Chapter 1 : Neutrophils Forever ...

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Neutrophils Forever ..., Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap01-2.gif


Neutrophils constitute the major type of leukocyte in peripheral blood, with counts ranging from 40 to 70% of the leukocytes under normal conditions. Neutrophils mature in the bone marrow in about 2 weeks, a process in which the myeloid-specific growth factors granulocyte colony-stimulating factor (G-CSF) and granulocyte-monocyte-CSF (GM-CSF) play an important role. Neutrophil granule constituents are traditionally considered as potent antimicrobial peptides and proteolytic enzymes, specific to the neutrophil. These proteins assist in the killing and digestion of microorganisms but are potentially harmful to the host if released inappropriately. Several causes of neutropenia can be diagnosed. In contrast to the more frequently observed neutropenia associated with mutations, the classical form of severe congenital neutropenia (SCN), i.e., Kostmann syndrome, is an autosomal recessive disease. Recently, it was found to be caused by mutations in the gene. Leukocytes are able to recognize concentration differences in a gradient of chemotaxins and to direct their movement toward the source of these agents, i.e., toward the inflammatory site. A defect in chemotaxis by neutrophils with a disturbed GCSFR or gene cannot be easily reconciled with the function of either of these molecules per se. Toll-like receptors (TLRs) ignite the cytokine response that occurs during infection, and to a large extent, shape the whole of the inflammatory response with all its consequences, both beneficial and harmful. The cellular composition and duration of an inflammatory response may differ among the different inflammatory reactions.

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1

Key Concept Ranking

Immune System Proteins
Tumor Necrosis Factor alpha
Adaptive Immune System
Innate Immune System
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Electron microscopy picture showing a human neutrophil with multilobular nucleus and rich granular content. (B) Development of mature neutrophils with transcription factors involved in the differentiation and formation of some important surface proteins and granular components.

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

(A) TLR activation through TLR2 and TLR4 demonstrates the distinctive mechanisms that can be used by either of these surface proteins. The role of CD14 is limited to the sensing and cooperative activation of TLR4 (not shown). Moreover, TLR4 can activate the cell through MyD88/Mal/IRAK-4 but also via interferon response factor-3 (IRF3) phosphorylation in a TRAM/TRIF-dependent manner through inducible IKK (IKKɩ) and TANK-binding kinase-1 (TBK1) (see also chapter 10). TLR2 has been suggested to activate small GTPase Rac, but this TLR2-mediated activation pathway remains to be confirmed. Either way, NF-κB activation occurs and is an important step in transcriptional activity and the production of classical proinflammatory proteins. (B) The activation of endosomal TLR3, TLR7, TLR8, and TLR9 are assumed to activate different pathways. This has been indicated by the different signaling cascades. As shown for TLR3, this receptor triggers the TRAM/TRIF pathway to activate NF-κB and the IRF3- and IRF7-mediated gene transcription. In many cells a similar route of cytoplasmic activation via dsRNA is present which depends on retinoic acidi-inducible glycoprotein-I (RIG-I) or its homologous helicase MDA-5 in a mitochondria-dependent manner. In human neutrophils, TLR3 is not expressed and hence absent; RIG-I expression has not been described in neutrophils. (C) TLR7, -8, and -9 make use of the classical MyD88, which is able to relay their signals in the absence of Mal (in contrast to the TLR2/1, TLR2/6, and TLR4 shown in A). The localization of TLR7, -8, and -9 in human neutrophils is uncertain. IL-8 synthesis in neutrophils completely depends on IRAK-4. However, the immediate induction of adhesion, degranulation, or priming of the NADPH oxidase activity in neutrophils is independent of IRAK-4.

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

(A) NOD-like receptor (NLR) proteins comprise a diverse protein family (over 20 in humans), indicating that NLRs have evolved to acquire specificity to various pathogenic microorganisms, thereby controlling host-pathogen interactions. The NLRs form the backbone of inflammasomes, which are assumed to become active through a process of “close proximity.” This means that within these protein complexes of NLRs the associated procaspases cross-activate each other by cleavage into enzymatically active proteases. The NLRs have a series of homologous domains that may interact with each other, such as the caspase recruitment domain (CARD), the nucleotide-binding sequence (NBS), or the leucine-rich repeats (LRRs), which act as the ligand-interacting domains. As indicated here for caspase-1 activity, after the cleavage and activation of procaspase-1, its substrate pro-IL-1β (IL-18 or IL-33) is cleaved into the bioactive IL-1β that is being released by the inflammatory cells. Inhibitory proteins in the cytoplasm such as Pyrin or the CARD-containing proteins INCA, pseudo-ICE, or ICEBERG may prevent the inflammasome from becoming activated. (B) NLR proteins are localized to the cytoplasm and recognize microbial products. Many cells contain different inflammasomes with their own specific ligands that may originate from microbial structures, actively taken up or dissipating from the invading pathogen itself. The inflammasomes identified thus far have been listed with their incriminated microbial agents or pathogen-derived ligands shown at the right. The list is of temporary value because of the rapid evolution of the field of inflammasome research to date.

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

(A) Many proteins of the innate immune system contain so-called caspaserecruitment domains (CARDs). Through CARD-CARD interactions the activating protein kinase RIP2 can interact with NOD1 and NOD2. In murine myeloid cells, CARD9 binds to Bcl-10. In both murine and human lymphocytes, additional molecules such as the paracaspase-domain-containing MALT1, and members of the membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins, which coordinate signaling pathways emanating from the plasma membrane. When complexed, these members determine the signaling via the antigen receptors to activate NF-κB. The lymphocyte-specific CARD11 (CARMA1) and proposedly its closest homologues are constitutively oligomerized. This oligomerization of CARD11 via the coiled-coil domains is required for NF-κB activation. IKK triggers Bcl-10 degradation by the ubiquitinproteasome system through specific phosphorylation of Bcl-10, resulting in inactivation through negative feedback of the NF-κB activation pathway. (B) Apart from the NODs, also TLRs and surface receptors containing an ITAM motif themselves or associating with an ITAM-containing adaptor protein, such as the common FcR-associated γ-chain of FcγRIIIa or DAP12, have been demonstrated to signal through various CARD-containing proteins. Whether such activating modules or platforms also operate in human neutrophils is likely but remains to be formally shown.

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

(A) The gene loci for FcγRI and FcγRII-III are located on different bands of chromosome 1q. FcγRIIs are encoded by three genes, and , which has long been assumed to be a pseudogene. As recently demonstrated most explicitly, approximately 20% of healthy individuals carry an gene without a stop codon in exon 3, which creates an open reading frame that results in the functional expression of an activating FcγRIIc. FcγRIIIs are encoded by two genes, one of which is selectively expressed by the neutrophil, FcγRIIIb carrying the allotype NA1 and/or NA2. (B) The FcγRs can functionally be divided into activating and inhibitory receptors. The activation results from the interaction of FcγRs containing an ITAM. The cytoplasmic ITAM motif consists of two copies of the sequence YxxL. Within this motif, the tyrosines are phosphorylated after receptor cross-linking, and the integrity of these conserved sequences is required for efficient phagocytosis. The ITAM motif is present in the cytoplasmic tail of FcγRIIa and in the γ-chains associated with FcγRI and FcγRIIIa; the ζ-chain associated with FcγRIIIa contains three copies of this motif. The single inhibitory IgG receptor, FcγRIIb, contains a so-called ITIM. All FcγRII and FcγRIII isoforms contain amino acid substitutions that are believed to influence their function, as a consequence of genetic variation, i.e., single nucleotide polymorphisms.

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

The NADPH oxidase complex consists of several proteins that have to assemble into an enzymatically active complex before the generation of superoxide may occur. Cytoplasmic components (the p40/p47/p67- complex) are drawn toward the plasma or phagosomal membrane where the interactions with flavocytochrome are governed by the p47- SH3 domain interacting with a polyproline domain in p22-, and by the direct interaction of Rac proteins with gp91- Then, the NADPH-binding site in gp91- is made accessible for NADPH as a substrate and electron donor from the cytosol to start generating superoxide (O ).

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, M. J.,, and S. Cory. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281:13221326.
2. Aitman, T. J.,, R. Dong,, T. J. Vyse,, P. J. Norsworthy,, M. D. Johnson,, J. Smith,, J. Mangion,, C. Roberton-Lowe,, A. J. Marshall,, E. Petretto,, M. D. Hodges,, G. Bhangal,, S. G. Patel,, K. Sheehan-Rooney,, M. Duda,, P. R. Cook,, D. J. Evans,, J. Domin,, J. Flint,, J. J. Boyle,, C. D. Pusey, and, H. T. Cook. 2006. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851855.
3. Akira, S.,, and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499511.
4. Ambruso, D. R.,, C. Knall,, A. N. Abell,, J. Panepinto,, A. Kurkchubasche,, G. Thurman,, C. Gonzalez-Aller,, A. Hiester,, M. de Boer,, R. J. Harbeck,, R. Oyer,, G. L. Johnson, and, D. Roos. 2000. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl. Acad. Sci. USA 97:46544659.
5. Anderson, K. L.,, K. A. Smith,, H. Perkin,, G. Hermanson,, C. G. Anderson,, D. J. Jolly,, R. A. Maki, and, B. E. Torbett. 1999. PU.1 and the granulocyte- and macrophage colony-stimulating factor receptors play distinct roles in late-stage myeloid cell differentiation. Blood 94:23102318.
6. Aurrand-Lions, M.,, C. Johnson-Leger, and, B. Imhof. 2002. The last molecular fortress in leukocyte trans-endothelial migration. Nat. Immunol. 3:116118.
7. Barclay, A. N.,, G. J. Wright,, G. Brooke, and, M. H. Brown. 2002. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23:285290.
8. Belaaouaj, A.,, R. McCarthy,, M. Baumann,, Z. Gao,, T. J. Ley,, S. N. Abraham, and, S. D. Shapiro. 1998. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat. Med. 4:615618.
9. Benson, K. F.,, F. Q. Li,, R. E. Person,, D. Albani,, Z. Duan,, J. Wechsler,, K. Meade-White,, K. Williams,, G. M. Acland,, G. Niemeyer,, C. D. Lothrop, and, M. Horwitz. 2003. Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat. Genet. 35:9096.
10. Blink, E.,, N. A. Maianski,, E. S. Alnemri,, A. S. Zervos,, D. Roos, and, T. W. Kuijpers. 2004. Intramitochondrial serine protease activity of Omi/HtrA2 is required for caspase-independent cell death of human neutrophils. Cell Death Differ. 11:937939.
11. Bohn, G.,, A. Allroth,, G. Brandes,, J. Thiel,, E. Glocker,, A. A. Schäffer,, C. Rathinam,, N. Taub,, D. Teis,, C. Zeidler,, R. A. Dewey,, R. Geffers,, J. Buer,, L. A. Huber,, K. Welte,, B. Grimbacher, and, C. Klein. 2007. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat. Med. 13:3845.
12. Bokoch, G. M. 1996. Chemoattractant signalling and leukocyte activation. Blood 86:16491660.
13. Borregaard, N.,, O. E. Sorensen, and, K. Theilgaard-Monch. 2007. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28:340345.
14. Bouchon, A.,, F. Facchetti,, M. A. Welgand, and, M. Colonna. 2001. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410:11031107.
15. Brach, M. A.,, S. deVos,, H. J. Gruss, and, F. Herrmann. 1992. Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood 80:29202924.
16. Breunis, W. B.,, E. van Mirre,, M. Bruin,, J. Geissler,, M. de Boer,, M. Peters,, D. Roos,, M. de Haas,, H. R. Koene, and, T. W. Kuijpers. 2008. Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenia. Blood 111:10291028.
17. Breunis, W. B.,, E. van Mirre,, J. Geissler,, N. Laddach,, G. J. Wolbink,, E. van der Schoot,, M. de Haas,, M. de Boer,, D. Roos, and, T. W. Kuijpers. 2009. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum. Mutat. March 23 [Epub ahead of print].
18. Broxmeyer H. E.,, C. M. Orschell,, D. W. Clapp,, G. Hangoc,, S. Cooper,, P. A. Plett,, W. C. Liles,, X. Li,, B. Graham-Evans,, T. B. Campbell,, G. Calandra,, G. Bridger,, D. C. Dale, and, E. F. Srour. 2005. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201:13071318.
19. Bruey, J. M.,, N. Bruey-Sedano,, R. Newman,, S. Chandler,, C. Stehlik, and, J. C. Reed. 2004. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NFkappaB and caspase-1 activation in macrophages. J. Biol. Chem. 279:5189751907.
20. Bruhns, P.,, F. Vely,, O. Malbec,, W. H. Fridman,, E. Vivier, and, M. Daeron. 2000. Insufficient phosphorylation prevents FcγRIIB from recruiting the SH2 domain-containing protein tyrosine phosphatase SHP-1. J. Biol. Chem. 275:3735737364.
21. Cai, H.,, K. Reinisch, and, S. Ferro-Novick. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell. 12:671682.
22. Cartwright, N.,, O. Murch,, S. K. McMaster,, M. J. Paul-Clark,, D. A. van Heel,, B. Ryffel,, V. F. Quesniaux,, T. W. Evans,, C. Thiemermann, and, J. A. Mitchell. 2007. Selective NOD1 agonists cause shock and organ injury/dysfunction in vivo. Am. J. Respir. Crit. Care Med. 175:595603.
23. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Valvano,, S. J. Foster,, T. W. Mak,, G. Nunez, and, N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:702707.
24. Cilenti, L.,, M. M. Soundarapandian,, G. A. Kyriazis,, V. Stratico,, S. Singh,, S. Gupta,, J. V. Bonventre,, E. S. Alnemri, and, A. S. Zervos. 2004. Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J. Biol. Chem. 279:5029550301.
25. Corada, M.,, S. Chimenti,, M. R. Cera,, M. Vinci,, M. Salio,, F. Fiordaliso,, N. de Angelis,, A. Villa,, M. Bossi,, L. I. Staszewsky,, A. Vecchi,, D. Parazzoli,, T. Motoike,, R. Latini, and, E. Dejana. 2005. Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 102:1063410639.
26. Dale, D. C.,, R. E. Person,, A. A. Boylard,, A. G. Aprikyan,, C. Bos,, M. A. Bonilla,, L. A. Boxer,, G. Kanourakis,, C. Zeidler,, K. Welte,, K. F. Benson, and, M. Horwitz. 2000. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96:23172322.
27. Daws, M. R.,, L. L. Lanier,, W. R. Seaman, and, J. C. Ryan. 2001. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol. 31:783791.
28. Diehl, G. E.,, H. H. Yue,, K. Hsieh,, A. A. Kuang,, M. Ho,, L. A. Morici,, L. L. Lenz,, D. Cado,, L. W. Riley, and, A. Winoto. 2004. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21:877889.
29. Divanovic, S.,, A. Trompette,, S. F. Atabani,, R. Madan,, D. T. Golenbock,, A. Visintin,, R. W. Finberg,, A. Tarakhovsky,, S. N. Vogel,, Y. Belkaid,, E. A. Kurt-Jones, and, C. L. Karp. 2005. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6:571578.
30. Donadieu, J.,, T. Leblanc,, B. Bader Meunier,, M. Barkaoui,, O. Fenneteau,, Y. Bertrand,, M. Maier-Redelsperger,, M. Micheau,, J. L. Stephan,, N. Phillipe,, P. Bordigoni,, A. Babin-Boilletot,, P. Bensaid,, A. M. Manel,, E. Vilmer,, I. Thuret,, S. Blanche,, E. Gluckman,, A. Fischer,, F. Mechinaud,, B. Joly,, T. Lamy,, O. Hermine,, B. Cassinat,, C. Bellanne-Chantelot, and, C. Chomienne; French Severe Chronic Neutropenia Study Group. 2005. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90:4553.
31. Dong, F.,, D. C. Dale,, M. A. Bonilla,, M. Freedman,, A. A. Fasth,, H. J. Neijens,, J. Palmblad,, G. L. Briars,, G. Carlsson,, A. J. Veerman,, K. Welte,, B. Lowenberg, and, I. P. Touw. 1997. Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia 11:120125.
32. Donini, M.,, S. Fontana,, G. Savoldi,, W. Vermi,, L. Tassone,, F. Gentili,, E. Zenaro,, D. Ferrari,, L. D. Notarangelo,, F. Porta,, F. Facchetti,, L. D. Notarangelo,, S. Dusi, and, R. Badolato. 2007. G-CSF treatment of Severe Congenital Neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood 109:47164723.
33. Dorfleutner, A.,, N. B. Bryan,, S. J. Talbott,, K. N. Funya,, S. L. Rellick,, J. C. Reed,, X. Shi,, Y. Rojanasakul,, D. C. Flynn, and, C. Stehlik. 2007. Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect. Immun. 75:14841492.
34. Dowds, T. A.,, J. Masumoto,, F. F. Chen,, Y. Ogura,, N. Inohara, and, G. Nunez. 2003. Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem. Biophys. Res. Commun. 302:575580.
35. Dransfield, I.,, S. C. Stocks, and, C. Haslett. 1995. Regulation of cell adhesion molecule expression and function associated with neutrophil apoptosis. Blood 85:32643273.
36. Drewniak, A.,, B. van Raam,, J. Geissler,, A. T. J. Tool,, O. R. F. Mook,, T. K. van den Berg,, F. Baas, and, T. W. Kuijpers. 2009. Changes in gene expression of granulocytes during in vivo GCSF/dexamethasone mobilization for transfusion purposes. Blood April 6 [Epub ahead of print].
37. Dunne, J. L.,, C. M. Ballantyne,, A. L. Beaudet, and, K. Ley. 2002. Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 99:336341.
38. Dunne, J. L.,, R. G. Collins,, A. L. Beaudet,, C. M. Ballantyne, and, K. Ley. 2003. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J. Immunol. 171:61056111.
39. Enders, A.,, B. Zieger,, K. Schwarz,, A. Yoshimi,, C. Speck-mann,, E. M. Knoepfle,, U. Kontny,, C. Muller,, A. Nurden,, J. Rohr,, M. Henschen,, U. Pannicke,, C. Niemeyer,, P. Nurden, and, S. Ehl. 2006. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood 108:8187.
40. Fanciulli, M.,, P. J. Norsworthy,, E. Petretto,, R. Dong,, L. Harper,, L. Kamesh,, J. M. Heward,, S. C. Gough,, A. de Smith,, A. I. Blakemore,, P. Froguel,, C. J. Owen,, S. H. Pearce,, L. Teixeira,, L. Guillevin,, D. S. Graham,, C. D. Pusey,, H. T. Cook,, T. J. Vyse, and, T. J. Aitman. 2007. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat. Genet. 39:721723.
41. Fiorentino, L.,, C. Stehlik,, V. Oliveira,, M. E. Ariza,, A. Godzik, and, J. C. Reed. 2002. A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J. Biol. Chem. 277:3533335340.
42. French FMF Consortium. 1997. A candidate gene for familial Mediterranean fever. Nat. Genet. 17:2531.
43. Gakidis, M. A.,, X. Cullere,, T. Olson,, J. L. Wilsbacher,, B. Zhang,, S. L. Moores,, K. Ley,, W. Swat,, T. Mayadas, and, J. S. Brugge. 2004. Vav GEFs are required for beta2 integrin-dependent functions of neutrophils. J. Cell Biol. 166:273282.
44. Green, D. R.,, and G. Melino. 2001. ICE heats up. Cell Death Differ. 8:549550.
45. Gross, O.,, A. Gewies,, K. Finger,, M. Schafer,, T. Sparwasser,, C. Peschel,, I. Forster, and, J. Ruland. 2006. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651656.
46. Gu, Y.,, M. D. Filippi,, J. A. Cancelas,, J. E. Siefring,, E. P. Williams,, A. C. Jasti,, C. E. Harris,, A. W. Lee,, R. Prabhakar,, S. J. Atkinson,, D. J. Kwiatkowski, and, D. A. Williams. 2003. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302:445449.
47. Gutierrez, O.,, C. Pipaon,, N. Inohara,, A. Fontalba,, Y. Ogura,, F. Prosper,, G. Nunez, and, J. L. Fernandez-Luna. 2002. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J. Biol. Chem. 277:4170141705.
48. Harah, H.,, C. Ishihara,, A. Takeuchi,, T. Imashnishi,, L. Xue,, S. W. Morris,, M. Inui,, T. Takai,, A. Shibuya,, S. Saijo,, Y. Iwakura,, N. Ohno,, H. Koseki,, H. Yoshida,, J. M. Pennigner, and, T. Saito. 2007. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat. Immunol. 8:619629.
49. Harton, J. A.,, M. W. Linhoff,, J. Zhang, and, J. P. Ting. 2002. CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol. 169:40884093.
50. Hayashi, F.,, T. K. Means, and, A. D. Luster. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102:26602669.
51. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407:770776.
52. Hidalgo, A.,, A. J. Peired,, M. K. Wild,, D. Vestweber, and, P. S. Frenette. 2007. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26:477489.
53. Hlaing, T.,, R. F. Guo,, K. A. Dilley,, J. M. Loussia,, T. A. Morrish,, M. M. Shi,, C. Vincenz, and, P. A. Ward. 2001. Molecular cloning and characterization of DEFCAP-L and -S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins. J. Biol. Chem. 276:92309238.
54. Hoarau, C.,, B. Gérard,, E. Lescanne,, D. Henry,, S. François,, J. J. Lacapère,, J. El Benna,, P. M. Dang,, B. Grandchamp,, Y. Lebranchu,, M. A. Gougerot-Pocidalo, and, C. Elbim. 2007. TLR9 activation induces normal neutrophil responses in a child with IRAK-4 deficiency: involvement of the direct PI3K pathway. J. Immunol. 179:47544765.
55. Hock, H.,, M. J. Hamblen,, H. M. Rooke,, D. Traver,, R. T. Bronson,, S. Cameron, and, S. H. Orkin. 2003. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18:109120.
56. Hong, W. 2005. SNAREs and traffic. Biochim. Biophys. Acta 1744:493517.
57. Hsu, Y. M.,, Y. Zhang,, Y. You,, D. Wang,, H. Li,, O. Duramad,, X. F. Qin,, C. Dong, and, X. Lin. 2007. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 8:198205.
58. Huang, M. T.,, K. Y. Larbi,, C. Scheiermann,, A. Woodfin,, N. Gerwin,, D. O. Haskard, and, S. Nourshargh. 2006. ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood 107:47214727.
59. Hugot, J. P.,, M. Chamaillard,, H. Zouali,, S. Lesage,, J. P. Cezard,, J. Belaiche,, S. Almer,, C. Tysk,, C. A. O’Morain,, M. Gassull,, V. Binder,, Y. Finkel,, A. Cortot,, R. Modigliani,, P. Laurent-Puig,, C. Gower-Rousseau,, J. Macry,, J. F. Colombel,, M. M. Sahbatou, and, G. Thomas. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599603.
60. Inohara, N.,, T. Koseki,, L. del Peso,, Y. Hu,, C. Yee,, S. Chen,, R. Carrio,, J. Merino,, D. Liu,, J. Ni, and, G. Nunez. 1999. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor kB. J. Biol. Chem. 274:1456014567.
61. International FMF Consortium. 1997. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797807.
62. Jeha, S.,, K. W. Chan,, A. G. Aprikyan,, W. K. Hoots,, S. Culbert,, H. Zietz,, D. C. Dale, and, M. Albitar. 2000. Spontaneous remission of granulocyte colony-stimulating factor-associated leukemia in a child with severe congenital neutropenia. Blood 96:36473649.
63. Karim, M. A.,, K. Suzuki,, K. Fukai,, J. Oh,, D. L. Nagle,, K. J. Moore,, E. Barbosa,, T. Falik-Borenstein,, A. Filipovich,, Y. Ishida,, S. Kivrikko,, C. Klein,, F. Kreuz,, A. Levin,, H. Miyajima,, J. Regueiro,, C. Russo,, E. Uyama,, O. Vierimaa, and, R. A. Spritz. 2002. Apparent genotype-phenotype correlation in childhood, adolescent, and adult Chediak-Higashi syndrome. Am. J. Med. Genet. 108:1622.
64. Karsunky, H.,, H. Zeng,, T. Schmidt,, B. Zevnik,, R. Kluge,, K. W. Schmid,, U. Dührsen, and, T. Möröy. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi 1. Nat. Genet. 30:295300.
65. Kasper, B.,, N. Tidow,, D. Grothues, and, K. Welte. 2000. Differential expression and regulation of GTPases (RhoA and Rac2) and GDIs (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia. Blood 95:29472953.
66. Kawai, T.,, O. Adachi,, T. Ogawa,, K. Takeda, and, S. Akira. 1999. Unresponsiveness of MyD88 deficient mice to endotoxin. Immunity 11:115122.
67. Khandoga, A.,, J. S. Kessler,, H. Meissner,, M. Hanschen,, M. Corada,, T. Motoike,, G. Enders,, E. Dejana, and, F. Krom-bach. 2005. Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration. Blood 106:725733.
68. Kinashi, T.,, M. Aker,, M. Sokolovsky-Eisenberg,, V. Grabovsky,, C. Tanaka,, R. Shamri,, S. Feigelson,, A. Etzioni, and, R. Alon. 2004. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103:10331036.
69. Kinoshita, T.,, Y. Wang,, M. Hasegawa,, R. Imamura, and, T. Suda. 2005. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J. Biol. Chem. 280:2172021725.
70. Klein, C.,, M. Grudzien,, G. Appaswamy,, M. Germeshausen,, I. Sandrock,, A. A. Schaffer,, C. Rathinam,, K. Boztug,, B. Schwinzer,, N. Rezaei,, G. Bohn,, M. Melin,, G. Carlsson,, B. Fadeel,, N. Dahl,, J. Palmblad,, J. I. Henter,, C. Zeidler,, B. Grimbacher, and, K. Welte. 2007. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat. Genet. 39:8692.
71. Klesney-Tait, J.,, I. R. Turnbull, and, M. Colonna. 2006. The TREM receptor family and signal integration. Nat. Immunol. 7:12661273.
72. Kobayashi, K.,, L. D. Hernandez,, J. E. Galan,, C. A. Janeway, Jr,, R. Medzhitov, and, R. A. Flavell. 2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191202.
73. Koene, H. R.,, M. Kleijer,, D. Roos,, M. de Haas, and, A. E. von dem Borne. 1998. Fc gamma RIIIB gene duplication: evidence for presence and expression of three distinct Fc gamma RIIIB genes in NA(1+,2+)SH(+) individuals. Blood 91:673679.
74. Kuijpers, T. W. 2002. Clinical symptoms and neutropenia: the balance of neutrophil development, functional activity, and cell death. Eur. J. Pediatr. 161:S75S82.
75. Kuijpers, T. W.,, M. Alders,, A. T. Tool,, C. M. Mellink,, D. Roos, and, R. C. Hennekam. 2005. Hematologic abnormalities in Shwachman Diamond syndrome: lack of genotypephenotype relationship. Blood 106:356361.
76. Kuijpers, T. W.,, B. C. Hakkert,, M. H. Hart, and, D. Roos. 1992. Neutrophil migration across monolayers of cytokineprestimulated endothelial cells: a role for platelet-activating factor and IL-8. J. Cell Biol. 117:565572.
77. Kuijpers, T. W.,, M. A. Maianski,, A. T. Tool,, K. Becker,, B. Plecko,, F. Valianpour,, R. J. Wanders,, R. Pereira,, J. Van Hove,, A. J. Verhoeven,, D. Roos,, F. Baas, and, P. G. Barth. 2004. Neutrophils in Barth syndrome (BTHS) avidly bind annexin-V in the absence of apoptosis. Blood 103:39153923.
78. Kuijpers, T. W.,, N. A. Maianski,, A. T. Tool,, G. P. Smit,, J. P. Rake,, D. Roos, and, G. Visser. 2003. The presence of apoptotic neutrophils in the circulation of patients with Glycogen Storage Disease type 1b (GSD1b). Blood 101:50215024.
79. Kuijpers, T. W.,, A. T. Tool,, C. E. van der Schoot,, L. A. Ginsel,, J. J. Onderwater,, D. Roos, and, A. J. Verhoeven. 1991. Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood 78:11051111.
80. Kuijpers, T. W.,, R. van Bruggen,, N. Kamerbeek,, A. T. Tool,, G. Hicsonmez,, A. Gurgey,, A. Karow,, A. J. Verhoeven,, K. Seeger,, O. Sanal,, C. Niemeyer, and, D. Roos. 2007. Natural history and early diagnosis of LAD-1/variant syndrome. Blood 109:35293537.
81. Kuijpers, T. W.,, E. Van De Vijver,, M. A. Weterman,, M. de Boer,, A. T. Tool,, T. K. van den Berg,, M. Moser,, M. E. Jakobs,, K. Seeger,, O. Sanal,, S. Unal,, M. Cetin,, D. Roos,, A. J. Verhoeven, and, F. Baas. 2008. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood Dec. 8 [Epub ahead of publication].
82. Kuijpers, T. W.,, R. A. W. van Lier,, D. Hamann,, M. de Boer,, L. Y. Thung,, R. S. Weening,, A. J. Verhoeven, and, D. Roos. 1997. Leukocyte adhesion deficiency type 1/variant: a novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J. Clin. Investig. 100:17251733.
83. Kunisaki, Y.,, A. Nishikimi,, Y. Tanaka,, R. Takii,, M. Noda,, A. Inayoshi,, K. Watanabe,, F. Sanematsu,, T. Sasazuki,, T. Sasaki, and, Y. Fukui. 2006. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J. Cell Biol. 174:647652.
84. Kurt-Jones, E. A.,, L. Mandell,, C. Whitney,, A. Padgett,, K. Gosselin,, P. E. Newburger, and, R. W. Finberg. 2002. Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated inter-leukin 8 responses in neutrophils. Blood 100:18601868.
85. Kuwata, H.,, M. Matsumoto,, K. Atarashi,, H. Morishita,, T. Hirotani,, R. Koga, and, K. Takeda. 2006. IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 24:4151.
86. Lamkanfi, M.,, G. Denecker,, M. Kalai,, K. D’hondt,, A. Meeus,, W. Declercq,, X. Saelens, and, P. Vandenabeele. 2004. INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1beta generation. J. Biol. Chem. 279:5172951738.
87. Leibundgut-Landmann, S.,, O. Gross,, M. J. Robinson,, F. Osorio,, E. C. Slack,, S. V. Tsoni,, V. Schweighoffer,, G. D. Brown,, J. Ruland, and, C. Reiss E Sousa. 2007. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8:630638.
88. Lekstrom-Himes, J. A.,, S. E. Dorman,, P. Kopar,, S. M. Holland, and, J. I. Gallin. 1999. Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J. Exp. Med. 189:18471852.
89. Levesque, J. P.,, F. Liu,, P. J. Simmons,, T. Betsuyaku,, R. M. Senior,, C. Pham, and, D. C. Link. 2004. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104:6572.
90. Liew, F. Y.,, D. Xu,, E. K. Brint, and, L. A. O’Neill. 2005. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5:446458.
91. Liles, W. C.,, H. E. Broxmeyer,, E. Rodger,, B. Wood,, K. Hübel,, S. Cooper,, G. Hangoc,, G. J. Bridger,, G. W. Henson,, G. Calandra, and, D. C. Dale. 2003. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:27282730.
92. Liu, F.,, H. F. Wu,, R. Wesselschmidt,, T. Kornaga, and, D. C. Link. 1996. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5:491501.
93. Liu, Y.,, H. J. Buhring,, K. Zen,, S. L. Burts,, F. J. Schnell,, I. R. Williams, and, C. A. Parkos. 2002. Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277:1002810036.
94. Logan, M. R.,, P. Lacy,, S. O. Odemuyiwa,, M. Steward,, F. Davoine,, H. Kita, and, R. Moqbel. 2006. A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy 61:777784.
95. Loike, J. D.,, L. Cao,, S. Budhu,, E. E. Marcantonio,, J. El Khoury,, S. Hoffman,, T. A. Yednock, and, S. C. Silverstein. 1999. Differential regulation of beta1 integrins by chemoattractants regulates neutrophil migration through fibrin. J. Cell Biol. 144:10471056.
96. Lou, O.,, P. Alcaide,, F. W. Luscinskas, and, W. A. Muller. 2007. CD99 is a key mediator of the transendothelial migration of neutrophils. J. Immunol. 178:11361143.
97. Maianski, N. A.,, F. P. Mul,, J. D. van Buul,, D. Roos, and, T. W. Kuijpers. 2002. Granulocyte Colony-Stimulating factor (G-CSF) inhibits in neutrophils the mitochondria-dependent activation of Caspase-3. Blood 99:672679.
98. Martinon, F.,, K. Burns, and, J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10:417426.
99. Miceli-Richard, C.,, S. Lesage,, M. Rybojad,, A. M. Prieur,, S. Manouvrier-Hanu,, R. Hafner,, M. Chamaillard,, H. Zouali,, G. Thomas, and, J. P. Hugot. 2001. CARD15 mutations in Blau syndrome. Nat. Genet. 29:1920.
100. Mollinedo, F.,, J. Calafat,, H. Janssen,, B. Martin-Martin,, J. do Cancha,, S. M. Nabokina, and, C. Gajate. 2006. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J. Immunol. 177:28312841.
101. Moulding, D. A.,, J. A. Quayle,, C. A. Hart, and, S. W. Edwards. 1998. Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92:24952502.
102. Muller, W. A.,, S. A. Weigl,, X. Deng, and, D. M. Phillips. 1993. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178:449460.
103. Murdoch, C.,, and A. Finn. 2000. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:30323043.
104. Nagase, H.,, M. Miyamasu,, M. Yamaguchi,, M. Imanishi,, N. H. Tsuno,, K. Matsushima,, K. Yamamoto,, Y. Morita, and, K. Hirai. 2002. Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J. Leukoc. Biol. 71:711717.
105. Niemann, C. U.,, M. Abrink,, G. Pejler,, R. L. Fischer,, E. I. Christensen,, S. D. Knight, and, N. Borregaard. 2007. Neutrophil elastase depends on serglycin proteoglycan for localization in granules. Blood 109:44784486.
106. Ogura, Y.,, D. K. Bonen,, N. Inohara,, D. L. Nicolae,, F. F. Chen,, R. Ramos,, H. Britton,, T. Moran,, R. Karaliuskas,, R. H. Duerr,, J. P. Achkar,, S. R. Brant,, T. M. Bayless,, B. S. Kirschner,, S. B. Hanauer,, G. Nunez, and, J. H. Cho. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603606.
107. Oldenborg, P. A.,, A. Zheleznyak,, Y. F. Fang,, C. F. Lagenaur,, H. D. Gresham, and, F. P. Lindberg. 2000. Role of CD47 as a marker of self on red blood cells. Science 288:20512054.
108. Ostermann, G.,, K. S. Weber,, A. Zernecke,, A. Schröder, and, C. Weber. 2002. JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat. Immunol. 3:151158.
109. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder, and, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97:1376613771.
110. Pasvolsky, R.,, S. W. Feigelson,, S. S. Kilic,, A. J. Simon,, G. Tal-Lapidot,, V. Grabovsky,, J. R. Crittenden,, N. Amariglio,, M. Safran,, A. M. Graybiel,, G. Rechavi,, S. Ben-Dor,, A. Etzioni, and, R. Alon. 2007. A LAD-III syndrome is associated with defective expression of the Rap-1-activator CalDAG-GEF1 in lymphocytes, neutrophils and platelets. J. Exp. Med. 204:15711582.
111. Pearse, R. N.,, T. Kawabe,, S. Bolland,, R. Guinamard,, T. Kurosaki, and, J. V. Ravetch. 1999. SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity 10:753760.
112. Person, R. E.,, F. Q. Li,, Z. Duan,, J. Wechsler,, H. A. Papadaki,, G. Eliopoulos,, C. Kaufman,, S. J. Bertolone,, B. Nakamoto,, T. Papayannopoulou,, H. L. Grimes, and, M. Horwitz. 2003. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat. Genet. 34:308312.
113. Phillipson, M.,, B. Heit,, P. Colarusso,, L. Liu,, C. M. Ballantyne, and, P. Kubes. 2006. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203:25692575.
114. Ravetch, J. V.,, and S. Bolland. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19:275290.
115. Ravetch, J. V.,, and L. L. Lanier. 2000. Immune inhibitory receptors. Science 290:8489.
116. Reeves, E. P.,, H. Lu,, H. L. Jacobs,, C. G. Messina,, S. Bolsover,, G. Gabella,, E. O. Potma,, A. Warley,, J. Roes, and, A. W. Segal. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291297.
117. Roos, D.,, T. W. Kuijpers, and, J. T. Curnutte. 2007. Chronic granulomatous disease, p. 525–549. In H. Ochs,, A. Fisher, and, L. Notarangelo (ed.), Primary Immunodeficiency Diseases. Oxford University Press, New York, NY.
118. Rosenberg, P. S.,, B. P. Alter,, A. A. Bolyard,, M. A. Bonilla,, L. A. Boxer,, B. Cham,, C. Fier,, M. Freedman,, G. Kannourakis,, S. Kinsey,, B. Schwinzer,, C. Zeidler,, K. Welte, and, D. C. Dale; Severe Chronic Neutropenia International Registry. 2006. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107:46284635.
119. Savill, J.,, and V. Fadok. 2000. Corpse clearance defines the meaning of cell death. Nature 407:784788.
120. Shimazu, R.,, S. Akashi,, H. Ogata,, Y. Nagai,, K. Fukudome,, K. Miyake, and, M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189:17771782.
121. Sircar, M.,, P. F. Bradfield,, M. Aurrand-Lions,, R. J. Fish,, P. Alcaide,, L. Yang,, G. Newton,, D. Lamont,, S. Sehrawat,, T. Mayadas,, T. W. Liang,, C. A. Parkos,, B. A. Imhof, and, F. W. Luscinskas. 2007. Neutrophil transmigration under shear flow conditions in vitro is junctional adhesion molecule-C independent. J. Immunol. 178:58795887.
122. Skokowa, J.,, G. Cario,, M. Uenalan,, A. Schambach,, M. Germeshausen,, K. Battmer,, C. Zeidler,, U. Lehmann,, M. Eder,, C. Baum,, R. Grosschedl,, M. Stanulla,, M. Scherr, and, K. Welte. 2006. LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat. Med. 12:11911197.
123. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301-314.
124. Strober, W.,, P. J. Murray,, A. Kitani, and, T. Watanabe. 2006. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6:920.
125. Sun, C. X.,, G. P. Downey,, F. Zhu,, A. L. Koh,, H. Thang, and, M. Glogauer. 2004. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104:37583765.
126. Suzuki, N.,, S. Suzuki,, G. S. Duncan,, D. G. Millar,, T. Wada,, C. Mirtsos,, H. Takada,, A. Wakeham,, A. Itie,, S. Li,, J. M. Penninger,, H. Wesche,, P. S. Ohashi,, T. W. Mak, and, W. C. Yeh. 2002. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416:750756.
127. Theilgaard-Monch, K.,, L. C. Jacobsen,, R. Borup,, T. Rasmussen,, M. D. Bjerregaard,, F. C. Nielsen,, J. B. Cowland, and, N. Borregaard. 2005. The transcriptional program of terminal granulocytic differentiation. Blood 105:17851796.
128. Thornberry, N. A.,, and Y. Lazebnik. 1998. Caspases: enemies within. Science 281:13121316.
129. Ting, J. P.,, D. L. Kastner, and, H. M. Hoffman. 2006. CATERPILLERs, pyrin and hereditary immunological disorders. Nat. Rev. Immunol. 6:183195.
130. van den Berg, J. M.,, S. Weyer,, J. J. Weening,, D. Roos, and, T. W. Kuijpers. 2001. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils. J. Leukoc. Biol. 69:467473.
131. van Mirre, E.,, W. B. Breunis,, J. Geissler,, C. E. Hack,, M. de Boer,, D. Roos, and, T. W. Kuijpers. 2006. Neutrophil responsiveness to IgG, as determined by fixed ratios of mRNA levels for activating and inhibitory FcgammaRII (CD32), is stable over time and unaffected by cytokines. Blood 108:584590.
132. Vaporciyan, A. A.,, H. M. DeLisser,, H. C. Yan,, I. I. Mendiguren,, S. R. Thom,, M. L. Jones,, P. A. Ward, and, S. M. Albelda. 1993. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262:15801582.
133. Visintin, A.,, A. Mazzoni,, J. H. Spitzer,, D. H. Wyllie,, S. K. Dower, and, D. M. Segal. 2001. Regulation of toll-like receptors in human monocytes and dendritic cells. J. Immunol. 166:249255.
134. Wald, D.,, J. Qin,, Z. Zhao,, Y. Qian,, M. Naramura,, L. Tian,, J. Towne,, J. E. Sims,, G. R. Stark, and, X. Li. 2003. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4:920927.
135. Wang, L.,, G. A. Manji,, J. M. Grenier,, A. Al-Garawi,, S. Merriam,, J. M. Lora,, B. J. Geddes,, M. Briskin,, P. S. DiStefano, and, J. Bertin. 2002. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J. Biol. Chem. 277:2987429880.
136. Weber, C.,, L. Fraemohs, and, E. Dejana. 2007. The role of junctional adhesion molecules in vascular inflammation. Nat. Rev. Immunol. 7:467477.
137. Wegmann, F.,, B. Petri,, A. G. Khandoga,, C. Moser,, A. Khandoga,, S. Volkery,, H. Li,, I. Nasdala,, O. Brandau,, R. Fässler,, S. Butz,, F. Krombach, and, D. Vestweber. 2006. ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J. Exp. Med. 203:16711677.
138. Weiss, S. J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. 320:365376.
139. Welch, H. C.,, W. J. Coadwell,, C. D. Ellson,, G. J. Ferguson,, S. R. Andrews,, H. Erdjument-Bromage,, P. Tempst,, P. T. Hawkins, and, L. R. Stephens. 2002. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809821.
140. Wolach, B.,, L. J. van der Laan,, N. A. Maianski,, A. T. Tool,, R. van Bruggen,, D. Roos, and, T. W. Kuijpers. 2007. Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophils aging in vitro. Exp. Hematol. 35:541550.
141. Young, N. T.,, and M. Uhrberg. 2002. KIR expression shapes cytotoxic repertoires: a developmental program of survival. Trends Immunol. 23:7175.
142. Zhang, P.,, A. Iwama,, M. W. Datta,, G. J. Darlington,, D. C. Link, and, D. G. Tenen. 1998. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J. Exp. Med. 188:11731184.


Generic image for table

Neutropenia: quantitative defects, pathomechanism, and inheritance

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Generic image for table

Neutrophil dysfunction: qualitative defects, pathomechanism, and inheritance

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1
Generic image for table

PAMPs observed on various microorganisms

Citation: Kuijpers T, van den Berg T, Roos D. 2009. Neutrophils Forever ..., p 3-26. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error