park,, R. C. Ullrich, and, C. P. Novotny. 1996. Cloning and characterization of a Schizophyllum gene with Aβ6 activity. Curr. Genet. 291:136142.
117. Snetselaar, K. M.,, M. Bölker, and, R. Kahmann. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20:299312.
118. Spellig, T.,, M. Bölker,, F. Lottspeich,, R. W. Frank, and, R. Kahmann. 1994. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 13:16201627.
119. Spit, A.,, R. H. Hyland,, E. J. Mellor, and, L. A. Casselton. 1998. A role for heterodimerization in nuclear localization of a homeodomain protein. Proc. Natl. Acad. Sci. USA 95:62286233.
120. Stankis, M. M.,, C. A. Specht,, H. Yang,, L. Giasson,, R. C. Ullrich, and, C. P. Novotny. 1992. The A alpha mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc. Natl. Acad. Sci. USA 89:71697173.
121. Steinberg, G. 2007. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot. Cell 6:351360.
122. Steinberg, G.,, M. Schliwa,, C. Lehmler,, M. Bölker,, R. Kah-mann, and, J. R. McIntosh. 1998. Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J. Cell Sci. 111:22352246.
123. Swamy, S.,, I. Uno, and, T. Ishikawa. 1984. Morphogenetic effects of mutations at the A and B incompatibility factors of Coprinus cinereus. J. Gen. Microbiol. 130:32193224.
124. Swiezynski, K. M., and, P. R. Day. 1960. Heterokaryon formation in Coprinus lagopus. Genet. Res. 1:114128.
125. Szabó, Z.,, M. Tönnis,, H. Kessler, and, M. Feldbrügge. 2002. Structure-function analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis. Mol. Genet. Genomics 268:362370.
126. Turgeon, B. J.,, H. Bohlmann,, L. M. Ciuffetti,, S. K. Christiansen,, G. Yang,, W. Schafer, and, O. C. Yoder. 1993. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol. Gen. Genet. 238:270284.
127. Urban, M.,, R. Kahmann, and, M. Bölker. 1996. Identification of the pheromone response element in Ustilago maydis. Mol. Gen. Genet. 251:3137.
128. Vaillancourt, L. J., and, C. A. Raper. 1996. Pheromones and pheromone receptors as mating-type determinants in basidiomycetes. Genet. Eng. 18:219247.
129. Vaillancourt, L. J.,, M. Raudaskoski,, C. A. Specht, and, C. A. Raper. 1997. Multiple genes encoding pheromones and a pheromone receptor define the B beta 1 mating-type specificity in Schizophyllum commune. Genetics 146:541551.
130. Wendland, J.,, L. J. Vaillancourt,, J. Hegner,, K. B. Lengeler,, K. J. Laddison,, C. A. Specht,, C. A. Raper, and, E. Kothe. 1995. The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J. 14:52715278.
131. Wessels, J. G. 1969. Biochemistry of sexual morphogenesis in Schizophyllum commune: effect of mutations affecting the incompatibility system on cell-wall metabolism. J. Bacteriol. 98:697704.
132. Xue-Franzén, Y.,, S. Kjaerulff,, C. Holmberg,, A. Wright, and, O. Nielsen. 2006. Genomewide identification of pheromone-targeted transcription in fission yeast. BMC Genomics 7:303.
133. Yue, C.,, M. Osier,, C. P. Novotny, and, R. C. Ullrich. 1997. The specificity determinant of the Y mating-type proteins of Schizophyllum commune is also essential for Y-Z protein binding. Genetics 145:253260.
134. Zarnack, K.,, H. Eichhorn,, R. Kahmann, and, M. Feldbrügge. 2008. Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol. Microbiol. 69:10411053.
135. Zarnack, K., and, M. Feldbrügge. 2007. mRNA trafficking in fungi. Mol. Genet. Genomics 278:347359.

Tables

Generic image for table
TABLE 1

Receptor specificities of the predicted 11 pheromones encoded at the Ba3-B/32 locus of S.

Citation: Casselton L, Feldbrügge M. 2010. Mating and Sexual Morphogenesis in Basidiomycete Fungi, p 536-555. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch34

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error