1887

Chapter 40 : Necrotrophic Fungi: Live and Let Die

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Necrotrophic Fungi: Live and Let Die, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap40-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap40-2.gif

Abstract:

Necrotrophic fungi are pathogens that obtain nutrients from dead cells. In this chapter three major fungal necrotrophs, , , and , are compared and contrasted. All three fungi discussed in the chapter have recently completed genome sequences. Effective pathogenesis by requires the secretion of oxalic acid (OA). The role of OA in fungal pathogenicity was originally demonstrated using a genetic approach. In all eukaryotes examined, reactive oxygen species (ROS) are produced during normal cellular metabolism. It is now evident that low, nonlethal concentrations of ROS can function beneficially as regulatory molecules in cell-signaling pathways. Programmed cell death (PCD) is an intentional cellular suicide that is genetically based. The result of PCD is the orderly removal of unwanted, unneeded, used, or pathological cells and under normal homeostatic conditions, is of benefit to the organism. Diseases caused by occur in important crop plants in all temperate climate zones, both during plant cultivation and on harvested commodities, often during storage. The SNF1 kinase plays a central role in carbon catabolite repression in . Importantly, the addition of tryptone to spores of both Δabste12 and Δabnik1 during plant inoculation resulted in a complete restoration of pathogenicity. These results might suggest the presence of a previously undescribed nutrient- or polypeptide-sensing pathway downstream of Amk1/AbSte12 signaling pathways and a putative AbNIK1 osmoregulation pathway.

Citation: Dickman M, Kan J, Lawrence C. 2010. Necrotrophic Fungi: Live and Let Die, p 645-659. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch40

Key Concept Ranking

Fungal Signal Transduction
0.42118722
0.42118722
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Typical symptoms caused by and structures of the fungus. (a) Apothecia (arrow) below a soybean canopy. (b) White mold on dry bean stalks with sclerotia (arrow). (c) Symptoms of white mold on dry bean: water-soaked lesions with fluffy mycelium. (d) Oilseed rape infected with showing bleached stem tissue and necrotic side branch. (e) Carpogenic germination of sclerotia resulting in apothecia with ascospores. (f) GFP-tagged under fluorescence microscopy ( ). (g) Sclerotia in a soybean harvest sample (arrow).

Citation: Dickman M, Kan J, Lawrence C. 2010. Necrotrophic Fungi: Live and Let Die, p 645-659. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Life stages of (). (a) conidiophore with mature conidia in situ (low-temperature scanning electron microscopy). (b) Apothecia of , ~10 weeks after spermatization. (c) Two asci each containing eight ascospores, surrounded by ascospores released from damaged asci. (d) Scanning electron micrograph of calcium oxalate crystals (indicated by arrows) in tomato leaves infected by . The white dashed line in the center of the picture indicates the border of the lesion between the external mycelium surrounded by crystals (on the left-hand side) and a concentric zone of collapsed epidermal cells (on the right-hand side). Both zones are colonized by mycelium, growing below the epidermis. The white dashed line at the right-hand side of the picture represents the border between the colonized area and noninvaded leaf tissue. Panels a through c reproduced from , with permission from Blackwell Publishers. Panel d reproduced from , with permission.

Citation: Dickman M, Kan J, Lawrence C. 2010. Necrotrophic Fungi: Live and Let Die, p 645-659. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

. (A) Germinating spores of in vitro. (B) Black spot symptoms on cultivated mustard, . (C) Trypan blue staining of infected cabbage tissue. The arrow points to an invasive hypha. Note dark blue staining of tissue surrounding hypha, suggesting damaged walls and membranes of host cells due to the action of toxic secreted proteins and metabolites. (D) GFP-tagged germinating on a cabbage leaf. Arrows depict entry through stomata and appressorium-like structures. Reprinted from .

Citation: Dickman M, Kan J, Lawrence C. 2010. Necrotrophic Fungi: Live and Let Die, p 645-659. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816636.ch40
1. Adams, P. B., and, W. A. Ayer. 1979. Ecology of Sclerotinia species. Phytopathology 69:896899.
2. Bateman, D. F., and, S. V. Beer. 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204208.
3. Berto, P.,, P. Commenil,, L. Belingheri, and, B. Dehorter. 1999. Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol. Lett. 180:183189.
4. Boland, G. J., and, R. Hall. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16:93108.
5. Bolwell, G. P. 1999. Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol. 2:287294.
6. Brito, N.,, J. J. Espino, and, C. Gonzalez. 2006. The endo-β-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol. Plant–Microbe Interact. 19:2532.
7. Caddick, M. X.,, A. G. Brownlee, and, H. N. Arst. 1986. Regulation of gene-expression by pH of the growth-medium in Aspergillus nidulans. Mol. Gen. Genet. 203:346353.
8. Catlett, N. L.,, O. C. Yoder, and, B. G. Turgeon. 2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2:11511161.
9. Cessna, S. G.,, V. E. Sears,, M. B. Dickman, and, P. S. Low. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:21912199.
10. Chagüé, V.,, L.-V. Danit,, V. Siewers,, C. Schulze Gronover,, P. Tudzynski,, B. Tudzynski, and, A. Sharon. 2006. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Mol. Plant-Microbe Interact. 19:3342.
11. Chen, C. B., and, M. B. Dickman. 2005. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum. Mol. Micro-biol. 55:299311.
12. Chen, C. B.,, A. Harel,, R. Gorovoits,, O. Yarden, and, M. B. Dickman. 2004. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol. Plant-Microbe Interact. 17:404413.
13. Chet, I., and, Y. Henis. 1975. Sclerotial morphogenesis in fungi. Annu. Rev. Phytopathol. 13:169192.
14. Cho, Y.,, R. A. Cramer,, K. H. Kim,, J. Davis,, T. K. Mitchell,, P. Figuli,, B. M. Pryor,, E. Lemasters, and, C. B. Lawrence. 2007. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet. Biol. 44:543553.
15. Cho, Y.,, K.-H. Kim,, C. M. La Rota,, D. Scott,, G. Santopietro,, M. Callihan,, T. K. Mitchell, and, C. B. Lawrence. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol. Microbiol. 72:13161333.
16. Cho, Y. R.,, J. W. Davis,, K. H. Kim,, J. Wang,, Q. H. Sun,, R. A. Cramer, and, C. B. Lawrence. 2006. A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Mol. Plant-Microbe Interact. 19:715.
17. Colmenares, A. J.,, J. Aleu,, R. Durán-Patrón,, I. G. Collado, and, R. Hernández-Galán. 2002. The putative role of botry-dial and related metabolites in the infection mechanism of Botrytis cinerea. J. Chem. Ecol. 28:9971005.
18. Conn, K. L.,, J. P. Tewari, and, J. S. Dahiya. 1988. Resistance to Alternaria brassicae and phytoalexin-elicitation in rape-seed and other crucifers. Plant Sci. 56:2125.
19. Cooke, D. E. L.,, P. D. Jenkins, and, D. M. Lewis. 1997. Production of phytotoxic spore germination liquids by Alternaria brassicae and A. brassicicola and their effect on species of the family Brassicaceae. Ann. Appl. Biol. 131:413426.
20. Craven, K. D.,, H. Velez,, Y. Cho,, C. B. Lawrence, and, T. K. Mitchell. 2008. Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot. Cell 7:675683.
21. Cui, W.,, R. E. Beever,, S. L. Parkes,, P. L. Weeds, and, M. D. Templeton. 2002. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet. Biol. 36:187198.
22. Deighton, N.,, I. Muckenschnabel,, A. J. Colmenares,, I. G. Collado, and, B. Williamson. 2001. Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689692.
23. Denby, K. J.,, P. Kumar, and, D. J. Kliebenstein. 2004. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J. 38:473486.
24. De Silva, A.,, M. D. Bolton, and, B. D. Nelson. 2005. Transformation of Sclerotinia sclerotiorum with the green fluorescent protein gene and expression of fluorescence in host tissues. Phytopathology 95:S23.
25. Dickman, M. 2007a. Approaches for crop improvement to soilborne fungal diseases through biotechnology: Sclerotinia sclerotiorum as a case study. Australas. Plant Pathol. 36:116123.
26. Dickman, M. B. 2007b. Subversion or coercion? Pathogenic determinants in fungal phytopathogens. Fungal Biol. Rev. 21:125129.
27. Dickman, M. B.,, Y. K. Park,, T. Oltersdorf,, W. Li,, T. Clemente, and, R. French. 2001. Abrogation of disease development in plants expressing animal anti-apoptotic genes. Proc. Natl. Acad. Sci. USA 98:69576962.
28. Dillard, H. R.,, A. C. Cobb, and, J. S. Lamboy. 1998. Transmission of Alternaria brassicicola to cabbage by flea beetles (Phyllotreta cruciferae). Plant Dis. 82:153157.
29. Döhlemann, G.,, P. Berndt, and, M. Hahn. 2006. Different signalling pathways involving a G-alpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol. Microbiol. 59:821835.
30. Donaldson, P. A.,, T. Anderson,, B. C. Lane,, A. L. Davidson, and, D. H. Simmonds. 2001. Soybean plants expressing an active oligomeric oxalate oxidase from wheat germin gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 59:297307.
31. Dutton, M. V., and, C. S. Evans. 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42:881895.
32. Ellis, J. G.,, P. N. Dodds, and, G. J. Lawrence. 2007. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45:289306.
33. Erental, A.,, A. Harel, and, O. Yarden. 2007. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol. Plant-Microbe Interact. 20:944954.
34. Erental, A.,, M. B. Dickman, and, O. Yarden. 2008. Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “dormant” structure. Fungal Biol. Rev. 22:616.
35. Espino, J. J.,, N. Brito,, J. Noda, and, C. Gonzalez. 2005. Botrytis cinerea endo-β-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol. Mol. Plant Pathol. 66:213221.
36. Faretra, F., and, S. Pollastro. 1996. Genetic studies of the phytopathogenic fungus Botryotinia fuckeliana (Botrytis cinerea) by analysis of ordered tetrads. Mycol. Res. 100:620624.
37. Faretra, F.,, E. Antonacci, and, S. Pollastro. 1988. Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. J. Gen. Microbiol. 134:25432550.
38. Finkers, R.,, P. van den Berg,, R. van Berloo,, A. ten Have,, A. W. van Heusden,, J. A. L. van Kan, and, P. Lindhout. 2007a. Three QTLs for Botrytis cinerea resistance in tomato. Theor. Appl. Genet. 114:585593.
39. Finkers, R.,, A. W. van Heusden,, F. Meijer-Dekens,, J. A. L. van Kan,, P. Maris, and, P. Lindhout. 2007b. The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor. Appl. Genet. 114:10711080.
40. Fournier, E.,, T. Giraud,, C. Albertini, and, Y. Brygoo. 2005. Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia 97:12511267.
41. Georgiou, D. C.,, N. Tairis, and, A. Sotiropoulou. 2000. Hydroxyl radical scavengers inhibit sclerotial differentiation and growth in Sclerotinia sclerotiorum and Rhizoctonia solani. Mycol. Res. 104:11911196.
42. Giraud, T.,, D. Fortini,, C. Levis,, P. Leroux, and, Y. Brygoo. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol. Biol. Evol. 14:11771185.
43. Giraud, T.,, D. Fortini,, C. Levis,, C. Lamarque,, P. Leroux,, K. LoBuglio, and, Y. Brygoo. 1999. Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89:967973.
44. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205227.
45. Godoy, G.,, J. R. Steadman,, M. B. Dickman, and, R. Dam. 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol. Mol. Plant Pathol. 36:179191.
46. Gourgues, M.,, A. Brunet-Simon,, M.-H. Lebrun, and, C. Levis. 2004. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol. Microbiol. 51:619629.
47. Govrin, E. M., and, A. Levine. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751757.
48. Guimaraes, R. L., and, H. U. Stotz. 2004. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol. 136:37033711.
49. Hamada, W.,, P. Reignault,, G. Bompeix, and, M. Boccara. 1994. Transformation of Botrytis cinerea with the hygromycin B resistance gene, hph. Curr. Genet. 26:251255.
50. Han, Y.,, H. J. Joosten,, W. Niu,, Z. Zhao,, P. S. Mariano,, M. T. McCalman,, J. A. L. van Kan,, P. J. Schaap, and, D. Dun-away-Mariano. 2007. Oxaloacetate hydrolase: the C-C bond lyase of oxalate secreting fungi. J. Biol. Chem. 282:95819590.
51. Hansberg, W., and, J. Aguirre. 1990. Hyperoxidant states cause microbial cell-differentiation by cell isolation from dioxygen. J. Theor. Biol. 142:201221.
52. Hoeberichts, F. A.,, A. ten Have, and, E. J. Woltering. 2003. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517522.
53. Hu, X.,, D. L. Bidney,, Y. Yalpani,, J. P. Duvick,, O. Crasta,, O. Folkerts, and, G. Lu. 2003. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 133:170181.
54. Humpherson-Jones, F. M. 1985. The incidence of Alternaria spp and Leptosphaeria maculans in commercial Brassica seed in the United Kingdom. Plant Pathol. 34:385390.
55. Humpherson-Jones, F. M., and, K. Phelps. 1989. Climatic factors influencing spore production in Alternaria brassicae and Alternaria brassicicola. Ann. Appl. Biol. 114:449458.
56. Jurick, W. M.,, M. B. Dickman, and, J. A. Rollins. 2004. Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pka1) in Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 64:155163.
57. Kars, I. 2007. The role of pectin degradation in pathogenesis of Botrytis cinerea. Ph.D. thesis. Wageningen University, Wageningen, The Netherlands.
58. Kars, I.,, G. Krooshof,, C. A. M. Wagemakers,, R. Joosten,, J. A. E. Benen, and, J. A. L. van Kan. 2005a. Necrotising activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43:213225.
59. Kars, I.,, C. A. M. Wagemakers,, M. T. McCalman, and, J. A. L. van Kan. 2005b. Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol. Plant Pathol. 6:641652.
60. Kim, K. H.,, Y. Cho,, M. La Rota,, R. A. Cramer, and, C. B. Lawrence. 2007. Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Mol. Plant Pathol. 8:2339.
61. Kim, K. Y.,, J.-Y. Min, and, M. B. Dickman. 2008. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol. Plant-Microbe Interact. 21:605612.
62. Kim, K. H.,, S. D. Willger,, S. W. Park,, S. Puttikamonkul,, N. Grahl,, Y. Cho,, B. Mukhopadhyay,, R. A. Cramer, and, C. B. Lawrence. 2009. TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog. 5(11):e1000653. (Epub 2009 Nov 6.)
63. King, S. R. 1994. Screening, selection, and genetics of resistance to Alternaria diseases in Brassica oleracea. Ph.D. thesis. Cornell University, Ithaca, NY.
64. Klimpel, A.,, C. Schulze Gronover,, B. Williamson,, J. A. Stewart, and, B. Tudzynski. 2002. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol. Plant Pathol. 3:439450.
65. Kunz, C.,, E. Vandelle,, S. Rolland,, B. Poinssot,, C. Bruel,, A. Cimerman,, C. Zotti,, E. Moreau,, R. Vedel,, A. Pugin, and, M. Boccara. 2006. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol. 170:537550.
66. Lawrence, C. B.,, T. K. Mitchell,, R. C. Cramer,, K. D. Craven,, Y. Cho, and, K.-H. Kim. 2008. At death’s door: Alternaria pathogenicity mechanisms. Plant Pathol. J. 24:101111.
67. Legendre, L.,, S. Reuter,, P. F. Heinstein, and, P. S. Low. 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean cells. Plant Physiol. 102:23332340.
68. Leroux, P.,, R. Fritz,, D. Debieu,, C. Albertini,, C. Lanen,, J. Bach,, M. Gredt, and, F. Chapeland. 2002. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag. Sci. 58:876888.
69. Lorang, J. M.,, R. P. Turoi,, J. P. Martinez,, T. L. Sawyer,, R. S. Redman,, J. A. Rollins,, T. J. Wolpert,, K. B. Johnson,, R. J. Rodriguez,, M. B. Dickman, and, L. M. Ciuffetti. 2001. Green fluorescent protein is lighting up fungal biology. Appl. Environ. Microbiol. 67:19871994.
70. Lyon, G. D.,, B. A. Goodman, and, B. Williamson. 2004. Botrytis cinerea perturbs redox processes as an attack strategy in plants, p. 119–141. In Y. Elad,, B. Williamson,, P. Tudzynski, and, N. Delen (ed.), Botrytis: Biology, Pathology and Control. Kluwer Academic Press, Dordrecht, The Netherlands.
71. MacKinnon, S. L.,, P. Keifer, and, W. A. Ayer. 1999. Components from the phytotoxic extract of Alternaria brassicicola, a black spot pathogen of canola. Phytochemistry 51:215221.
72. Manteau, S.,, S. Abouna,, B. Lambert, and, L. Legendre. 2003. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol. Ecol. 43:359366.
73. Maude, M. B., and, F. M. Humpherson-Jones. 1980. Studies on the seed-borne phases of dark leaf-spot (Alternaria brassicicola) and grey leaf-spot (Alternaria brassicae) of Brassicas. Ann. Appl. Biol. 95:311319.
74. McKenzie, K. J.,, J. Robb, and, J. H. Lennard. 1988. Toxin production by Alternaria pathogens of oilseed rape (Brassica napus). Crop Res. 28:6781.
75. Minami, A.,, N. Tajima,, Y. Higuchi,, T. Toyomasu,, T. Sassa,, N. Kato, and, T. Dairi. 2009. Identification and functional analysis of brassicicene C biosynthetic gene cluster in Alternaria brassicicola. Bioorg. Med. Chem. Lett. 19:870874.
76. Mukherjee, A. K.,, S. Lev,, S. Gepstein, and, B. J. Horowitz. 2009. A compatible interaction of Alternaria brassicicola withArabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. BMC Plant Biol. 9:31.doi:10.1186/14712229931.
77. Mur, L. A.,, P. Kenton,, A. J. Lloyd,, H. Ougham, and, E. Prats. 2008. The hypersensitive response; the centenary is upon us but how much do we know? J. Exp. Bot. 59:501520.
78. Noyes, R. D., and, J. G. Hancock. 1981. Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiol. Plant Pathol. 18:123132.
79. Oide, S.,, W. Moeder,, S. Krasnoff,, D. Gibson,, H. Haas,, K. Yoshioka, and, B. G. Turgeon. 2006. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic Ascomycetes. Plant Cell 18:28362853.
80. Ospina-Giraldo, M. D.,, E. Mullins, and, S. Kang. 2003. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr. Genet. 44:4957.
81. Otani, H.,, A. Kohnobe,, M. Kodama, and, K. Kohmoto. 1998. Production of a host-specific toxin by germinating spores of Alternaria brassicicola. Physiol. Mol. Plant Pathol. 52:285295.
82. Palecek, S. P.,, A. S. Parikh,, J. H. Huh, and, S. J. Kron. 2002. Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol. Microbiol. 45:453469.
83. Pane, C.,, K. Rekab,, G. Firrao,, M. Ruocco, and, E. Scala. 2008. A novel gene coding for an ABC transporter in Botrytis cinerea (Botryotinia fuckeliana) is involved in resistance to H2O2. J. Plant Pathol. 90:453462.
84. Patel, R. M.,, J. A. L. van Kan,, A. Bailey, and, G. D. Foster. 2008. RNA-mediated gene silencing of superoxide dismutase (bcsod1) in Botrytis cinerea. Phytopathology 98:13341339.
85. Pattanamahakul, P., and, R. N. Strange. 1999. Identification and toxicity of Alternaria brassicicola, the causal agent of dark leaf spot disease of Brassica species grown in Thailand. Plant Pathol. 48:749755.
86. Pedras, M. S.,, P. B. Chumala,, W. Jin,, M. S. Islam, and, D. W. Hauck. 2009. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394402.
87. Pinedo, C.,, C. M. Wang,, J. M. Pradier,, B. Dalmais,, M. Choquer,, P. Le Pecheur,, G. Morgant,, I. G. Collado,, D. E. Cane, and, M. Viaud. 2008. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. Chem. Biol. 3:791801.
88. Prins T. W.,, L. Wagemakers,, A. Schouten, and, J. A. L. van Kan. 2000a. Cloning and characterization of a glutathione S-transferase homologue from the filamentous plant pathogenic fungus Botrytis cinerea. Mol. Plant Pathol. 1:169178.
89. Prins, T. W.,, P. Tudzynski,, A. von Tiedemann,, B. Tudzynski,, A. ten Have,, M. E. Hansen,, K. Tenberge, and, J. A. L. van Kan. 2000b. Infection strategies of Botrytis cinerea and related necrotrophic pathogens, p. 33–64. In J. Kronstad (ed.), Fungal Pathology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
90. Purdy, L. H. 1979. Sclerotinia sclerotiorum. History, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69:875880.
91. Reino, J. L.,, R. Hernández-Galán,, R. Durán-Patrón, and, I. G. Collado. 2004. Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J. Phytopathol. 152:563566.
92. Reis, H.,, S. Pfiffi, and, M. Hahn. 2005. Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol. Plant Pathol. 6:257267.
93. Rimmer, S. R., and, H. Buchwaldt. 1995. Diseases, p. 111–140. In D. Kimber and, D. I. Mcgregor (ed.), Brassica Oilseeds—Production and Utilization. CAB International, Wallingford, United Kingdom.
94. Rolke, Y.,, S. Liu,, T. Quidde,, B. Williamson,, S. Schouten,, K. M. Weltring,, V. Siewers,, K. B. Tenberge,, B. Tudzynski, and, P. Tudzynski. 2004. Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol. Plant Pathol. 5:1727.
95. Rolland, S.,, C. Jobic,, M. Fevre, and, C. Bruel. 2003. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr. Genet. 44:164171.
96. Rollins, J. A. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant-Microbe Interact. 16:785795.
97. Rollins, J., and, M. B. Dickman. 1998. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 64:25392544.
98. Rollins, J., and, M. B. Dickman. 2001. pH signaling in Sclerotinia sclerotiorum: identification of a pac C/RIM1 Homolog. Appl. Environ. Microbiol. 67:7581.
99. Rotem, J. 1994. The Genus Alternari a. Biology, Epidemiology, and Pathogenicity. APS Press, St. Paul, MN.
100. Rowe, H., and, D. J. Kliebenstein. 2008. Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:22372250.
101. Rui, O., and, M. Hahn. 2007. The Slt2-type Map kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing, and host tissue colonization. Mol. Plant Pathol. 8:173184.
102. Schouten, A.,, K. B. Tenberge,, J. Vermeer,, J. Stewart,, C. A. M. Wagemakers,, B. Williamson, and, J. A. L. van Kan. 2002. Functional analysis of an extracellular catalase of Botrytis cinerea. Mol. Plant Pathol. 3:227238.
103. Schouten, A.,, P. van Baarlen, and, J. A. L. van Kan. 2008. Phytotoxic NLPs from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytol. 177:493505.
104. Schulze Gronover, C.,, D. Kasulke,, P. Tudzynski, and, B. Tudzynski. 2001. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol. Plant-Microbe Interact. 14:12931302.
105. Schulze Gronover, C.,, J. Schumacher,, P. Hantsch, and, B. Tudzynski. 2005. A novel seven-helix transmembrane protein BTP1 of Botrytis cinerea controls expression of GST-encoding genes, but is not essential for pathogenicity. Mol. Plant Pathol. 6:243256.
106. Schumacher, J.,, L. Kokkelink,, C. Huesmann,, D. Jimenez-Teja,, I. G. Collado,, R. Barakat,, P. Tudzynski, and, B. Tudzynski. 2008a. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Mol. Plant-Microbe Interact. 21:14431459.
107. Schumacher, J.,, M. Viaud,, A. Simon, and, B. Tudzynski. 2008b. The G alpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol. Microbiol. 67:10271050.
108. Segmüller, N.,, U. Ellendorf,, B. Tudzynski, and, P. Tudzynski. 2007. BcSAK1, a stress-activated MAP kinase is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6:211221.
109. Segmüller, N.,, L. Kokkelink,, S. Giesbert,, D. Odinius,, J. A. L. van Kan, and, P. Tudzynski. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant-Microbe Interact. 21:808819.
110. Siewers, V.,, M. Viaud,, D. Jimenez-Teja,, I. G. Collado,, C. Schulze Gronover,, J. M. Pradier,, B. Tudzynski, and, P. Tudzynski. 2005. Functional analysis of the cytochrome P450 monooxygenase gene Bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol. Plant-Microbe Interact. 18:602612.
111. Sigareva, M. A., and, E. D. Earle. 1999a. Camalexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea. Theor. Appl. Genet. 98:164170.
112. Sigareva, M. A., and, E. D. Earle. 1999b. Regeneration of plants from protoplasts of Capsella bursa-pastoris and somatic hybridization with rapid cycling Brassica oleracea. Plant Cell Rep. 18:412417.
113. Staats, M.,, P. van Baarlen,, A. Schouten,, J. A. L. van Kan, and, F. T. Bakker. 2007. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genet. Biol. 44:5263.
114. Steadman, J. R. 1979. Control of plant diseases caused by Sclerotinia species. Phytopathology 69:904907.
115. Tani, H.,, H. Koshino,, E. Sakuno,, H. G. Cutler, and, H. Nakajima. 2006. Botcinins E and F and botcinolide from Botrytis cinerea and structural revision of botcinolides. J. Nat. Prod. 69:722725.
116. Tenberge, K. B. 2004. Morphology and cellular organization in Botrytis interactions with plants, p. 67–84. In Y. Elad,, B. Williamson,, P. Tudzynski, and, N. Delen (ed.), Botrytis: Biology, Pathology and Control. Kluwer Academic Press, Dordrecht, The Netherlands.
117. ten Have, A.,, W. Mulder,, J. Visser, and, J. A. L. van Kan. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact. 11:10091016.
118. ten Have, A.,, W. Oude Breuil,, J. P. Wubben,, J. Visser, and, J. A. L. van Kan. 2001. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet. Biol. 33:97105.
119. Thomma, B. P. H. J. 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4:225236.
120. Tonukari, N. J.,, J. S. Scott-Craig, and, J. D. Walton. 2000. The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12:237247.
121. Torres, M. A., and, J. L. Dangl. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397403.
122. Tourneau, D. L. 1979. Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 69:887890.
123. Tu, J. C. 1997. An integrated control of white mold (Sclerotinia sclerotiorum) of beans, with emphasis on recent advances in biological control. Bot. Bull. Acad. Sinica 38:7376.
124. van Baarlen, P.,, E. J. Woltering,, M. Staats, and, J. A. L. van Kan. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8:4154.
125. van der Vlugt-Bergmans, C. J. B.,, B. F. Brandwagt,, J. W. van’t Klooster,, C. A. M. Wagemakers, and, J. A. L. van Kan. 1993. Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. Mycol. Res. 97:11931200.
126. van der Vlugt-Bergmans, C. J. B.,, C. A. M. Wagemakers, and, J. A. L. van Kan. 1997. Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol. Plant-Microbe Interact. 10:2129.
127. van Kan, J. A. L. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11:247253.
128. van Kan, J. A. L.,, J. W. van’t Klooster,, C. A. M. Wagemakers,, D. Dees, and, C. J. B. van der Vlugt-Bergmans. 1997. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol. Plant-Microbe Interact. 10:3038.
129. Veluchamy, S., and, J. A. Rollins. 2008. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet. Biol. 45:12651276.
130. Viaud, M.,, A. Brunet-Simon,, Y. Brygoo,, J.-M. Pradier, and, C. Levis. 2003. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol. Microbiol. 50:14511465.
131. Viaud, M.,, S. Fillinger,, W. Liu,, J. S. Polepalli,, P. Le Pecheur,, A. R. Kunduru,, P. Leroux, and, L. Legendre. 2006. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol. Plant-Microbe Interact. 19:10421050.
132. Walton, J. D. 1996. Host-selective toxins: agents of compatibility. Plant Cell 8:17231733.
133. Westman, A. L.,, S. Kresovich, and, M. H. Dickson. 1999. Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106:253259.
134. Wight, W. D.,, J. D. Walton,, K. Kim, and, C. B. Lawrence. 2009. Biosynthesis of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Fungal Genet. Rep. 56(Suppl.):357.
135. Willetts, H. J., and, S. Bullock. 1992. Developmental biology of sclerotia. Mycol. Res. 96:801816.
136. Williams, B., and, M. B. Dickman. 2008. Plant programmed cell death: can’t live with it; can’t live without it. Mol. Plant Pathol. 9:531544.
137. Williamson, B.,, B. Tudzynski,, P. Tudzynski, and, J. A. L. van Kan. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561580.
138. Wojtaszek, P. 1997. Mechanisms for the generation of reactive oxygen species in plant defence response. Acta Physiol. Plant. 19:581589.
139. Wubben, J. P.,, W. Mulder,, A. ten Have,, J. A. L. van Kan, and, J. Visser. 1999. Cloning and partial characterisation of endopolygalacturonase genes from Botrytis cinerea. Appl. Environ. Microbiol. 65:15961602.
140. Xu, J. R. 2000. MAP kinases in fungal pathogens. Fungal Genet. Biol. 31:137152.
141. Yao, C., and, W. Köller. 1994. Diversity of cutinases from plant-pathogenic fungi—cloning and characterization of a cutinase gene from Alternaria brassicicola. Physiol. Mol. Plant Pathol. 44:8192.
142. Yao, C., and, W. Köller. 1995. Diversity of cutinases from plant-pathogenic fungi—different cutinases are expressed during saprophytic and pathogenic stages of Alternaria bras-sicicola. Mol. Plant-Microbe Interact. 8:122130.
143. Zheng, L.,, M. Campbell,, J. Murphy,, S. Lam, and, J.-R. Xu. 2000. The BMP1 gene is essential for pathogenicity in the grey mold fungus Botrytis cinerea. Mol. Plant–Microbe Interact. 13:724732.

Tables

Generic image for table
TABLE 1

Features of the genome sequences of S. , and A. brassicicola

Citation: Dickman M, Kan J, Lawrence C. 2010. Necrotrophic Fungi: Live and Let Die, p 645-659. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch40

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error