1887

Chapter 37 : and Rice Blast Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

and Rice Blast Disease, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap37-2.gif

Abstract:

The species complex includes pathogens of more than 50 grass species. was recently segregated as a distinct species from based on a multilocus phylogenetic analysis and on mating properties of the strains. isolates are pathogenic on crabgrass, , and related grasses, and is associated with pathogens of diverse grasses with agricultural significance. Evolution of host-specific populations is an important topic that can be addressed within the species complex. The abundance of transposable elements in the rice isolates from the field suggests that lacks the repeat-induced point mutation (RIP) mechanism described in the related pyrenomycete . Fluorescent effectors remained localized to the biotrophic interfacial complex (BIC) region as long as invasive hyphae (IH) continued to grow in the rice cell. Secreted effector fusions partially colocalized with an aggregation of plant endocytotic membranes that labeled with FM4-64. Some of the blast fungal metabolites, such as tenuazonic acid (TA) and picolinic acid, were demonstrated to be hypersensitive-response elicitors, inducing resistance responses in rice. For rice blast disease, the increasing numbers of avirulence (AVR)-like genes that control host specificity and the large number of R proteins that are predicted to be localized in the rice cytoplasm are consistent with the hypothesis that translocates many effectors into the host cytoplasm.

Citation: Hyun Khang C, Valent B. 2010. and Rice Blast Disease, p 593-606. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch37

Key Concept Ranking

Type III Secretion System
0.40953615
Restriction Fragment Length Polymorphism
0.40568876
0.40953615
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A sporulating leaf blast lesion on rice. Fully susceptible lesions first become visible ~5 days postinoculation (dpi) and mature ~7 dpi. Such lesions range from 0.5 to >1 cm in length depending on the rice variety and plant maturity in the field, and they produce several thousand conidia a day for about 2 weeks (Ou, 1985). (Photo courtesy of J. M. Bonman.)

Citation: Hyun Khang C, Valent B. 2010. and Rice Blast Disease, p 593-606. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Asexual and sexual cycles of the rice blast fungus. (A) A conidium (25 to 30 by 9 to 12 μm) adheres to the leaf surface by using spore tip mucilage, produces a germ tube that senses the inductive surface, and differentiates an appressorium. A mature appressorium uses osmotically generated pressure to force a penetration peg through the plant cuticle and cell wall. (B) Inside the host cell lumen, the penetration peg becomes a filamentous primary hypha, accompanied by migration of cellular contents from the appressorium into the primary hypha. The primary hypha invaginates the host plasma membrane and secretes effectors, which are visualized by translational fusion of effector polypeptides with enhanced green fluorescent protein (GFP), into the membranous cap BIC at its tip at 22 to 25 h postinoculation (hpi). By 26 to 30 hpi, primary hyphae have differentiated into bulbous IH, which are sealed in an EIHM compartment. The BIC has moved beside the first differentiated IH, where it accumulates fluorescent effector proteins as long as IH grow in the cell. By 36 to 40 hpi, IH have undergone extreme constriction to cross the plant cell wall. In neighbor cells, the fungus first grows as filamentous IH secreting effector:GFP fusion proteins into tip BICs and then differentiates into bulbous IH with fluorescent side BICs. Subsequent cell invasions follow the same pattern. (C) Conidiogenesis in is holoblastic such that expansion and swelling of the conidiophore apex gives rise to a conidium, followed by a septum being formed to delimit the forming conidium ( ). The apex then grows to the side to produce the next conidium, resulting in three to five conidia borne sympodially on a conidiophore. (D) Sexual cycle: strains of opposite mating type mate to form pigmented perithecia (500 to 1,200 μm in length) with spherical bases (80 to 260 μm in diameter) and long cylindrical necks. Unordered asci contain eight hyaline, fusiform ascospores (16 to 25 by 4 to 8 μm), each with four cells and a single nucleus per cell.

Citation: Hyun Khang C, Valent B. 2010. and Rice Blast Disease, p 593-606. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The EIHM tightly wraps the IH and prevents the endocytotic tracker dye FM4-64 from reaching IH membranes. At 29 hpi, an IH of a fungal transformant expressing cytoplasmic enhanced yellow fluorescent protein (YFP) is viewed by bright-field optics (left panel) and by YFP (middle panel) and FM4-64 (right panel) fluorescence (both shown as white). At this site, the primary hypha (P) extending from the appressorial penetration site (PS) had lost viability after IH formed (observed in ~50% of all infection sites). A BIC (arrow) beside the first IH cell is rich in FM4-64-stained membranes that are continuous with EIHM. Bars, 5 μm.

Citation: Hyun Khang C, Valent B. 2010. and Rice Blast Disease, p 593-606. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

IH exhibit extreme constriction as they cross the rice cell wall at 32 hpi. YFP fluorescence in the fungal cytoplasm (in white) is shown alone to highlight the constriction (arrows). Bar, 5 μm. Reproduced with permission from .

Citation: Hyun Khang C, Valent B. 2010. and Rice Blast Disease, p 593-606. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch37
1. Adachi, K., and, J. E. Hamer. 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:13611374.
2. Alfano, J. R., and, A. Collmer. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385414.
3. Aver’yanov, A.,, V. Lapikova, and, M. Lebrun. 2007. Tenuazonic acid, toxin of rice blast fungus, induces disease resistance and reactive oxygen production in plants. Russ. J. Plant Physiol. 54:749754.
4. Ballini, E.,, J.-B. Morel,, G. Droc,, A. Price,, B. Courtois,, J.-L. Notteghem, and, D. Tharreau. 2008. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol. Plant-Microbe Interact. 21:859868.
5. Barksdale, T. H., and, G. N. Asai. 1961. Diurnal spore release of Pyricularia oryzae from rice leaves. Phytopathology 51:313317.
6. Beckerman, J. L., and, D. J. Ebbole. 1996. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol. Plant-Microbe Interact. 9:450456.
7. Berruyer, R.,, S. Poussier,, P. Kankanala,, G. Mosquera, and, B. Valent. 2006. Quantitative and qualitative influence of inoculation methods on in planta growth of rice blast fungus. Phytopathology 96:346355.
8. Böhnert, H. U.,, I. Fudal,, W. Dioh,, D. Tharreau,, J.-L. Notteghem, and, M.-H. Lebrun. 2004. A putative polyke-tide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:24992513.
9. Bourett, T. M., and, R. J. Howard. 1990. In vitro development of penetration structures in the rice blast fungus, Magnaporthe grisea. Can. J. Bot. 68:329342.
10. Bryan, G. T.,, K.-S. Wu,, L. Farrall,, Y. Jia,, H. P. Hershey,, S. A. McAdams,, K. N. Faulk,, G. K. Donaldson,, R. Tarchini, and, B. Valent. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:20332046.
11. Chen, Q. H.,, Y. C. Wang, and, X. B. Zheng. 2006. Genetic analysis and molecular mapping of the avirulence gene PRE1, a gene for host-species specificity in the blast fungus Magnaporthe grisea. Genome 49:873881.
12. Choi, W., and, R. A. Dean. 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:19731983.
13. Chumley, F. G., and, B. Valent. 1990. Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 3:135143.
14. Collemare, J.,, A. Billard,, H. U. Böhnert, and, M.-H. Lebrun. 2008. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol. Res. 112:207215.
15. Couch, B. C.,, I. Fudal,, M.-H. Lebrun,, D. Tharreau,, B. Valent,, P. v. Kim,, J.-L. Notteghem, and, L. M. Kohn. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613630.
16. Couch, B. C., and, L. M. Kohn. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683693.
17. Dean, R. A.,, N. J. Talbot,, D. J. Ebbole,, M. L. Farman,, T. K. Mitchell,, M. J. Orbach,, M. Thon,, R. Kulkarni,, J.-R. Xu,, H. Pan,, N. D. Read,, Y.-H. Lee,, I. Carbone,, D. Brown,, Y. Y. Oh,, N. Donofrio,, J. S. Jeong,, D. M. Soanes,, S. Djonovic,, E. Kolomiets,, C. Rehmeyer,, W. Li,, M. Harding,, S. Kim,, M.-H. Lebrun,, H. U. Böhnert,, S. Coughlan,, J. Butler,, S. Calvo,, L.-J. Ma,, R. Nicol,, S. Purcell,, C. Nusbaum,, J. E. Galagan, and, B. W. Birren. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980986.
18. de Jong, J. C.,, B. J. McCormack,, N. Smirnoff, and, N. J. Talbot. 1997. Glycerol generates turgor in rice blast. Nature 389:244245.
19. DeZwaan, T. M.,, A. M. Carroll,, B. Valent, and, J. A. Sweigard. 1999. Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:20132030.
20. Dixon, K. P.,, J.-R. Xu,, N. Smirnoff, and, N. J. Talbot. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:20452058.
21. Donofrio, N. M.,, Y. Oh,, R. Lundy,, H. Pan,, D. E. Brown,, J. S. Jeong,, S. Coughlan,, T. K. Mitchell, and, R. A. Dean. 2006. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet. Biol. 43:605617.
22. Ebbole, D. J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45:437456.
23. Ebbole, D. J.,, Y. Jin,, M. Thon,, H. Pan,, E. Bhattarai,, T. K. Thomas, and, R. A. Dean. 2004. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol. Plant-Microbe Interact. 17:13371347.
24. Fang, E. G. C., and, R. A. Dean. 2000. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol. Plant-Microbe Interact. 13:12141227.
25. Farman, M. L. 2002a. Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: relationship to P. grisea isolates from other host plants. Phytopathology 92:245254.
26. Farman, M. L. 2002b. Meiotic deletion at the Magnaporthe grisea BUF1 locus is controlled by interaction with the homologous chromosome. Genetics 160:137148.
27. Farman, M. L. 2007. Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. FEMS Microbiol. Lett. 273:125132.
28. Farman, M. L.,, Y. Eto,, T. Nakao,, Y. Tosa,, H. Nakayashiki,, S. Mayama, and, S. Leong. 2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol. Plant-Microbe Interact. 15:616.
29. Fudal, I.,, H. U. Böhnert,, D. Tharreau, and, M. H. Lebrun. 2005. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magna-porthe grisea. Fungal Genet. Biol. 42:761772.
30. Gilbert, M. J.,, C. R. Thornton,, G. E. Wakley, and, N. J. Talbot. 2006. A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440:535539.
31. Gowda, M.,, R. C. Venu,, M. Raghupathy,, K. Nobuta,, H. Li,, R. Wing,, E. Stahlberg,, S. Couglan,, C. Haudenschild,, R. A. Dean,, B.-H. Nahm,, B. Meyers, and, G.-L. Wang. 2006. Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods. BMC Genomics 7:310.
32. Hamer, J. E.,, R. J. Howard,, F. G. Chumley, and, B. Valent. 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288290.
33. Hamer, J. E.,, B. Valent, and, F. G. Chumley. 1989. Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics 122:351361.
34. Heath, M. C.,, B. Valent,, R. J. Howard, and, F. G. Chumley. 1990. Interactions of two strains of Magnaporthe grisea with rice, goosegrass, and weeping lovegrass. Can. J. Bot. 68:16271637.
35. Howard, R. J. 1994. Cell biology of pathogenesis, p. 3–22. In R. S. Zeigler,, S. Leong, and, P. S. Teng (ed.), Rice Blast Disease. CAB International, Wallingford, England.
36. Howard, R. J.,, M. A. Ferrari,, D. H. Roach, and, N. P. Money. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 88:1128111284.
37. Howard, R. J., and, B. Valent. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magna-porthe grisea. Annu. Rev. Phytopathol. 50:491512.
38. Igarashi, S.,, C. M. Utiamada,, L. C. Igarashi,, A. H. Kazuma, and, R. S. Lopes. 1986. Pyricularia in wheat. 1. Occurrence of Pyricularia spp. in Parana sate. Fitopatol. Bras. 11:351352. (In Portuguese.)
39. Ikeda, K.-i.,, H. Nakayashiki,, T. Kataoka,, H. Tamba,, Y. Hashimoto,, Y. Tosa, and, S. Mayama. 2002. Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol. Microbiol. 45:13551364.
40. Irie, T.,, H. Matsumura,, R. Terauchi, and, H. Saitoh. 2003. Serial analysis of gene expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol. Gen. Genomics 270:181189.
41. Jantasuriyarat, C.,, M. Gowda,, K. Haller,, J. Hatfield,, G. Lu,, E. Stahlberg,, B. Zhou,, H. Li,, H. Kim,, Y. Yu,, R. A. Dean,, R. Wing,, C. Soderlund, and, G.-L. Wang. 2005. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol. 138:105115.
42. Jeon, J.,, S.-Y. Park,, M.-H. Chi,, J. Choi,, J. Park,, H.-S. Rho,, S. Kim,, J. Goh,, S. Yoo,, J. Choi,, J.-Y. Park,, M. Yi,, S. Yang,, M.-J. Kwon,, S.-S. Han,, B. R. Kim,, C. H. Khang,, B. Park,, S.-E. Lim,, K. Jung,, S. Kong,, M. Karunakaran,, H.-S. Oh,, H. Kim,, S. Kim,, J. Park,, S. Kang,, W.-B. Choi,, S. Kang, and, Y.-H. Lee. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39:561565.
43. Jia, Y.,, S. A. McAdams,, G. T. Bryan,, H. P. Hershey, and, B. Valent. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:40044014.
44. Kamakura, T.,, S. Yamaguchi,, K.-i. Saitoh,, T. Teraoka, and, I. Yamaguchi. 2002. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. Mol. Plant-Microbe Interact. 15:437444.
45. Kang, S.,, M. H. Lebrun,, L. Farrall, and, B. Valent. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol. Plant-Microbe Interact. 14:671674.
46. Kang, S.,, J. A. Sweigard, and, B. Valent. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 8:939948.
47. Kankanala, P.,, K. Czymmek, and, B. Valent. 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706724.
48. Kato, H.,, S. Mayama,, R. Sekine,, E. Kanazawa,, Y. Izutani,, A. S. Urashima, and, H. Kunoh. 1994. Microconidium formation in Magnaporthe grisea. Ann. Phytopathol. Soc. Jpn. 60:175185.
49. Kato, H.,, M. Yamamoto,, T. Yamaguchi-Ozaki,, H. Kadouchi,, Y. Iwamoto,, H. Nakayashiki,, Y. Tosa,, S. Mayama, and, N. Mori. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66:3047.
50. Khang, C. H.,, S.-Y. Park,, Y.-H. Lee,, B. Valent, and, S. Kang. 2008. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol. Plant-Microbe Interact. 21:658670.
51. Kim, S.,, I.-P. Ahn, and, Y.-H. Lee. 2001. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Mol. Plant-Microbe Interact. 14:13401346.
52. Koga, H.,, K. Dohi,, O. Nakayachi, and, M. Mori. 2004. A novel inoculation method of Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants. Physiol. Mol. Plant Pathol. 64:6772.
53. Kolattukudy, P. E. 1985. Enzymatic penetration of the plant cuticle by fungal pathogens. Annu. Rev. Phytopathol. 23:223250.
54. Kulkarni, R.,, M. Thon,, H. Pan, and, R. A. Dean. 2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6:R24.
55. Kumamoto, C. A. 2008. Molecular mechanisms of mechano-sensing and their roles in fungal contact sensing. Nat. Rev. Microbiol. 6:667673.
56. Lau, G. W., and, J. E. Hamer. 1998. Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet. Biol. 24:228239.
57. Lee, K.,, P. Singh,, W.-C. Chung,, J. Ash,, T. S. Kim,, L. Hang, and, S. Park. 2006. Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet. Biol. 43:694706.
58. Lee, Y.-H., and, R. A. Dean. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magna-porthe grisea. Plant Cell 5:693700.
59. Levine, B., and, D. J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6:463477.
60. Li, L.,, S.-L. Ding,, A. Sharon,, M. Orbach, and, J.-R. Xu. 2007a. Mir1 is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus. Mol. Plant-Microbe Interact. 20:448458.
61. Li, L.,, S. J. Wright,, S. Krystofova,, G. Park, and, K. A. Borkovich. 2007b. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423452.
62. Liang, S.,, Z. Wang,, P. Liu, and, D. Li. 2006. A Gγ subunit promoter T-DNA insertion mutant—A1-412 of Magna-porthe grisea is defective in appressorium formation, penetration and pathogenicity. Chin. Sci. Bull. 51:22142218.
63. Liu, H.,, A. Suresh,, F. S. Willard,, D. P. Siderovski,, S. Lu, and, N. I. Naqvi. 2007a. Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26:690700.
64. Liu, S., and, R. A. Dean. 1997. G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10:10751086.
65. Liu, X.-H.,, J.-P. Lu, and, F.-C. Lin. 2007b. Autophagy during conidiation, conidial germination and turgor generation in Magnaporthe grisea. Autophagy 3:472473.
66. Matsumura, H.,, S. Reich,, A. Ito,, H. Saitoh,, S. Kamoun,, P. Winter,, G. Kahl,, M. Reuter,, D. H. Kruger, and, R. Terauchi. 2003. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc. Natl. Acad. Sci. USA 100:1571815723.
67. Mitchell, T. K., and, R. A. Dean. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:18691878.
68. Morgan, W., and, S. Kamoun. 2007. RXLR effectors of plant pathogenic oomycetes. Curr. Opin. Microbiol. 10:17.
69. Mosquera, G.,, M. Giraldo,, C. H. Khang,, S. Coughlan, and, B. Valent. 2009. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:12731290.
70. Murakami, J.,, R. Tomita,, T. Kataoka,, H. Nakayashiki,, Y. Tosa, and, S. Mayama. 2003. Analysis of host species specificity of Magnaporthe grisea toward foxtail millet using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 93:4245.
71. Murakami, J.,, Y. Tosa,, T. Kataoka,, R. Tomita,, J. Kawasaki,, I. Chuma,, Y. Sesumi,, M. Kusaba,, H. Nakayashiki, and, S. Mayama. 2000. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 90:10601067.
72. Nishimura, M.,, G. Park, and, J.-R. Xu. 2003. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol. 50:231243.
73. O’Connell, R. J., and, R. Panstruga. 2006. Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol. 171:699718.
74. Odenbach, D.,, B. Breth,, E. Thines,, R. W. Weber,, H. Anke, and, A. J. Foster. 2007. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol. Microbiol. 64:293307.
75. Oh, Y.,, N. Donofrio,, H. Pan,, S. Coughlan,, D. Brown,, S. Meng,, T. K. Mitchell, and, R. A. Dean. 2008. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol. 9:R85.
76. Orbach, M. J.,, F. G. Chumley, and, B. Valent. 1996. Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Mol. Plant-Microbe Interact. 9:261271.
77. Orbach, M. J.,, L. Farrall,, J. A. Sweigard,, F. G. Chumley, and, B. Valent. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:20192032.
78. Ou, S. H. 1985. Rice Diseases. Commonwealth Mycological Institute, Kew, England.
79. Park, J.-Y.,, J. Jin,, Y.-W. Lee,, S. Kang, and, Y.-H. Lee. 2008. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis thaliana via a mechanism distinct from that required for the infection of rice. Plant Physiol. 149:474486.
80. Prabhu, A. S.,, M. C. Filippi, and, N. Castro. 1992. Pathogenic variation among isolates of Pyricularia oryzae infecting rice, wheat, and grasses in Brazil. Trop. Pest Manag. 38:367371.
81. Rauyaree, P.,, W. Choi,, E. Fang,, B. Blackmon, and, R. A. Dean. 2001. Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol. Plant Pathol. 2:347354.
82. Rodrigues, F. A.,, N. Benhamou,, L. E. Datnoff,, J. B. Jones, and, R. R. Belanger. 2003. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535546.
83. Sesma, A., and, A. E. Osbourn. 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582586.
84. Shi, Z., and, H. Leung. 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol. Plant-Microbe Interact. 8:949959.
85. Skamnioti, P.,, R. F. Furlong, and, S. J. Gurr. 2008. Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization. New Phytol. 180:711721.
86. Skamnioti, P., and, S. J. Gurr. 2007. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:26742689.
87. Soanes, D. M.,, I. Alam,, M. Cornell,, H. M. Wong,, C. Hedeler,, N. W. Paton,, M. Rattray,, S. J. Hubbard,, S. G. Oliver, and, N. J. Talbot. 2008. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE 3:e2300.
88. Soanes, D. M., and, N. J. Talbot. 2005. A bioinformatic tool for analysis of EST transcript abundance during infection-related development by Magnaporthe grisea. Mol. Plant Pathol. 6:503512.
89. Sweigard, J. A.,, A. M. Carroll,, S. Kang,, L. Farrall,, F. G. Chumley, and, B. Valent. 1995. Identification, cloning, characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:12211233.
90. Sweigard, J. A.,, F. G. Chumley, and, B. Valent. 1992. Disruption of a Magnaporthe grisea cutinase gene. Mol. Gen. Genet. 232:183190.
91. Takabayashi, N.,, Y. Tosa,, H. S. Oh, and, S. Mayama. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92:11821188.
92. Takano, Y.,, W. Choi,, T. K. Mitchell,, T. Okuno, and, R. A. Dean. 2003. Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol. Plant Pathol. 4:337346.
93. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177202.
94. Talbot, N. J.,, D. J. Ebbole, and, J. E. Hamer. 1993a. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:15751590.
95. Talbot, N. J.,, M. J. Kershaw,, G. E. Wakley,, O. M. H. de Vries,, J. G. H. Wessels, and, J. E. Hamer. 1996. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985999.
96. Talbot, N. J.,, Y. P. Salch,, M. Ma, and, J. E. Hamer. 1993b. Karyotypic variation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl. Environ. Microbiol. 59:585593.
97. Thines, E.,, F. Eilbert,, O. Sterner, and, H. Anke. 1997. Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea: effects of second messengers diacylglycerols, ceramides and sphingomyelin. FEMS Microbiol. Lett. 156:9194.
98. Thines, E.,, R. W. S. Weber, and, N. J. Talbot. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:17031718.
99. Tosa, Y.,, K. Hirata,, H. Tamba,, S. Nakagawa,, I. Chuma,, C. Isobe,, J. Osue,, A. S. Urashima,, L. D. Don,, M. Kusaba,, H. Nakayashiki,, A. Tanaka,, T. Tani,, N. Mori, and, S. Mayama. 2004. Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus. Phytopathology 94:454462.
100. Tosa, Y.,, H. Tamba,, K. Tanaka, and, S. Mayama. 2006. Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology 96:480.
101. Tredway, L. P.,, K. L. Stevenson, and, L. L. Burpee. 2005. Genetic structure of Magnaporthe grisea populations associated with St. Augustine grass and tall fescue in Georgia. Phytopathology 95:463471.
102. Tsuji, G.,, Y. Kenmochi,, Y. Takano,, J. A. Sweigard,, L. Farrall,, I. Furusawa,, O. Horino, and, Y. Kubo. 2000. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol. Microbiol. 38:940954.
103. Urashima, A. S.,, T. Dias Martins,, C. R. N. C. Bueno,, D. B. Favaro,, M. A. Arruda, and, Y. R. Mehta. 2004. Triticale and barley: new hosts of Magnaporthe grisea in San Paulo, Brazil. Relationship with blast of rice and wheat. In S. Kawasaki (ed.), Rice Blast: Interaction with Rice and Control. Kluwer Academic Publishers, Dordrecht, The Netherlands.
104. Urashima, A. S.,, S. Igarashi, and, H. Kato. 1993. Host range, mating type and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis. 77:12111216.
105. Valdovinos-Ponce, G. 2007. Molecular and cellular analyses of pathogenicity and host specificity in rice blast disease. Ph.D. thesis. Kansas State University, Manhattan.
106. Valent, B. 1997. The rice blast fungus, Magnaporthe grisea, p. 37–54. In G. C. Carroll and, P. Tudzynoski (ed.), The Mycota V Part B. Springer-Verlag, Heidelberg, Germany.
107. Valent, B., and, F. G. Chumley. 1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443.
108. Valent, B.,, L. Farrall, and, F. G. Chumley. 1991. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87101.
109. Veneault-Fourrey, C.,, M. Barooah,, M. Egan,, G. Wakley, and, N. J. Talbot. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580583.
110. Vergne, E.,, E. Ballini,, S. Marques,, B. Sidi Mammar,, G. Droc,, S. Gaillard,, S. Bourot,, R. DeRose,, D. Tharreau,, J.-L. Notteghem, and, J.-B. Morel. 2007. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. New Phytol. 174:159171.
111. Viji, G.,, B. Wu,, S. Kang, and, W. Uddin. 2001. Pyricularia grisea causing gray leaf spot of perennial ryegrass turf: population structure and host specificity. Plant Dis. 85:817826.
112. Wang, G. L., and, B. Valent (ed.). 2009. Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer Science and Business Media, New York, NY.
113. Wang, Z. Y.,, J. M. Jenkinson,, L. J. Holcombe,, D. M. Soanes,, C. Veneault-Fourrey,, G. K. Bhambra, and, N. J. Talbot. 2005. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem. Soc. Trans. 33:384388.
114. Wu, S.-C.,, J. E. Halley,, C. Luttig,, L. M. Fernekes,, G. Gutiérrez-Sanchez,, A. G. Darvill, and, P. Albersheim. 2006. Identification of an endo-β-1,4-D-xylanase from Magnaporthe grisea by gene knockout analysis, purification, and heterologous expression. Appl. Environ. Microbiol. 72:986993.
115. Wu, S.-C.,, K.-S. Ham,, A. G. Darvill, and, P. Albersheim. 1997. Deletion of two endo-β-1,4-xylanase genes reveals additional isozymes secreted by the rice blast fungus. Mol. Plant-Microbe Interact. 10:700708.
116. Xu, J.-R. 2000. MAP kinases in fungal pathogens. Fungal Genet. Biol. 31:137152.
117. Xu, J.-R.,, C. J. Staiger, and, J. E. Hamer. 1998. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl. Acad. Sci. USA 95:1271312718.
118. Xu, J.-R.,, M. Urban,, J. A. Sweigard, and, J. E. Hamer. 1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol. Plant-Microbe Interact. 10:187194.
119. Xu, J.-R., and, J. E. Hamer. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:26962706.
120. Yaegashi, H. 1978. Inheritance of pathogenicity in crosses of Pyricularia isolates from weeping lovegrass and finger millet. Ann. Phytopathol. Soc. Jpn. 44:626632.
121. Yi, M.,, M.-H. Chi,, C. H. Khang,, S.-Y. Park,, S. Kang,, B. Valent, and, Y.-H. Lee. 27 February 2009. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell DOI:10.1105/tpc.107.055988.
122. Zeigler, R. S. 1998. Recombination in Magnaporthe grisea. Annu. Rev. Phytopathol. 36:249275.
123. Zhang, H. K.,, X. Zhang,, B. Z. Mao,, Q. Li, and, Z. H. He. 2004. Alpha-picolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Res. 14:2733.
124. Zhao, X.,, R. Mehrabi, and, J.-R. Xu. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6:17011714.
125. Zhou, E.,, Y. Jia,, P. Singh,, J. C. Correll, and, F. N. Lee. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol. 44:10241034.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error