1887

Chapter 39 : and Maize: a Delightful Interaction

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

and Maize: a Delightful Interaction, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap39-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap39-2.gif

Abstract:

Understanding the molecular mechanisms of the interaction of with maize entails understanding the molecular mechanisms that regulate its life cycle. This chapter presents an overview of the current knowledge regarding the interaction of with maize. First, useful features that have facilitated analysis of the life cycle are described, followed by a brief synopsis of the morphological transitions that characterize the life cycle and their control by the mating-type loci and the mitogen-activated protein kinase (MAPK) and cyclic AMP (cAMP) signal transduction pathways. Lastly, specific genes known to be required or to be expressed at different stages of the infectious cycle are described. Infection of anthers at various developmental stages not only induces tumors but can also cause aberrant development of different parts of the anther. Thus, infections with may provide important insights about floral development in maize. Hyphal fragmentation occurs within the tumors, though it has been reported that this process can occur between cells. Studies that utilized different maize lines suggested that the host can modulate the course of infection. Analysis of mutants in combination with sophisticated imaging techniques and the application of expression profiling of individual infected versus noninfected cells will allow a more precise dissection of the infectious process and identification of the genes that are differentially regulated in the partners of this “apparent” harmonious interaction.

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Life cycle of . Modified with permission from .

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Life cycle transitions in . Three basic forms characterize the life cycle of : a yeast-like cell, a filamentous form, and a spore (teliospore). The transition from one form to the other is accompanied by changes in ploidy, growth habit, and ability to induce tumors and entails three processes: meiosis, conjugation, and karyogamy, respectively. The fungus undergoes additional morphological changes in the host that are not observed in culture, suggesting that host signals play an important role in fungal differentiation.

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Fungal differentiation in the plant. (A) Fungal hyphae develop appressorium-like structures prior to penetration (not shown; see the text for details). Clamp-like structures (1 and 2) (short branches with Y-shaped septum) are necessary for nuclear partitioning and proliferation (see the text for details). The fungus branches profusely prior to tumor induction. Once tumors are formed, fungal hyphae undergo fragmentation, releasing cylindrical fragments containing a single nucleus (3). These fragments then undergo cell rounding (4) and deposit a specialized cell wall resulting in formation of mature diploid teliospores (5). Arrows point to likely sites of cell wall-remodeling events prior to fragmentation. (B) The teliospore germinates by formation of a short filament, the promycelium. The diploid nucleus migrates into the promycelium to complete meiosis resulting in a four-cell septate promycelium. These four haploid cells are the primary meiotic products. They give rise, by budding, to basidiospores, which in turn produce chains of yeast-like cells by budding. The progeny cells can be isolated by micromanipulation and used for segregation analysis.

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Formation of filaments on charcoal agar. Saturated cultures of haploid strains (top four horizontal lines) and Fuz diploids (bottom four horizontal lines) were costreaked against haploid testers , and on charcoal medium and incubated overnight at room temperature. Strains in the horizontal lines are (from top to bottom) , and . The fuzzy reaction observed is due to formation of filaments. Haploid strains that carry different and alleles form dikaryotic filaments when costreaked on this medium (top four reactions). Diploid strains heterozygous at and homozygous at or homozygous at and heterozygous at form filaments when costreaked with haploid strains that carry a different allele (regardless of the allele) or a different allele (regardless of the allele), respectively (bottom four reactions). Diploids heterozygous at both and form mycelial colonies (not shown). Reproduced from .

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Signal transduction in . The MAPK and cAMP signal transduction pathways regulate formation of the infectious filamentous dikaryon and also interaction with the host plant. (A) Pheromones activate a MAPK module consisting of Kpp4/Ubc4, Fuz7/Ubc5, Kpp2/Ubc3, and Crk1. Both Kpp2 and Crk1 activate Prf1, which in turn binds to pheromone response element sites present in the upstream regions of genes in the locus (, and ) and the locus ( and ). Activation of the genes in the haploid ensures that upon fusion of haploid cells containing different alleles, the active b protein is readily formed and activates the filamentous program and pathogenic development. In addition, Kpp2/Ubc3 acts via an unknown transcriptional activator to control formation of conjugation tubes, which mediate cell fusion. Ubc2, an adaptor protein, interacts with Kpp4/Ubc4. Smu1 (Ste20) is likely upstream of the MAPK module, though this remains to be determined. Ras2 is proposed to act upstream of the MAPK module (see the text). (B) Once the filamentous dikaryon is formed in the plant, the same MAPK module and another MAPK (Kpp6) in response to putative plant signals activate appressorium formation (Kpp2/Ubc3), cuticle penetration (Kpp6), and filamentous growth and pathogenicity. (C) The signals that activate the cAMP and pheromone response MAPK pathways converge on Prf1. Prf1 is phosphorylated by the MAPKs Kpp2/Ubc3 and Crk1 and by Adr1, the catalytic subunit of PKA. Gpa3 activates the cAMP pathway in response to pheromones and to nutritional inputs, including lipids and phosphate (see the text). Components of the cAMP pathway play roles at various stages of the infectious cycle (see the text).

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch39
1. Abramovitch, R. B.,, G. Yang, and, J. W. Kronstad. 2002. The ukb1 gene encodes a putative protein kinase required for bud site selection and pathogenicity in Ustilago maydis. Fungal Genet. Biol. 37:98108.
2. Agrios, G. N. 2005. Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
3. Aichinger, C.,, K. Hansson,, H. Eichhorn,, F. Lessing,, G. Mannhaupt,, W. Mewes, and, R. Kahmann. 2003. Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol. Genet. Genomics 270:303314.
4. Andrews, D. L.,, J. D. Egan,, M. E. Mayorga, and, S. E. Gold. 2000. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol. Plant-Microbe Interact. 13:781786.
5. Babu, M. R.,, K. Choffe, and, B. J. Saville. 2005. Differential gene expression in filamentous cells of Ustilago maydis. Curr. Genet. 47:316333.
6. Banuett, F. 2007. History of the mating types in Ustilago maydis, p. 351–375. In J. Heitman,, J. W. Kronstad,, J. Taylor, and, L. A.Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
7. Banuett, F. 2002. Pathogenic development in Ustilago maydis: a progression of morphological transitions that results in tumor formation and teliospore production, p. 349–398. In H. D. Osiewacz (ed.), Molecular Biology of Fungal Development. Marcel Dekker, New York, NY.
8. Banuett, F. 1995. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29:179208.
9. Banuett, F. 1992. Ustilago maydis, the delightful blight. Trends Genet. 8:174180.
10. Banuett, F. 1991. Identification of genes governing filamentous growth and tumor induction by the plant pathogen Ustilago maydis. Proc. Natl. Acad. Sci. USA 88:39223926.
11. Banuett, F., and, I. Herskowitz. 1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:29652976.
12. Banuett, F., and, I. Herskowitz. 1994a. Identification of Fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev. 8:13671378.
13. Banuett, F., and, I. Herskowitz. 1994b. Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Exp. Mycol. 18:247266.
14. Banuett, F., and, I. Herskowitz. 1989. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl. Acad. Sci. USA 86:58785882.
15. Basse, C. W. 2005. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol. 138:17741784.
16. Basse, C. W.,, S. Kolb, and, R. Kahmann. 2002. A maize-specifically expressed gene cluster in Ustilago maydis. Mol. Microbiol. 43:7593.
17. Basse, C. W.,, S. Stumpferl, and, R. Kahmann. 2000. Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase: evidence for negative as well as positive regulation. Mol. Cell. Biol. 20:329339.
18. Bauer, R.,, F. Oberwinkler, and, K. Vánky. 1997. Ultrastructural markers and systematics in smut fungi and allied taxa. Can. J. Bot. 75:12731314.
19. Becht, P.,, E. Vollmeister, and, M. Feldbrügge. 2005. Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot. Cell 4:121133.
20. Bölker, M.,, M. Urban, and, R. Kahmann. 1992. The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441450.
21. Bortfeld, M.,, K. Auffarth,, R. Kahmann, and, C. W. Basse. 2004. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. Plant Cell 16:22332248.
22. Boyce, K. J.,, M. Kretschmer, and, J. W. Kronstad. 2006. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis. Eukaryot. Cell 5:13991409.
23. Boyce, K. J.,, H. Chang,, C. A. D’Souza, and, J. W. Kronstad. 2005. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. Eukaryot. Cell 3:20442056.
24. Brachmann, A.,, J. Schirawski,, P. Müller, and, R. Kahmann. 2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22:21992210.
25. Brachmann, A.,, G. Weinzierl,, J. Kämper, and, R. Kahmann. 2001. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 42:10471063.
26. Cano-Canchola, C.,, L. Acevedo,, P. Ponce-Noyola,, A. Flores-Martínez,, A. Flores-Carreón, and, C. A. Leal-Morales. 2000. Induction of lytic enzymes by the interaction of Ustilago maydis with Zea mays tissues. Fungal Genet. Biol. 29:145151.
27. Castillo-Lluva, S.,, I. Alvarez-Tabarés,, I. Weber,, G. Steinberg, and, J. Pérez-Martín. 2007. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. J. Cell Sci. 120:15841595.
28. Castillo-Lluva, S.,, T. García-Muse, and, J. Pérez-Martín. 2004. A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis. J. Cell Sci. 117:41434156.
29. Chew, E.,, Y. Aweiss,, C.-Y. Lu, and, F. Banuett. 2008. Fuz1, a MYND domain protein, is necessary for cell morphogenesis in Ustilago maydis. Mycologia 100:3146.
30. Christensen, J. J. 1963. Corn Smut Caused by Ustilago maydis. Monograph no. 2. American Phytopathological Society, St. Paul, MN.
31. Day, P. R.,, S. L. Anagnostakis, and, J. E. Puhalla. 1971. Pathogenicity resulting from mutation at the b locus of Ustilago maydis. Proc. Natl. Acad. Sci. USA 60:533535.
32. Doehlemann, G.,, R. Wahl,, R. J. Horst,, L. M. Voll,, B. Usadel,, F. Poree,, M. Stitt,, J. Pons-Kühnemann,, U. Sonnewald,, R. Kahmann, and, J. Kämper. 2008a. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56:181195.
33. Doehlemann, G.,, R. Wahl,, M. Vranes,, R. P de Vries,, J. Kämper, and, R. Kahmann. 2008b. Establishment of compatibility in the Ustilago maydis/maize pathosystem. J. Plant Physiol. 165:2940.
34. Dürrenberger, F.,, R. D. Laidlaw, and, J. W. Kronstad. 2001. The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen Ustilago maydis. Mol. Micro-biol. 41:337348.
35. Dürrenberger, F., and, J. W. Kronstad. 1999. The ukc1 gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis. Mol. Gen. Genet. 261:281289.
36. Dürrenberger, F.,, K. Wong, and, J. W. Kronstad. 1998. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc. Natl. Acad. Sci. USA 95:56845689.
37. Eichhorn, H.,, F. Lessing,, B. Winterberg,, J. Schirawski,, J. Kämper,, P. Müller, and, R. Kahmann. 2006. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:33323345.
38. Fares, H.,, L. Goetsch, and, J. R. Pringle. 1996. Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 132:399411.
39. Flor-Parra, I.,, S. Castillo-Lluva, and, J. Pérez-Martín. 2007. Polar growth in the infectious hyphae of the phytopathogen Ustilago maydis depends on a virulence-specific cyclin. Plant Cell 19:32803296.
40. Flor-Parra, I.,, M. Vranes,, J. Kämper, and, J. Pérez-Martín. 2006. Biz1, a Zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18:23692387.
41. Fuchs, U.,, G. Hause,, I. Schuchardt, and, G. Steinberg. 2006. Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18:20662087.
42. Garcerá-Teruel, A.,, B. Xoconostle-Cázares,, R. RosasQuijano,, L. Ortiz,, C. León-Ramírez,, C. A. Specht,, R. Sentandreu, and, J. Ruiz-Herrera. 2004. Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res. Microbiol. 155:8797.
43. García-Muse, T.,, G. Steinberg, and, J. Pérez-Martín. 2003a. Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot. Cell 2:494500.
44. García-Muse, T.,, G. Steinberg, and, J. Pérez-Martín. 2003b. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. J. Cell Sci. 117:487506.
45. García-Pedrajas, M. D.,, M. Nadal,, M. Bölker,, S. E. Gold, and, M. H. Perlin. 2008. Sending mixed signals: redundancy vs uniqueness of signaling components in the plant pathogen Ustilago maydis. Fungal Genet. Biol. 45:S22S30.
46. Garrido, E.,, U. Voss,, P. Müller,, S. Castillo-Lluva,, R. Kah-mann, and, J. Pérez-Martín. 2004. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev. 18:31173130.
47. Giasson, L., and, J. W. Kronstad. 1995. Mutations in the myp1 gene of Ustilago maydis attenuate mycelial growth and virulence. Genetics 141:491501.
48. Gold, S. E.,, S. M. Brogdon,, M. E. Mayorga, and, J. W. Kronstad. 1997. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9:15851594.
49. Gold, S. E.,, G. Duncan,, K. Barrett, and, J. W. Kronstad. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8:28052816.
50. Hartmann, H. A.,, J. Krüger,, F. Lottspeich, and, R. Kahmann. 1999. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:12931306.
51. Hartmann, H. A.,, R. Kahmann, and, M. Bölker. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15:16321341.
52. Huber, S. M. F. E.,, F. Lottspeich, and, J. Kämper. 2002. A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis. Mol. Genet. Genomics 267:757771.
53. Kaffarnik, F.,, P. Müller,, M. Leibundgut,, R. Kahmann, and, M. Feldbruegge. 2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J. 22:58175826.
54. Kahmann, R., and, J. Schirawski. 2007. Mating in the smut fungi: from a to b to the downstream cascades, p. 377–387. In J. Heitman,, J. W. Kronstad,, J. Taylor, and, L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
55. Kahmann, R., and, J. Kämper. 2004. Ustilago maydis: how its biology relates to pathogenic development. New Phytol. 164:3142.
56. Kämper, J.,, R. Kahmann,, M. Bölker,, L. J. Ma,, T. Brefort,, B. J. Saville,, F. Banuett,, J. W. Kronstad,, S. E. Gold, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97101.
57. Kemen, E.,, A. C. Kemen,, M. Rafiqi,, U. Hempel,, K. Mendgen,, M. Hahn, and, R. T. Voegele. 2005. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant-Microbe Interact. 18:11301139.
58. Kenaga, C. B.,, E. B. Williams, and, R. J. Green. 1971. Plant Disease Syllabus. Balt Publishers, Lafayette, IN.
59. Klose, J., and, J. W. Kronstad. 2006. The multifunctional β-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot. Cell 5:20472061.
60. Klose, J.,, M. Moniz de Sá, and, J. W. Kronstad. 2004. Lipidinduced filamentous growth in Ustilago maydis. Mol. Microbiol. 52:623635.
61. Klosterman, S. J.,, A. D. Martinez-Espinoza,, D. L. Andrews,, J. R. Seay, and, S. E. Gold. 2008. Ubc2, an ortholog of the yeast Ste50p adaptor, possesses a Basidiomycete-specific carboxy terminus extension essential for pathogenicity independent of pheromone response. Mol. Plant-Microbe Interact. 21:110121.
62. Klosterman, S. J.,, M. H. Perlin,, M. Garcia-Pedrajas,, S. F. Covert, and, S. E. Gold. 2007. Genetics of morphogenesis and pathogenic development of Ustilago maydis. Adv. Genet. 57:147.
63. Kojic, M.,, C. F. Kostrub,, A. R. Buchman, and, W. K. Holloman. 2002. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 10:683691.
64. Kojic, M.,, C. W. Thompson, and, W. K. Holloman. 2001. Disruptions of the Ustilago maydis REC2 gene identify a protein domain important in directing recombinational repair of DNA. Mol. Microbiol. 40:14151426.
65. Krüger, J.,, G. Loubradou,, G. Wanner,, E. Regenfelder,, M. Feldbrügge, and, R. Kahmann. 2000. Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol. Plant-Microbe Interact. 13:10341040.
66. Larraya, L. M.,, K. J. Boyce,, A. So,, B. R. Steen,, S. Jones,, M. Marra, and, J. W. Kronstad. 2005. Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis. Eukaryot. Cell 4:20292043.
67. Lee, N.,, C. A. D’Souza, and, J. W. Kronstad. 2003. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu. Rev. Phytopathol. 41:399427.
68. Lee, N., and, J. W. Kronstad. 2002. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell 1:954966.
69. Leuthner, B.,, C. Aichinger,, E. Oehmen,, E. Koopmann,, O. Müller,, P. Müller,, R. Kahmann,, M. Bölker, and, P. H. Schreier. 2005. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol. Genet. Genomics 272:639650.
70. Mayorga, M. E., and, S. E. Gold. 2001. The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol. Microbiol. 41:13651379.
71. Mayorga, M. E., and, S. E. Gold. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34:485497.
72. Molina, L., and, R. Kahmann. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:22932309.
73. Müller, P.,, A. Leibbrandt,, H. Teunissen,, S. Cubasch,, C. Aichinger, and, R. Kahmann. 2004. The Gβ-subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis. Eukaryot. Cell 3:806814.
74. Müller, P.,, G. Weinzierl,, A. Brachmann,, M. Feldbrügge, and, R. Kahmann. 2003. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot. Cell 2:11871199.
75. Müller, P.,, C. Aichinger,, M. Feldbrügge, and, R. Kahmann. 1999. The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol. Microbiol. 34:10071017.
76. Pérez-Martín, J.,, S. Castillo-Lluva,, C. Sgarlata,, I. Flor-Parra,, N. Mielnichuk,, J. Torreblanca, and, N. Carbó. 2006. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol. Genet. Genomics 276:211229.
77. Quadbeck-Seeger, C.,, G. Wanner,, S. Huber,, R. Kahmann, and, J. Kämper. 2000. A protein with similarity to human retinoblastoma binding protein 2 acts specifically as a repressor for genes regulated by the b mating type locus in Ustilago maydis. Mol. Microbiol. 38:154166.
78. Regenfelder, E.,, T. Spellig,, A. Hartmann,, S. Lauenstein,, M. Bölker, and, R. Kahmann. 1997. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 16:19341942.
79. Reichmann, M.,, A. Jamnischek,, G. Weinzierl,, O. Ladendorf,, S. Huber,, R. Kahmann, and, J. Kämper. 2002. The histone deacetylase Hda1 from Ustilago maydis is essential for teliospore development. Mol. Microbiol. 46:11691182.
80. Ruiz-Herrera, J.,, C. León-Ramírez,, J. L. Cabrera-Ponce,, A. D. Martínez-Espinoza, and, L. Herrera-Estrella. 1999. Completion of the sexual cycle and demonstration of genetic recombination in Ustilago maydis in vitro. Mol. Gen. Genet. 262:468472.
81. Ruiz-Herrera, J., and, A. D. Martínez-Espinoza. 1998. The fungus Ustilago maydis, from the Aztec cuisine to the research laboratory. Int. Microbiol. 1:149158.
82. Ruiz-Herrera, J.,, C. G. Leon,, L. Guevara-Olvera, and, A. Carabez-Trejo. 1995. Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology 141:695703.
83. Scherer, M.,, K. Heimel,, V. Starke, and, J. Kämper. 2006. The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:23882401.
84. Schirawski, J.,, H. U. Böhnert,, G. Steinberg,, K. Snetselaar,, L. Adamikowa, and, R. Kahmann. 2005. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17:35323543.
85. Smith, D. G.,, M. D. Garcia-Pedrajas,, W. Hong,, Z. Yu,, S. E. Gold, and, M. H. Perlin. 2004. An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukaryot. Cell 3:180189.
86. Snetselaar, K. M. 1993. Microscopic observation of Ustilago maydis mating interactions. Exp. Mycol. 17:345355.
87. Snetselaar, K. M.,, M. Bölker, and, R. Kahmann. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20:299312.
88. Snetselaar, K. M., and, C. W. Mims. 1994. Light and electron-microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 98:347355.
89. Spellig, T.,, M. Bölker,, F. Lottspeich,, R. W. Frank, and, R. Kahmann. 1994. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 13:16201627.
90. Weber, I.,, D. Assmann,, E. Thines, and, G. Steinberg. 2006. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225242.
91. Weber, I.,, C. Gruber, and, G. Steinberg. 2003. A class V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15:28262842.
92. Yuan, W. M.,, G. D. Gentil,, A. D. Budde, and, S. A. Leong. 2001. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J. Bacteriol. 183:40404051.
93. Zahiri, A. R.,, M. R. Babu, and, B. J. Saville. 2005. Differential gene expression during teliospore germination in Ustilago maydis. Mol. Genet. Genomics 273:394403.
94. Zheng, Y.,, J. Kief,, K. Auffarth,, J. W. Farfsing,, M. Mahlert,, F. Nieto, and, C. W. Basse. 2008. The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Mol. Microbiol. 68:14501470.

Tables

Generic image for table
TABLE 1

Genes required for pathogenicity

Citation: Banuett F. 2010. and Maize: a Delightful Interaction, p 622-644. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch39

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error