1887

Chapter 35 : Regulation of Conidiation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Conidiation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap35-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap35-2.gif

Abstract:

This chapter discusses our current understanding of how conidiation in is regulated, with emphasis on the model fungus . The three genes (brlA, abaA, and wetA) have been proposed to define a central regulatory pathway that acts in concert with other genes to control conidiation-specific gene expression and determine the order of gene activation during conidiophore development and spore maturation. Identification and characterization of the developmental activators greatly enhanced our understanding of the molecular mechanisms for upstream regulation of conidiation in . Mutational inactivation of , , , or results in a third, distinct class of developmental defects classified as delayed conidiation. Importantly, while mutational inactivation of any one of these G protein components restores conidiation of the ΔflbA mutant to a certain level, no mutation can bypass the need for FluG during conidiation. Although asexual sporulation is the most common reproductive mode of many filamentous fungi, little is known about the regulatory mechanisms controlling this process. VosA plays two principal roles: (i) coupling sporogenesis and trehalose biogenesis to complete spore maturation and (ii) exerting negative-feedback regulation of developmental specific genes by repressing the expression of encoding the key activator of conidiation in . VosA and related velvet proteins are found to be crucial global regulators for fungal development and metabolism.

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35

Key Concept Ranking

Gene Expression and Regulation
0.5501389
Transcription Start Site
0.54863924
Simian virus 40
0.43312988
Cell Wall Components
0.40928555
0.5501389
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Conidiophore formation and spore maturation. (A) A simplified diagram of a conidiophore (reproduced from , with permission). (B) The stages of conidiophore development in (adapted and modified from ). (C) The stages of conidium maturation (reproduced from , with permission of the publisher). Each conidium and the phialide (P) contains a nucleus (N), mitochondria (M), endoplasmic reticulum (ER), vacuoles (V), and vesicles (Ve). Three stages (I, II, and III) of conidium maturation are shown after a conidium initial (CI) is delimited from the phialide. The phialide contains two cell wall layers: P1 and P2. The CI and conidium at stage I also contain two cell wall layers: C1 and C2. At stage II, the C2 layer condenses to form projections (*) in contact with C1. During stage III, the conidium becomes mature, containing four cell layers: C1 through C4.

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Regulatory pathways of conidiation in constitutes the central regulatory pathway controlling conidiation. These genes cooperatively activate other genes (class A through D) responsible for the morphogenesis of conidiophores. FluG and Flb genes are upstream genes required for activation of conidiation (reviewed by ). The repressor SfgA acts as a negative regulator of conidiation ( ). VosA functions as a master regulator of spore maturation, which couples sporogenesis and trehalose biogenesis to complete spore maturation and confers negative-feedback regulation of developmental specific genes by repressing the expression of ( ).

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Central regulatory genes’ mutants and expression. (A) Phenotypes of , and mutants (reproduced from Boylan et al., 1987, with permission of the publisher). (B) Expression trends of central regulatory genes during conidiophore development. (C) Time and sites of expression of developmental genes. Data are from Boylan et al. (1987), ), , and . The table is adapted and modified from Table 16.1 from .

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Requirement of in integrity of spores. Transmission electron microscopic analysis of 15-day-old conidiophores and 3- and 8-day-old conidia of wild-type (WT) and Δ strains (adapted and modified from ). The deletion of caused loss of cytoplasm and organelles including the nucleus in old conidia.

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phenotypes of fluffy mutants.

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Overexpression of or inhibits conidiation. (A) Overexpression of [(p)::] colony exhibits white undifferentiated hyphae (fluffy) with low levels of conidiation in the center. (B) Overexpression of [(p)::] colony exhibits complete block of conidiation (reproduced from , with permission).

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

The VosA/VelB/VeA/LaeA complex coordinates fungal development and mycotoxin production.

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

A phylogenetic tree of proteins similar to VosA (reproduced from , with permission). The ClustalV method was used for protein alignment ( ), and the phylogenetic tree was generated by MegAlign in Lasergene v7.0 (DNASTAR). Abbreviations: An, ; Af, ; Ao, ; Ap, ; Ci, ; Mg, ; Cg, ; Nc, ; Um, ; Cn, ; Gz, .

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Models for growth and developmental control in and (adapted and modified from Yu et al., 2006). Current models depicting upstream and downstream regulation of hyphal growth and conidiation in the two aspergilli are presented. Note that the roles of PkaA and PkaC1 in regulating conidiation are opposite.

Citation: Ni M, Gao N, Kwon N, Shin K, Yu J. 2010. Regulation of Conidiation, p 559-576. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch35
1. Adams, T. H.,, M. T. Boylan, and, W. E. Timberlake. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353362.
2. Adams, T. H.,, H. Deising, and, W. E. Timberlake. 1990. brlA requires both zinc fingers to induce development. Mol. Cell. Biol. 10:18151817.
3. Adams, T. H.,, J. K. Wieser, and, J.-H. Yu. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:3554.
4. Adams, T. H., and, W. E. Timberlake. 1990. Developmental repression of growth and gene expression in Aspergillus. Proc. Natl. Acad. Sci. USA 87:54055409.
5. Aguirre, J.,, T. H. Adams, and, W. E. Timberlake. 1990. Spatial control of developmental regulatory genes in Aspergillus nidulans. Exp. Mycol. 14:290293.
6. Aguirre, J. 1993. Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol. Microbiol. 8:211218.
7. Andrianopoulos, A., and, W. E. Timberlake. 1991. ATTS, a new and conserved DNA binding domain. Plant Cell 3:747748.
8. Andrianopoulos, A., and, W. E. Timberlake. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14:25032515.
9. Aramayo, R., and, W. E. Timberlake. 1990. Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene. Nucleic Acids Res. 18:3415.
10. Aramayo, R., and, W. E. Timberlake. 1993. The Aspergillus nidulans yA gene is regulated by abaA. EMBO J. 12:20392048.
11. Aramayo, R.,, Y. Peleg,, R. Addison, and, R. Metzenberg. 1996. Asm-1+, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144:9911003.
12. Bayram, O.,, S. Krappmann,, M. Ni,, J.-W. Bok,, K. Helm-staedt,, O. Valerius,, S. Braus-Stromeyer,, N.-K. Kwon,, N. P. Keller,, J.-H. Yu, and, G. H. Braus. 2008a. The VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:15041506.
13. Bayram, O.,, S. Krappmann,, S. Seiler,, N. Vogt, and, G. H. Braus. 2008b. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet. Biol. 45:127138.
14. Bok, J.-W., and, N. P. Keller. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3:527535.
15. Bölker, M. 1998. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet. Biol. 25:143156.
16. Borneman, A. R.,, M. J. Hynes, and, A. Andrianopoulos. 2000. The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Mol. Microbiol. 38:10341047.
17. Borneman, A. R.,, M. J. Hynes, and, A. Andrianopoulos. 2002. A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei. Mol. Microbiol. 44:621631.
18. Boylan, M. T.,, P. M. Mirabito,, C. E. Willett,, C. R. Zimmerman, and, W. E. Timberlake. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol. Cell. Biol. 7:31133118.
19. Bürglin, T. R. 1991. The TEA domain: a novel, highly conserved DNA binding motif. Cell 66:1112.
20. Busby, T.,, K. Y. Miller, and, B. L. Miller. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of brlA and stuA genes. Genetics 143:155163.
21. Calvo, A. M.,, R. A. Wilson,, J. W. Bok, and, N. P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66:447459.
22. Calvo, A. M.,, J. W. Bok,, W. Brooks, and, N. P. Keller. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 70:47334739.
23. Cary, J. W.,, G. R. OBrian,, D. M. Nielsen,, W. Nierman,, P. Harris-Coward,, J. Yu,, D. Bhatnagar,, T. E. Cleveland,, G. A. Payne, and, A. M. Calvo. 2007. Elucidation of veA- dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl. Microbiol. Biotechnol. 76:11071118.
24. Chang, M. H.,, K. S. Chae,, D. M. Han, and, K. Y. Jahng. 2004. The GanB Gα-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167:13051315.
25. Chang, Y. C., and, W. E. Timberlake. 1992. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133:2938.
26. Chenna, R.,, H. Sugawara,, T. Koike,, R. Lopez,, T. J. Gibson,, D. G. Higgins, and, J. D. Thompson. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31:34973500.
27. Chidiac, P., and, A. A. Roy. 2003. Activity, regulation, and intracellular localization of RGS proteins. Recept. Channels 9:135147.
28. Clutterbuck, A. J. 1969. A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317327.
29. Dietzel, C., and, J. Kurjan. 1987. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. Mol. Cell. Biol. 7:41694177.
30. Dreyer, J.,, H. Eichhorn,, E. Friedlin,, H. Kürnsteiner, and, U. Kück. 2007. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl. Environ. Microbiol. 73:34123422.
31. D’Souza, C. A.,, B. N. Lee, and, T. H. Adams. 2001. Characterization of the role of the FluG protein in asexual development of Aspergillus nidulans. Genetics 158:10271036.
32. Duran, R. M.,, J. W. Cary, and, A. M. Calvo. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 73:11581168.
33. Dutton, J. R.,, S. Johns, and, B. L. Miller. 1997. StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J. 16:57105721.
34. Elbein, A. D.,, Y. T. Pan,, I. Pastuszak, and, D. Carroll. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R27R.
35. Etxebeste, O.,, M. Ni,, A. Garzia,, N. J. Kwon,, R. Fischer,, J. H. Yu,, E. A. Espeso, and, U. Ugalde. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot. Cell 7:3848.
36. Feldbrügge, M.,, J. Kämper,, S. Gero, and, R. Kahmann. 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7:666672.
37. Fillinger, S.,, M. Chaveroche,, P. van Dijck,, R. de Vries,, G. Ruijter,, J. Thevelein, and, C. d’Enfert. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:18511862.
38. Griffin, D. V. 1994. Spore dormancy and germination, p. 375–398. In D. V. Griffin (ed.), Fungal Physiology, 2nd ed. Wiley-Liss, Inc, New York, NY.
39. Han, K.-H.,, J.-A. Seo, and, J.-H. Yu. 2004. Regulators of G-protein signaling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Gα) signaling. Mol. Microbiol. 53:529540.
40. Han, S.,, J. Navarro,, R. A. Greve, and, T. H. Adams. 1993. Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J. 12:24492457.
41. Han, S., and, T. H. Adams. 2001. Complex control of the developmental regulatory locus brlA in Aspergillus nidulans. Mol. Genet. Genomics 266:260270.
42. Hicks, J. K.,, J.-H. Yu,, N. P. Keller, and, T. H. Adams. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα protein-dependent signaling pathway. EMBO J. 16:49164923.
43. Johnstone, I. L.,, S. G. Hughes, and, A. J. Clutterbuck. 1985. Cloning an Aspergillus nidulans developmental gene by transformation. EMBO J. 4:13071311.
44. Kasahara, S.,, P. Wang, and, D. L. Nuss. 2000. Identification of bdm-1, a gene involved in G protein β-subunit function and α-subunit accumulation. Proc. Natl. Acad. Sci. USA 97:412417.
45. Kato, N.,, W. Brooks, and, A. M. Calvo. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot. Cell 2:11781186.
46. Kim, H. S.,, K. Y. Han,, K. J. Kim,, D. M. Han,, K. Y. Jahng, and, K. S. Chae. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37:7280.
47. Knol, J. C.,, R. Engel,, M. Blaauw,, A. J. Visser, and, P. J. van Haastert. 2005. The phosducin-like protein PhLP1 is essential for Gβγ dimer formation in Dictyostelium discoideum. Mol. Cell. Biol. 25:83938400.
48. Krappmann, S.,, O. Bayram, and, G. H. Braus. 2005. Deletion and alleleic exchange of the Aspergillus fumigatus veA locus via a novel recyclable module. Eukaryot. Cell 4:12981307.
49. Lafon, A.,, J.-A. Seo,, K.-H. Han,, J.-H. Yu, and, C. d’Enfert. 2005. The heterotrimeric G-protein GanB(α)-SfaD(β)GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171:7180.
50. Lee, B. N., and, T. H. Adams. 1994a. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 8:641651.
51. Lee, B. N., and, T. H. Adams. 1994b. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol. Microbiol. 14:323334.
52. Lee, B. N., and, T. H. Adams. 1996. fluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. EMBO J. 15:299309.
53. Lengeler, K. B.,, R. C. Davidson,, C. D’Souza,, T. Harashima,, W. C. She,, P. Wang,, X. Pan,, M. Waugh, and, J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64:746785.
54. Li, L.,, S. J. Wright,, S. Krystofova,, G. Park, and, K. A. Borkovich. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423452.
55. Li, S.,, K. Myung,, D. Guse,, B. Donkin,, R. H. Proctor,, W. S. Grayburn, and, A. M. Calvo. 2006. FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol. Micro-biol. 62:14181432.
56. Liebmann, B.,, S. Gattung,, B. Jahn, and, A. A. Brakhage. 2003. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol. Genet. Genomics 269:420435.
57. Liebmann, B.,, M. Müller,, A. Braun, and, A. A. Brakhage. 2004. The cyclic AMP-dependent protein kinase A network regulates development and virulence in Aspergillus fumigatus. Infect. Immun. 72:51935203.
58. Lingappa, B. T., and, A. S. Sussman. 1959. Endogenous substrates of dormant, activated and germinating ascospores of Neurospora tetrasperma. Plant Physiol. 34:466472.
59. Lukov, G. L.,, T. Hu,, J. N. Mclaughlin,, H. E. Hamm, and, B. M. Willardson. 2005. Phosducin-like protein acts as a molecular chaperone for G protein βγ dimer assembly. EMBO J. 24:19651975.
60. Mah, J.-H., and, J.-H. Yu. 2006. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot. Cell 5:15851595.
61. Marshall, M. A., and, W. E. Timberlake. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Mol. Cell. Biol. 11:5562.
62. Martinelli, S. D. 1994. Aspergillus nidulans as an experimental organism. Prog. Ind. Microbiol. 29:3358.
63. Mathis, R.,, C. Grosjean,, F. de Billy,, T. Huguet, and, P. Gamas. 1999. The early nodulin gene MtN6 is a novel marker for events preceding infection of Medicago truncatula roots by Sinorhizobium meliloti. Mol. Plant-Microbe Interact. 12:544555.
64. Mayorga, M. E., and, W. E. Timberlake. 1992. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol. Gen. Genet. 235:205212.
65. McCudden, C. R.,, M. D. Hains,, R. J. Kimple,, D. P. Siderovski, and, F. S. Willard. 2005. G-protein signaling: back to the future. Cell. Mol. Life Sci. 62:551577.
66. Miller, B. 1993. The medA gene of Aspergillus nidulans. J. Cell. Biochem. 17C:44.
67. Miller, K. Y.,, T. M. Toennis,, T. H. Adams, and, B. L. Miller. 1991. Isolation and transcriptional characterization of a morphological modifier: the Aspergillus nidulans stunted (stuA) gene. Mol. Gen. Genet. 227:285292.
68. Miller, K. Y.,, J. Wu, and, B. L. Miller. 1992. stuA is required for cell pattern formation in Aspergillus. Genes Dev. 6:17701782.
69. Mims, C. W.,, E. A. Richardson, and, W. E. Timberlake. 1988. Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 144:132141.
70. Mirabito, P. M.,, T. H. Adams, and, W. E. Timberlake. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57:859868.
71. Mooney, J. L., and, L. N. Yager. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4:14731482.
72. Morris, A. J., and, C. C. Malbon. 1999. Physiological regulation of G protein-linked signaling. Physiol. Rev. 79:13731430.
73. Neves, S. R.,, P. T. Ram, and, R. Iyengar. 2002. G protein pathways. Science 296:16361639.
74. Ni, M.,, S. Rierson,, J.-A. Seo, and, J.-H. Yu. 2005. The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans. Eukaryot. Cell 4:14651476.
75. Ni, M., and, J.-H. Yu. 2007. A novel regulator couples sporo-genesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2:e970.
76. Ni, M. 2008. Regulation of sporogenesis in Aspergillus nidulans. Ph.D. thesis. University of Wisconsin, Madison.
77. Nishimura, M.,, N. Hayashi,, N. S. Jwa,, G. W. Lau,, J. E. Hamer, and, A. Hasebe. 2000. Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol. Plant-Microbe Interact. 13:892894.
78. Ohara, T.,, I. Inoue,, F. Namiki,, H. Kunoh, and, T. Tsuge. 2004. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics 166:113124.
79. Ohara, T., and, T. Tsuge. 2004. FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, micro-conidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. Eukaryot. Cell 3:14121422.
80. Park, B. C.,, Y. H. Park, and, H. M. Park. 2003. Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol. Lett. 220:241246.
81. Peñalva, M. A., and, H. N. Arst,, Jr. 2004. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol. 58:425451.
82. Prade, R. A., and, W. E. Timberlake. 1993. The Aspergillus nidulans brlA regulatory locus encodes two functionally redundant polypeptides that are individually required for conidiophore development. EMBO J. 12:24392447.
83. Prade, R. A., and, W. E. Timberlake. 1994. The Penicillium chrysogenum and Aspergillus nidulans wetA developmental regulatory genes are functionally equivalent. Mol. Gen. Genet. 244:539547.
84. Rosén, S.,, J.-H. Yu, and, T. H. Adams. 1999. The Aspergillus nidulans sfaD gene encodes a G protein β subunit that is required for normal growth and repression of sporulation. EMBO J. 18:55925600.
85. Seo, J.-A.,, Y. Guan, and, J.-H. Yu. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165:10831093.
86. Seo, J.-A.,, Y. Guan, and, J.-H. Yu. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172:15351544.
87. Seo, J.-A.,, K.-H. Han, and, J.-H. Yu. 2005. Multiple roles of a heterotrimeric G protein γ subunit in governing growth and development of Aspergillus nidulans. Genetics 171:8189.
88. Seo, J.-A., and, J.-H. Yu. 2006. The phosducin-like protein PhnA is required for Gβγ-mediated signaling for vegetative growth, developmental control and toxin biosynthesis in Aspergillus nidulans. Eukaryot. Cell 5:400410.
89. Sewall, T. C.,, C. W. Mims, and, W. E. Timberlake. 1990a. Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev. Biol. 138:499508.
90. Sewall, T. C.,, C. W. Mims, and, W. E. Timberlake. 1990b. abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 2:731739.
91. Sheppard, D. C.,, T. Doedt,, L. Y. Chiang,, H. S. Kim,, D. Chen,, W. C. Nierman, and, S. G. Filler. 2005. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol. Biol. Cell 16:58665879.
92. Shimizu, K., and, N. P. Keller. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591600.
93. Skromne, I.,, O. Sanchez, and, J. Aguirre. 1995. Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141:2128.
94. Stinnett, S. M.,, E. A. Espeso,, L. Cobeño,, L. Araújo-Bazán, and, A. M. Calvo. 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 63:242255.
95. Stringer, M. A.,, R. A. Dean,, T. C. Sewall, and, W. E. Timberlake. 1991. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 5:11611171.
96. Suelmann, R.,, N. Sievers, and, R. Fischer. 1997. Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol. Microbiol. 25:757769.
97. Timberlake, W. E. 1980. Developmental gene regulation in Aspergillus nidulans. Dev. Biol. 78:497510.
98. Timberlake, W. E., and, A. J. Clutterbuck. 1994. Genetic regulation of conidiation, p. 383427. In S. D. Martinelli and, J. R. Kinghorn (ed.), Aspergillus: 50 Years On. Progress in Industrial Microbiology, vol. 29. Elsevier, Amsterdam, The Netherlands.
99. Vaughan, M. 1998. Signaling by heterotrimeric G proteins minireview series. J. Biol. Chem. 273:667668.
100. Vinson, C. R.,, P. B. Sigler, and, S. L. McKnight. 1989. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911916.
101. Weisberg, S. H., and, G. Turian. 1971. Ultrastructure of Aspergillus nidulans conidia and conidial lomasomes. Protoplasma 72:5567.
102. Wieser, J.,, B. N. Lee,, J. W. Fondon, and, T. H. Adams. 1994. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr. Genet. 27:6269.
103. Wieser, J., and, T. H. Adams. 1995. flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev. 9:491502.
104. Wieser, J. 1997. Genetic requirements for initiation of Aspergillus nidulans conidiophore development. Ph.D. thesis. Texas A&M University, College Station.
105. Wu, J., and, B. L. Miller. 1997. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol. Cell. Biol. 17:61916201.
106. Yager, L. N. 1992. Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Bio/Technology 23:1941.
107. Yamada, O.,, B. R. Lee,, K. Gomi, and, Y. Iimura. 1999. Cloning and functional analysis of the Aspergillus oryzae conidiation regulator gene brlA by its disruption and miss-cheduled expression. J. Biosci. Bioeng. 87:424429.
108. Yu, J.-H.,, J. Wieser, and, T. H. Adams. 1996. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 15:51845190.
109. Yu, J.-H.,, S. Rosén, and, T. H. Adams. 1999. Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 151:97105.
110. Yu, J.-H., and, N. P. Keller. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43:437458.
111. Yu, J.-H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44:145154.
112. Yu, J.-H.,, J.-H. Mah, and, J.-A. Seo. 2006. Growth and developmental control in the model and pathogenic aspergilli. Eukaryot. Cell 5:15771584.
113. Zordan, R. E.,, D. J. Galgoczy, and, A. D. Johnson. 2006. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl. Acad. Sci. USA 103:1280712812.
114. Zordan, R. E.,, M. G. Miller,, D. J. Galgoczy,, B. B. Tuch, and, A. D. Johnson. 2007. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 5:e256.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error