1887

Chapter 2 : Macrophages: Microbial Recognition and Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Macrophages: Microbial Recognition and Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap02-2.gif

Abstract:

Macrophages are derived from circulating monocytes and are found in all tissues throughout the body, especially the lung, spleen, liver, and bone marrow. The macrophage scavenger receptors were discovered by Brown and Goldstein and functionally described for their ability to bind modified low-density lipoproteins (LDLs), such as acetylated LDL (AcLDL) and oxidized LDL (OxLDL), but not native LDL molecules. This chapter focuses on scavenger receptors found on macrophages. Macrophage receptor with a collagenous structure (MARCO) is constitutively expressed by subpopulations of macrophages, in particular, those of the spleen marginal zone, medullary lymph nodes, and resident peritoneal macrophages. The C-type lectin receptors recognize carbohydrates on cell surfaces, circulating proteins, and pathogens. Macrophages have numerous receptors that are not involved in phagocytosis/endocytosis, but play a role in sensing microbial products and inducing signal transduction. The surfactant proteins bind to macrophages, altering their function by, for example, upregulating the expression of the mannose receptor and SR-A, thereby improving pathogen phagocytosis. The most important opsonins are circulating complement proteins and immunoglobulins, such as immunoglobulin G (IgG). Many cytokine receptors interact with the cytoplasmic kinases of the Janus kinase (JAK) family, which initiate a response through the signal transducer and activator of transcription (STAT) molecules. Macrophages produce a wide range of cytokines, which include interleukin molecules (IL), tumor necrosis factors (TNF), and chemokines (CC and CXC). Receptor ligation mediates many processes including phagocytosis, production of cytokines and chemokines, and ultimately activation of the humoral immune response to invading pathogens.

Citation: Plüddemann A, Gordon S. 2009. Macrophages: Microbial Recognition and Response, p 27-50. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch2

Key Concept Ranking

Human immunodeficiency virus 1
0.4635259
Innate Immune System
0.4488179
Tumor Necrosis Factor alpha
0.43624917
Complement System
0.43530354
0.4635259
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Nonopsonic macrophage receptors. The scavenger receptors are grouped together as a result of their ability to bind modified low-density lipoprotein; however, they are structurally diverse. Class A scavenger receptors are structurally closely related. Scavenger receptor A (SR-A) is a trimeric type II transmembrane glycoprotein with distinct cytoplasmic, transmembrane, spacer, α-helical coiled-coil, collagenous, and C-terminal cysteine-rich domains. Macrophage receptor with a collagenous structure (MARCO) lacks the coiled-coil domain and exhibits a longer collagenous domain. The class B scavenger receptors CD36 and SR-BI consist of a large extracellular loop tethered to the membrane by two short transmembrane domains adjacent to the short N and C termini. The C-type lectin receptors all contain one or multiple C-type lectin domain(s). The mannose receptor (MR) is a type I transmembrane receptor with multiple C-type lectin domains (CTLDs), a fibronectin type II domain, and a cysteine-rich domain. DC-SIGN is a tetrameric type II transmembrane receptor where each subunit contains one CTLD. Dectin-1 contains one CTLD and has an immunotyrosine activation motif (ITAM) in the cytoplasmic region. See the text for references.

Citation: Plüddemann A, Gordon S. 2009. Macrophages: Microbial Recognition and Response, p 27-50. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Macrophages have many receptors that mediate their diverse functions. The receptors are located on the surface as well as in vacuolar compartments and the cytosol, thereby mediating recognition of extracellular and intracellular pathogens. The opsonic receptors include complement receptors (integrins) and Fc receptors (Ig superfamily) (discussed further elsewhere in this volume). They function in phagocytosis and endocytosis of complement- or antibody-opsonized particles, respectively ( ). Fc receptors have either an inhibitory (contain an immunoreceptor tyrosine-based inhibition motif [ITIM]) or activatory (contain an immunoreceptor tyrosine-based activation motif [ITAM]) effect on NF-κB induction ( ). NF-κB is a family of nuclear transcription factors that regulate production of proinflammatory mediators. Another group of phagocytic/endocytic surface receptors are the non-Toll-like receptors (NTLRs), which include the family of scavenger receptors and the C-type lectins ( ). Nonopsonic surface receptors that do not mediate phagocytosis/endocytosis but are important sensors of bacteria, fungi, and viruses are the Toll-like receptors (TLRs) ( ). Scavenger receptors have been shown to collaborate with TLRs to induce NF-κB and may also directly mediate NF-κB induction upon interaction with ligand. Ligand recognition by lectins induces NF-κB, both directly and in collaboration with TLRs. TLRs can induce both NF-κB and IRFs via a signaling cascade mediated by the adaptor molecules MyD88 and TRIF. Some TLRs are located within vacuoles and play a role in recognition of intracellular pathogens. Cytosolic viruses and bacterial products are recognized by the NOD-like receptors (NLRs) and RIG-like helicases (RLHs) ( ). NLRs induce NF-κB either directly or in collaboration with TLRs. RLHs either induce NF-κB and IRF via mediators that are located on the outer membrane of the mitochondria or induce caspase-1-mediated apoptosis via the adaptor molecule ASC. In addition to NF-κB and IRF induction, there are a multitude of other signaling pathways within macrophages that have been omitted for clarity. Abbreviations: ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; MyD88, myeloid differentiation primary response gene ( ); NOD, nucleotide binding oligomerization domain; TRIF, TIR domain-containing adaptor-inducing interferon-β. (Drawing, A. Plüddemann.)

Citation: Plüddemann A, Gordon S. 2009. Macrophages: Microbial Recognition and Response, p 27-50. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Pathogens have developed several mechanisms to survive inside macrophages. resides and multiplies in a vacuole studded with ribosomes due to interaction with the rough endoplasmic reticulum (RER). The organism secretes effector molecules via its type IV secretion system into the cell that inhibit phagosome/lysosome fusion. The phagosome acquires the early endosome markers EEA1 and Rab5 and then matures into a late endosome defined by the presence of the markers Lamp1, Lamp2, and Rab7. The late endosome does not acidify and the phagosomal membrane is disrupted, releasing the bacteria into the cytosol. The phagosome acquires the early endosome marker Rab5 but excludes the late endosomal Lamps and Rab7. This organism also produces molecules that block fusion with the lysosome and resides and replicates in this early endosome. Acidification of the phagosome is essential for the perforation of the phagosomal membrane and escape of the bacteria into the cytosol. Here, they mobilize the actin polymerization machinery to move within the cell and then from cell to cell. undergoes a conversion from a unicellular form to a multicellular hyphal form, which allows this fungus to escape the macrophage. The phagosome develops into an acidic phagolysosome containing Rab7 where the parasite is able to survive and replicate. Viruses such as the herpes simplex virus are able to inhibit the activation of antiviral mechanisms, such as the activation of interferon regulatory function (IRF) proteins that induce interferon production upon viral infection. See the text for references. (Drawing, A. Plüddemann.)

Citation: Plüddemann A, Gordon S. 2009. Macrophages: Microbial Recognition and Response, p 27-50. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816650.ch02
1. Abrahams, V. M.,, Y. M. Kim,, S. L. Straszewski,, R. Romero, and, G. Mor. 2004. Macrophages and apoptotic cell clearance during pregnancy. Am. J. Reprod. Immunol. 51:275282.
2. Abumrad, N. A.,, M. R. el-Maghrabi,, E. Z. Amri,, E. Lopez, and, P. A. Grimaldi. 1993. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268:1766517668.
3. Ackerman, A. L.,, and P. Cresswell. 2004. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol. 5:678684.
4. Acton, S. L.,, P. E. Scherer,, H. F. Lodish, and, M. Krieger. 1994. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J. Biol. Chem. 269:2100321009.
5. Adachi, Y.,, T. Ishii,, Y. Ikeda,, A. Hoshino,, H. Tamura,, J. Aketagawa,, S. Tanaka, and, N. Ohno. 2004. Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect. Immun. 72:41594171.
6. Aderem, A.,, and D. M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17:593623.
7. Aderem, A. A.,, S. D. Wright,, S. C. Silverstein, and, Z. A. Cohn. 1985. Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J. Exp. Med. 161:617622.
8. Aebischer, T. 1994. Recurrent cutaneous leishmaniasis: a role for persistent parasites? Parasitol. Today 10:2528.
9. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.
10. Allen, L. A.,, and A. Aderem. 1996. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184:627637.
11. Andrejeva, J.,, K. S. Childs,, D. F. Young,, T. S. Carlos,, N. Stock,, S. Goodbourn, and, R. E. Randall. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA heli-case, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101:1726417269.
12. Appelmelk, B. J.,, I. van Die,, S. J. van Vliet,, C. M. J. E. Vandenbroucke-Grauls,, T. B. H. Geijtenbeek, and, Y. van Kooyk. 2003. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170:16351639.
13. Armstrong, A. P.,, M. E. Tometsko,, M. Glaccum,, C. L. Sutherland,, D. Cosman, and, W. C. Dougall. 2002. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 277:4434744356.
14. Arredouani, M.,, Z. Yang,, Y. Ning,, G. Qin,, R. Soininen,, K. Tryggvason, and, L. Kobzik. 2004. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 200:267272.
15. Arredouani, M. S.,, A. Palecanda,, H. Koziel,, Y. C. Huang,, A. Imrich,, T. H. Sulahian,, Y. Y. Ning,, Z. Yang,, T. Pikkarainen,, M. Sankala,, S. O. Vargas,, M. Takeya,, K. Tryggvason, and, L. Kobzik. 2005. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. Immunol. 175:60586064.
16. Ashkenas, J.,, M. Penman,, E. Vasile,, S. Acton,, M. Freeman, and, M. Krieger. 1993. Structures and high and low affinity ligand binding properties of murine type I and type II macrophage scavenger receptors. J. Lipid Res. 34:9831000.
17. Avallone, R.,, A. Demers,, A. Rodrigue-Way,, K. Bujold,, D. Harb,, S. Anghel,, W. Wahli,, S. Marleau,, H. Ong, and, A. Tremblay. 2006. A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway. Mol. Endocrinol. 20:31653178.
18. Ayi, K.,, S. N. Patel,, L. Serghides,, T. G. Smith, and, K. C. Kain. 2005. Nonopsonic phagocytosis of erythrocytes infected with ring-stage Plasmodium falciparum. Infect. Immun. 73:25592563.
19. Bajtay, Z.,, M. Jozsi,, Z. Banki,, S. Thiel,, N. Thielens, and, A. Erdei. 2000. Mannan-binding lectin and C1q bind to distinct structures and exert differential effects on macrophages. Eur. J. Immunol. 30:17061713.
20. Becker, M.,, A. Cotena,, S. Gordon, and, N. Platt. 2006. Expression of the class A macrophage scavenger receptor on specific subpopulations of murine dendritic cells limits their endotoxin response. Eur. J. Immunol. 36:950960.
21. Beharka, A. A.,, J. E. Crowther,, F. X. McCormack,, G. M. Denning,, J. Lees,, E. Tibesar, and, L. S. Schlesinger. 2005. Pulmonary surfactant protein A activates a phosphatidylinositol 3-kinase/calcium signal transduction pathway in human macrophages: participation in the up-regulation of man-nose receptor activity. J. Immunol. 175:22272236.
22. Bin, L. H.,, L. D. Nielson,, X. Liu,, R. J. Mason, and, H. B. Shu. 2003. Identification of uteroglobin-related protein 1 and macrophage scavenger receptor with collagenous structure as a lung-specific ligand-receptor pair. J. Immunol. 171:924930.
23. Blander, J. M.,, and R. Medzhitov. 2006. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7:10291035.
24. Bogdan, C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2:907916.
25. Bogdan, C. 2004. Reactive oxygen and reactive nitrogen metabolites as effector molecules against infectious pathogens, p. 357–396. In S. H. E. Kaufman,, R. Medzhitov, and, S. Gordon (ed.), The Innate Immune Response to Infection. ASM Press, Washington, DC.
26. Bogdan, C.,, and C. Nathan. 1993. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann. N. Y. Acad. Sci. 685:713739.
27. Bokoch, G. M.,, and B. A. Diebold. 2002. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:26922696.
28. Bonecchi, R.,, S. Sozzani,, J. T. Stine,, W. Luini,, G. D’Amico,, P. Allavena,, D. Chantry,, and A. Mantovani. 1998. Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses. Blood 92:26682671.
29. Bottazzi, B.,, C. Garlanda,, G. Salvatori,, P. Jeannin,, A. Manfredi,, and A. Mantovani. 2006. Pentraxins as a key component of innate immunity. Curr. Opin. Immunol. 18:1015.
30. Brown, E. J. 1991. Complement receptors and phagocytosis. Curr. Opin. Immunol. 3:7682.
31. Brown, G. D.,, and S. Gordon. 2001. Immune recognition: a new receptor for beta-glucans. Nature 413:3637.
32. Brown, G. D.,, J. Herre,, D. L. Williams,, J. A. Willment,, A. S. Marshall, and, S. Gordon. 2003. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197:11191124.
33. Brown, J. M.,, E. J. Swindle,, N. M. Kushnir-Sukhov,, A. Holian, and, D. D. Metcalfe. 2007. Silica-directed mast cell activation is enhanced by scavenger receptors. Am. J. Respir. Cell Mol. Biol. 36:4352.
34. Bultel-Brienne, S.,, S. Lestavel,, A. Pilon,, I. Laffont,, A. Tail-leux,, J. C. Fruchart,, G. Siest, and, V. Clavey. 2002. Lipid free apolipoprotein E binds to the class B Type I scavenger receptor I (SR-BI) and enhances cholesteryl ester uptake from lipoproteins. J. Biol. Chem. 277:3609236099.
35. Calvo, D.,, D. Gomez-Coronado,, M. A. Lasuncion,, and M. A. Vega. 1997. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler. Thromb. Vasc. Biol. 17:23412349.
36. Calvo, D.,, D. Gomez-Coronado,, Y. Suarez,, M. A. Lasuncion, and, M. A. Vega. 1998. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 39:777788.
37. Cameron, L. A.,, P. A. Giardini,, F. S. Soo, and, J. A. Theriot. 2000. Secrets of actin-based motility revealed by a bacterial pathogen. Nat. Rev. Mol. Cell Biol. 1:110119.
38. Campbell, P. A. 1994. Macrophage-Listeria interactions. Immunol. Ser. 60:313328.
39. Caron, E.,, and A. Hall. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:17171721.
40. Carrasco, Y. R.,, and F. D. Batista. 2007. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160171.
41. Carroll, M. C. 1998. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16:545568.
42. Chamaillard, M.,, S. E. Girardin,, J. Viala,, and D. J. Philpott. 2003. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 5:581592.
43. Chen, Y.,, T. Pikkarainen,, O. Elomaa,, R. Soininen,, T. Kodama,, G. Kraal, and, K. Tryggvason. 2005. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J. Immunol. 175:81738180.
44. Chico-Calero, I.,, M. Suarez,, B. Gonzalez-Zorn,, M. Scortti,, J. Slaghuis,, W. Goebel, and, J. A. Vazquez-Boland. 2002. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99:431436.
45. Clark, A. R.,, J. L. Dean, and, J. Saklatvala. 2003. Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett. 546:3744.
46. Clemens, D. L.,, B. Y. Lee, and, M. A. Horwitz. 2005. Fran-cisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun. 73:58925902.
47. Clemens, D. L.,, B. Y. Lee,, and M. A. Horwitz. 2004. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 72:32043217.
48. Coers, J.,, R. E. Vance,, M. F. Fontana,, and W. F. Dietrich. 2007. Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol. 9:23442357.
49. Cohen-Freue, G.,, T. R. Holzer,, J. D. Forney,, and W. R. McMaster. 2007. Global gene expression in Leishmania. Int. J. Parasitol. 37:10771086.
50. Coller, S. P.,, and D. M. Paulnock. 2001. Signaling pathways initiated in macrophages after engagement of type A scavenger receptors. J. Leukoc. Biol. 70:142148.
51. Coraci, I. S.,, J. Husemann,, J. W. Berman,, C. Hulette,, J. H. Dufour,, G. K. Campanella,, A. D. Luster,, S. C. Silverstein, and, J. B. El-Khoury. 2002. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am. J. Pathol. 160:101112.
52. Cox, D.,, P. Chang,, Q. Zhang,, P. G. Reddy,, G. M. Bokoch, and, S. Greenberg. 1997. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J. Exp. Med. 186:14871494.
53. Creagh, E. M.,, and L. A. O’Neill. 2006. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 27:352357.
54. Descoteaux, A.,, and S. J. Turco. 1993. The lipophosphoglycan of Leishmania and macrophage protein kinase C. Parasitol. Today 9:468471.
55. Desjardins, M.,, M. Houde, and, E. Gagnon. 2005. Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol. Rev. 207:158165.
56. Desmedt, M.,, P. Rottiers,, H. Dooms,, W. Fiers, and, J. Grooten. 1998. Macrophages induce cellular immunity by activating Th1 cell responses and suppressing Th2 cell responses. J. Immunol. 160:53005308.
57. de Waal Malefyt, R.,, C. G. Figdor,, R. Huijbens,, S. Mohan-Peterson,, B. Bennett,, J. Culpepper,, W. Dang,, G. Zurawski, and, J. E. de Vries. 1993. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J. Immunol. 151:63706381.
58. Diaz-Silvestre, H.,, P. Espinosa-Cueto,, A. Sanchez-Gonzalez,, M. A. Esparza-Ceron,, A. L. Pereira-Suarez,, G. Bernal-Fernandez,, C. Espitia, and, R. Mancilla. 2005. The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb. Pathog. 39:97.
59. Doi, T.,, K. Higashino,, Y. Kurihara,, Y. Wada,, T. Miyazaki,, H. Nakamura,, S. Uesugi,, T. Imanishi,, Y. Kawabe,, H. Itakura, et al. 1993. Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J. Biol. Chem. 268:21262133.
60. Drickamer, K. 1999. C-type lectin-like domains. Curr. Opin. Struct. Biol. 9:585590.
61. East, L.,, and C. M. Isacke. 2002. The mannose receptor family. Biochim. Biophys. Acta 1572:364.
62. El Khoury, J.,, S. E. Hickman,, C. A. Thomas,, L. Cao,, S. C. Silverstein, and, J. D. Loike. 1996. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382:716719.
63. Elkins, K. L.,, S. C. Cowley, and, C. M. Bosio. 2003. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain. Microbes Infect. 5:135142.
64. Elliott, J. A.,, and W. C. Winn, Jr. 1986. Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect. Immun. 51:3136.
65. Ellis, J.,, P. C. Oyston,, M. Green, and, R. W. Titball. 2002. Tularemia. Clin. Microbiol. Rev. 15:631646.
66. Elomaa, O.,, M. Kangas,, C. Sahlberg,, J. Tuukkanen,, R. Sormunen,, A. Liakka,, I. Thesleff,, G. Kraal, and, K. Tryggvason. 1995. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603609.
67. Elomaa, O.,, M. Sankala,, T. Pikkarainen,, U. Bergmann,, A. Tuuttila,, A. Raatikainen-Ahokas,, H. Sariola, and, K. Tryggvason. 1998. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J. Biol. Chem. 273:45304538.
68. Endemann, G.,, L. W. Stanton,, K. S. Madden,, C. M. Bryant,, R. T. White, and, A. A. Protter. 1993. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268:1181111816.
69. Ezekowitz, R. A.,, K. Sastry,, P. Bailly, and, A. Warner. 1990. Molecular characterization of the human macrophage man-nose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172:17851794.
70. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao, and, T. Maniatis. 2003a. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496.
71. Fitzgerald, K. A.,, D. C. Rowe,, B. J. Barnes,, D. R. Caffrey,, A. Visintin,, E. Latz,, B. Monks,, P. M. Pitha, and, D. T. Golenbock. 2003b. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198:10431055.
72. Fraser, I.,, D. Hughes, and, S. Gordon. 1993. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 364:343346.
73. Gagnon, E.,, S. Duclos,, C. Rondeau,, E. Chevet,, P. H. Cameron,, O. Steele-Mortimer,, J. Paiement,, J. J. Bergeron, and, M. Desjardins. 2002. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110:119131.
74. Ganz, T. 2006. Hepcidin—a peptide hormone at the interface of innate immunity and iron metabolism. Curr. Top. Microbiol. Immunol. 306:183898.
75. Gao, L. Y.,, and Y. Abu Kwaik. 1999a. Activation of caspase 3 during Legionella pneumophila-induced apoptosis. Infect. Immun. 67:48864894.
76. Gao, L. Y.,, and Y. Abu Kwaik. 1999b. Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect. Immun. 67:862870.
77. Garlanda, C.,, B. Bottazzi,, A. Bastone, and, A. Mantovani. 2005. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol. 23:337366.
78. Geijtenbeek, T. B. H.,, R. Torensma,, S. J. van Vliet,, G. C. F. van Duijnhoven,, G. J. Adema,, Y. van Kooyk, and, C. G. Figdor. 2000. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575585.
79. Geijtenbeek, T. B. H.,, S. J. van Vliet,, E. A. Koppel,, M. Sanchez-Hernandez,, C. M. J. E. Vandenbroucke-Grauls,, B. Appelmelk, and, Y. van Kooyk. 2003. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197:717.
80. Glomski, I. J.,, M. M. Gedde,, A. W. Tsang,, J. A. Swanson, and, D. A. Portnoy. 2002. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J. Cell Biol. 156:10291038.
81. Goda, S.,, T. Imai,, O. Yoshie,, O. Yoneda,, H. Inoue,, Y. Nagano,, T. Okazaki,, H. Imai,, E. T. Bloom,, N. Domae, and, H. Umehara. 2000. CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J. Immunol. 164:43134320.
82. Goldstein, J. L.,, Y. K. Ho,, S. K. Basu, and, M. S. Brown. 1979. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 76:333337.
83. Gordon, S. 2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3:2335.
84. Gordon, S.,, and P. R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:953564.
85. Gou, Y.,, H. Feinberg,, E. Conroy,, D. A. Mitchell,, R. Alvarez,, O. Blixt,, M. E. Taylor,, W. I. Weis, and, K. Drickamer. 2004. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 11:591598.
86. Gough, P. J.,, D. R. Greaves, and, S. Gordon. 1998. A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J. Lipid Res. 39:531543.
87. Graversen, J. H.,, M. Madsen, and, S. K. Moestrup. 2002. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int. J. Biochem. Cell Biol. 34:309314.
88. Greenberg, J. W.,, W. Fischer, and, K. A. Joiner. 1996. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immun. 64:33183325.
89. Greenberg, M. E.,, M. Sun,, R. Zhang,, M. Febbraio,, R. Silverstein, and, S. L. Hazen. 2006. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203:26132625.
90. Greenwalt, D. E.,, R. H. Lipsky,, C. F. Ockenhouse,, H. Ikeda,, N. N. Tandon, and, G. A. Jamieson. 1992. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 80:11051115.
91. Griffin, F. M., Jr.,, J. A. Griffin,, J. E. Leider, and, S. C. Silverstein. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142:12631282.
92. Griffin, F. M., Jr.,, J. A. Griffin, and, S. C. Silverstein. 1976. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 144:788809.
93. Gringhuis, S. I.,, J. den Dunnen,, M. Litjens,, B. van Het Hof,, Y. van Kooyk, and, T. B. Geijtenbeek. 2007. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NFkappaB. Immunity 26:605616.
94. Guillot, L.,, V. Balloy,, F. X. McCormack,, D. T. Golenbock,, M. Chignard, and, M. Si-Tahar. 2002. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168:59895992.
95. Hackam, D. J.,, O. D. Rotstein,, A. Schreiber,, W. Zhang, and, S. Grinstein. 1997. Rho is required for the initiation of calcium signaling and phagocytosis by Fcgamma receptors in macrophages. J. Exp. Med. 186:955966.
96. Hampton, R. Y.,, D. T. Golenbock,, M. Penman,, M. Krieger, and, C. R. Raetz. 1991. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 352:342344.
97. Harshyne, L. A.,, M. I. Zimmer,, S. C. Watkins, and, S. M. Barratt-Boyes. 2003. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J. Immunol. 170:23022309.
98. Hasan, Z.,, C. Schlax,, L. Kuhn,, I. Lefkovits,, D. Young,, J. Thole, and, J. Pieters. 1997. Isolation and characterization of the mycobacterial phagosome: segregation from the endosomal/lysosomal pathway. Mol. Microbiol. 24:545553.
99. Hawlisch, H.,, and J. Kohl. 2006. Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol. Immunol. 43:1321.
100. Haworth, R.,, N. Platt,, S. Keshav,, D. Hughes,, E. Darley,, H. Suzuki,, Y. Kurihara,, T. Kodama, and, S. Gordon. 1997. The macrophage Scavenger Receptor Type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med. 186:14311439.
101. Hedger, M. P. 2002. Macrophages and the immune responsiveness of the testis. J. Reprod. Immunol. 57:1934.
102. Helmy, K. Y.,, K. J. Katschke, Jr.,, N. N. Gorgani,, N. M. Kljavin,, J. M. Elliott,, L. Diehl,, S. J. Scales,, N. Ghilardi, and, M. van Lookeren Campagne. 2006. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915927.
103. Herre, J.,, S. Gordon, and, G. D. Brown. 2004. Dectin-1 and its role in the recognition of [beta]-glucans by macrophages. Mol. Immunol. 40:869876.
104. Hissong, B. D.,, G. I. Byrne,, M. L. Padilla, and, J. M. Carlin. 1995. Upregulation of interferon-induced indoleamine 2,3-dioxygenase in human macrophage cultures by lipopolysaccharide, muramyl tripeptide, and interleukin-1. Cell. Immunol. 160:264269.
105. Hoebe, K.,, P. Georgel,, S. Rutschmann,, X. Du,, S. Mudd,, K. Crozat,, S. Sovath,, L. Shamel,, T. Hartung,, U. Zahringer, and, B. Beutler. 2005. CD36 is a sensor of diacylglycerides. Nature 433:523527.
106. Horwitz, M. A. 1983. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J. Exp. Med. 158:21082126.
107. Hsieh, C. S.,, S. E. Macatonia,, C. S. Tripp,, S. F. Wolf,, A. O’Garra, and, K. M. Murphy. 1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547549.
108. Hsu, H. Y.,, S. L. Chiu,, M. H. Wen,, K. Y. Chen, and, K. F. Hua. 2001. Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. J. Biol. Chem. 276:2871928730.
109. Hughes, D. A.,, I. P. Fraser, and, S. Gordon. 1995. Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur. J. Immunol. 25:466473.
110. Huh, H. Y.,, S. F. Pearce,, L. M. Yesner,, J. L. Schindler, and, R. L. Silverstein. 1996. Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation. Blood 87:20202028.
111. Hume, D. A.,, D. Halpin,, H. Charlton, and, S. Gordon. 1984. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc. Natl. Acad. Sci. USA 81:41744177.
112. Hume, D. A.,, A. P. Robinson,, G. G. MacPherson, and, S. Gordon. 1983. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J. Exp. Med. 158:15221536.
113. Husemann, J.,, J. D. Loike,, T. Kodama, and, S. C. Silverstein. 2001. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar beta-amyloid. J. Neuroimmunol. 114:142150.
114. Ibata-Ombetta, S.,, T. Idziorek,, P. A. Trinel,, D. Poulain, and, T. Jouault. 2003. Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J. Biol. Chem. 278:1308613093.
115. Imhof, B. A.,, and M. Aurrand-Lions. 2004. Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol. 4:432444.
116. Inohara, N.,, M. Chamaillard,, C. McDonald, and, G. Nunez. 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74:355383.
117. Inohara, N.,, and G. Nunez. 2003. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3:371382.
118. Inohara, N.,, Y. Ogura,, A. Fontalba,, O. Gutierrez,, F. Pons,, J. Crespo,, K. Fukase,, S. Inamura,, S. Kusumoto,, M. Hashimoto,, S. J. Foster,, A. P. Moran,, J. L. Fernandez-Luna, and, G. Nunez. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem. 278:55095512.
119. Ireton, K.,, and P. Cossart. 1997. Host-pathogen interactions during entry and actin-based movement of Listeria monocytogenes. Annu. Rev. Genet. 31:113138.
120. Ishii, K. J.,, C. Coban, and, S. Akira. 2005. Manifold mechanisms of toll-like receptor-ligand recognition. J. Clin. Immunol. 25:511521.
121. Jack, D. L.,, M. E. Lee,, M. W. Turner,, N. J. Klein, and, R. C. Read. 2005. Mannose-binding lectin enhances phagocytosis and killing of Neisseria meningitidis by human macrophages. J. Leukoc. Biol. 77:328336.
122. Janeway, C. A.,, and R. Medzhitov. 2002. Innate immune recognition. Ann. Rev. Immunol. 20:197216.
123. Jeannin, P.,, B. Bottazzi,, M. Sironi,, A. Doni,, M. Rusnati,, M. Presta,, V. Maina,, G. Magistrelli,, J. F. Haeuw,, G. Hoeffel,, N. Thieblemont,, N. Corvaia,, C. Garlanda,, Y. Delneste, and, A. Mantovani. 2005. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22:551560.
124. Jo, E. K.,, C. S. Yang,, C. H. Choi, and, C. V. Harding. 2007. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell. Microbiol. 9:10871098.
125. Junt, T.,, E. A. Moseman,, M. Iannacone,, S. Massberg,, P. A. Lang,, M. Boes,, K. Fink,, S. E. Henrickson,, D. M. Shayakhmetov,, N. C. Di Paolo,, N. van Rooijen,, T. R. Mempel,, S. P. Whelan, and, U. H. von Andrian. 2007. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110114.
126. Kang, B. K.,, and L. S. Schlesinger. 1998. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect. Immun. 66:27692777.
127. Kang, P. B.,, A. K. Azad,, J. B. Torrelles,, T. M. Kaufman,, A. Beharka,, E. Tibesar,, L. E. DesJardin, and, L. S. Schlesinger. 2005. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phago-some biogenesis. J. Exp. Med. 202:987999.
128. Karlsson, M. C.,, R. Guinamard,, S. Bolland,, M. Sankala,, R. M. Steinman, and, J. V. Ravetch. 2003. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med. 198:333340.
129. Kawai, T.,, K. Takahashi,, S. Sato,, C. Coban,, H. Kumar,, H. Kato,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981988.
130. Kawai, T.,, O. Takeuchi,, T. Fujita,, J. Inoue,, P. F. Muhlradt,, S. Sato,, K. Hoshino, and, S. Akira. 2001. Lipopolysaccha-ride stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167:58875894.
131. Kodama, T.,, M. Freeman,, L. Rohrer,, J. Zabrecky,, P. Matsudaira, and, M. Krieger. 1990. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531535.
132. Koppel, E. A.,, E. Saeland,, D. J. de Cooker,, Y. van Kooyk, and, T. B. Geijtenbeek. 2005. DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14. Immunobiology 210:203210.
133. Kovacsovics-Bankowski, M.,, and K. L. Rock. 1995. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243246.
134. Krieger, M. 1997. The other side of scavenger receptors: pattern recognition for host defense. Curr. Opin. Lipidol. 8:275280.
135. Krieger, M.,, and J. Herz. 1994. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63:601637.
136. Kudo, K.,, H. Sano,, H. Takahashi,, K. Kuronuma,, S.-I. Yokota,, N. Fujii,, K.-I. Shimada,, I. Yano,, Y. Kumazawa,, D. R. Voelker,, S. Abe, and, Y. Kuroki. 2004. Pulmonary collectins enhance phagocytosis of Mycobacterium avium through increased activity of mannose receptor. J. Immunol. 172:75927602.
137. Kunjathoor, V. V.,, A. A. Tseng,, L. A. Medeiros,, T. Khan, and, K. J. Moore. 2004. beta-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins. J. Neuroinflammation 1:23.
138. Kuronuma, K.,, H. Sano,, K. Kato,, K. Kudo,, N. Hyakushima,, S. Yokota,, H. Takahashi,, N. Fujii,, H. Suzuki,, T. Kodama,, S. Abe, and, Y. Kuroki. 2004. Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J. Biol. Chem. 279:2142121430.
139. Kzhyshkowska, J.,, G. Workman,, M. Cardo-Vila,, W. Arap,, R. Pasqualini,, A. Gratchev,, L. Krusell,, S. Goerdt, and, E. H. Sage. 2006. Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J. Immunol. 176:58255832.
140. Lai, X. H.,, and A. Sjostedt. 2003. Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect. Immun. 71:46424646.
141. Lamkanfi, M.,, A. Amer,, T. D. Kanneganti,, R. Munoz-Planillo,, G. Chen,, P. Vandenabeele,, A. Fortier,, P. Gros, and, G. Nunez. 2007. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J. Immunol. 178:80228027.
142. Lee, S. J.,, S. Evers,, D. Roeder,, A. F. Parlow,, J. Risteli,, L. Risteli,, Y. C. Lee,, T. Feizi,, H. Langen, and, M. C. Nussenzweig. 2002. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:18981901.
143. Lee, S. J.,, N.-Y. Zheng,, M. Clavijo, and, M. C. Nussenzweig. 2003. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. 71:437445.
144. Lehnert, B. E. 1992. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ. Health Perspect. 97:1746.
145. Levy, O. 2004. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J. Leukoc. Biol. 76:909925.
146. Li, K.,, E. Foy,, J. C. Ferreon,, M. Nakamura,, A. C. Ferreon,, M. Ikeda,, S. C. Ray,, M. Gale, Jr., and, S. M. Lemon. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 102:29922997.
147. Li, X.,, H. Y. Kan,, S. Lavrentiadou,, M. Krieger, and, V. Zannis. 2002. Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI. The amino-terminal 1-165 domain of ApoE suffices for receptor binding. J. Biol. Chem. 277:2114921157.
148. Li, Z.,, and A. M. Diehl. 2003. Innate immunity in the liver. Curr. Opin. Gastroenterol. 19:565571.
149. Lin, R.,, R. S. Noyce,, S. E. Collins,, R. D. Everett, and, K. L. Mossman. 2004. The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J. Virol. 78:16751684.
150. Lodge, R.,, and A. Descoteaux. 2005. Modulation of phagolysosome biogenesis by the lipophosphoglycan of Leishmania. Clin. Immunol. 114:256265.
151. Lorenz, M. C.,, J. A. Bender, and, G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:10761087.
152. Lowry, M. B.,, A. M. Duchemin,, J. M. Robinson, and, C. L. Anderson. 1998. Functional separation of pseudopod extension and particle internalization during Fc gamma receptor-mediated phagocytosis. J. Exp. Med. 187:161176.
153. MacMicking, J. D. 2004. IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol. 25:601609.
154. Marquis, H.,, H. Goldfine, and, D. A. Portnoy. 1997. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J. Cell Biol. 137:13811392.
155. Marsche, G.,, S. Frank,, J. G. Raynes,, K. F. Kozarsky,, W. Sattler, and, E. Malle. 2007. The lipidation status of acute-phase protein serum amyloid A determines cholesterol mobilization via scavenger receptor class B, type I. Biochem. J. 402:117124.
156. Marsche, G.,, R. Zimmermann,, S. Horiuchi,, N. N. Tandon,, W. Sattler, and, E. Malle. 2003. Class B scavenger receptors CD36 and SR-BI are receptors for hypochlorite-modified low density lipoprotein. J. Biol. Chem. 278:4756247570.
157. Martens, S.,, and J. Howard. 2006. The interferon-inducible GTPases. Annu. Rev. Cell Dev. Biol. 22:559589.
158. Martinez, F. O.,, S. Gordon,, M. Locati, and, A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177:73037311.
159. Martinez-Esparza, M.,, A. Aguinaga,, P. Gonzalez-Parraga,, P. Garcia-Penarrubia,, T. Jouault, and, J. C. Arguelles. 2007. Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin. Microbiol. Infect. 13:384394.
160. Martinez-Pomares, L.,, L. G. Hanitsch,, R. Stillion,, S. Keshav, and, S. Gordon. 2005. Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Lab. Invest. 85:12381249.
161. Martinez-Pomares, L.,, M. Kosco-Vilbois,, E. Darley,, P. Tree,, S. Herren,, J. Y. Bonnefoy, and, S. Gordon. 1996. Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J. Exp. Med. 184:19271937.
162. Martinez-Pomares, L.,, D. Wienke,, R. Stillion,, E. J. McKenzie,, J. N. Arnold,, J. Harris,, E. McGreal,, R. B. Sim,, C. M. Isacke, and, S. Gordon. 2006. Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur. J. Immunol. 36:10741082.
163. Martinon, F.,, K. Burns, and, J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-beta. Mol. Cell 10:417426.
164. Matsumoto, A.,, M. Naito,, H. Itakura,, S. Ikemoto,, H. Asaoka,, I. Hayakawa,, H. Kanamori,, H. Aburatani,, F. Takaku, and, H. Suzuki. 1990. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 87:91339137.
165. McCusker, K.,, and J. Hoidal. 1989. Characterization of scavenger receptor activity in resident human lung macrophages. Exp. Lung Res. 15:651661.
166. McGreal, E. P.,, L. Martinez-Pomares, and, S. Gordon. 2004. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol. Immunol. 41:11091121.
167. McKenzie, E. J.,, P. R. Taylor,, R. J. Stillion,, A. D. Lucas,, J. Harris,, S. Gordon, and, L. Martinez-Pomares. 2007. Man-nose receptor expression and function define a new population of murine dendritic cells. J. Immunol. 178:49754983.
168. Mebius, R. E.,, and G. Kraal. 2005. Structure and function of the spleen. Nat. Rev. Immunol. 5:606616.
169. Mechnikov, I. I. 1908. On the present state of the question of immunity in infectious diseases. Nobel Lecture. http://nobelprize.org/nobel_prizes/medicine/laureates/1908/mechnikov-lecture.html.
170. Mellor, A. L.,, and D. H. Munn. 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4:762774.
171. Merad, M.,, M. G. Manz,, H. Karsunky,, A. Wagers,, W. Peters,, I. Charo,, I. L. Weissman,, J. G. Cyster, and, E. G. Engleman. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:11351141.
172. Meylan, E.,, J. Curran,, K. Hofmann,, D. Moradpour,, M. Binder,, R. Bartenschlager, and, J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:11671172.
173. Meylan, E.,, J. Tschopp, and, M. Karin. 2006. Intracellular pattern recognition receptors in the host response. Nature 442:3944.
174. Modolell, M.,, I. M. Corraliza,, F. Link,, G. Soler, and, K. Eichmann. 1995. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol. 25:11011104.
175. Moore, K. J.,, S. Labrecque, and, G. Matlashewski. 1993. Alteration of Leishmania donovani infection levels by selective impairment of macrophage signal transduction. J. Immunol. 150:44574465.
176. Mosser, D. M. 2003. The many faces of macrophage activation. J. Leukoc. Biol. 73:209212.
177. Mukhopadhyay, S.,, Y. Chen,, M. Sankala,, L. Peiser,, T. Pikkarainen,, G. Kraal,, K. Tryggvason, and, S. Gordon. 2006. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur. J. Immunol. 36:940949.
178. Mukhopadhyay, S.,, L. Peiser, and, S. Gordon. 2004. Activation of murine macrophages by Neisseria meningitidis and IFN-gamma in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. J. Leukoc. Biol. 76:577584.
179. Muller-Taubenberger, A.,, A. N. Lupas,, H. Li,, M. Ecke,, E. Simmeth, and, G. Gerisch. 2001. Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J. 20:67726782.
180. Mullin, N.,, K. Hall, and, M. Taylor. 1994. Characterization of ligand binding to a carbohydrate-recognition domain of the macrophage mannose receptor. J. Biol. Chem. 269:2840528413.
181. Naito, M.,, H. Suzuki,, T. Mori,, A. Matsumoto,, T. Kodama, and, K. Takahashi. 1992. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions. Am. J. Pathol. 141:591599.
182. Naka, T.,, M. Fujimoto,, H. Tsutsui, and, A. Yoshimura. 2005. Negative regulation of cytokine and TLR signalings by SOCS and others. Adv. Immunol. 87:61122.
183. Nakamura, K.,, T. Yamaji,, P. R. Crocker,, A. Suzuki, and, Y. Hashimoto. 2002. Lymph node macrophages, but not spleen macrophages, express high levels of unmasked sialoadhesin: implication for the adhesive properties of macrophages in vivo. Glycobiology 12:209216.
184. Nano, F. E.,, N. Zhang,, S. C. Cowley,, K. E. Klose,, K. K. Cheung,, M. J. Roberts,, J. S. Ludu,, G. W. Letendre,, A. I. Meierovics,, G. Stephens, and, K. L. Elkins. 2004. A Fran-cisella tularensis pathogenicity island required for intra-macrophage growth. J. Bacteriol. 186:64306436.
185. Nicoletti, A.,, G. Caligiuri,, I. Tornberg,, T. Kodama,, S. Stemme, and, G. K. Hansson. 1999. The macrophage scavenger receptor type A directs modified proteins to antigen presentation. Eur. J. Immunol. 29:512521.
186. Nimmerjahn, F.,, and J. V. Ravetch. 2006. Fcgamma receptors: old friends and new family members. Immunity 24:1928.
187. O’Brien, D. K.,, and S. B. Melville. 2003. Multiple effects on Clostridium perfringens binding, uptake and trafficking to lysosomes by inhibitors of macrophage phagocytosis receptors. Microbiology 149:13771386.
188. O’Neill, L. A. 2006. How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol. 18:39.
189. O’Neill, L. A.,, and A. G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7:353364.
190. O’Riordan, D.,, J. Standing, and, A. Limper. 1995. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect. Immun. 63:779784.
191. O’Shea, J. J.,, M. Gadina, and, R. D. Schreiber. 2002. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl.):S121S131.
192. Park-Min, K. H.,, T. T. Antoniv, and, L. B. Ivashkiv. 2005. Regulation of macrophage phenotype by long-term exposure to IL-10. Immunobiology 210:7786.
193. Parthasarathy, S.,, L. G. Fong,, D. Otero, and, D. Steinberg. 1987. Recognition of solubilized apoproteins from delipi-dated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor. Proc. Natl. Acad. Sci. USA 84:537540.
194. Payne, N. R.,, and M. A. Horwitz. 1987. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J. Exp. Med. 166:13771389.
195. Peiser, L.,, K. Makepeace,, A. Plüddemann,, S. Savino,, J. C. Wright,, M. Pizza,, R. Rappuoli,, E. R. Moxon, and, S. Gordon. 2006. Identification of Neisseria meningitidis nonlipopolysaccharide ligands for class A macrophage scavenger receptor by using a novel assay. Infect. Immun. 74:51915199.
196. Perry, V. H.,, and S. Gordon. 1988. Macrophages and microglia in the nervous system. Trends Neurosci. 11:273277.
197. Peters, N.,, and D. Sacks. 2006. Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol. Rev. 213:159179.
198. Phan, T. G.,, I. Grigorova,, T. Okada, and, J. G. Cyster. 2007. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8:9921000.
199. Pierce, M. M.,, R. E. Gibson, and, F. G. Rodgers. 1996. Opsonin-independent adherence and phagocytosis of Listeria monocytogenes by murine peritoneal macrophages. J. Med. Microbiol. 45:258262.
200. Pilette, C.,, Y. Ouadrhiri,, J. Van Snick,, J. C. Renauld,, P. Staquet,, J. P. Vaerman, and, Y. Sibille. 2002. IL-9 inhibits oxidative burst and TNF-alpha release in lipopolysaccharide-stimulated human monocytes through TGF-beta. J. Immunol. 168:41034111.
201. Pizarro-Cerda, J.,, and P. Cossart. 2006. Bacterial adhesion and entry into host cells. Cell 124:715727.
202. Platt, N.,, and S. Gordon. 2001. Is the class A macrophage scavenger receptor (SR-A) multifunctional?—The mouse’s tale. J. Clin. Invest. 108:649654.
203. Platt, N.,, H. Suzuki,, T. Kodama, and, S. Gordon. 2000. Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J. Immunol. 164:48614867.
204. Platt, N.,, H. Suzuki,, Y. Kurihara,, T. Kodama, and, S. Gordon. 1996. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. USA 93:1245612460.
205. Plüddemann, A.,, S. Mukhopadhyay, and, S. Gordon. 2006. The interaction of macrophage receptors with bacterial ligands. Expert Rev. Mol. Med. 8:125.
206. Portnoy, D. A.,, V. Auerbuch, and, I. J. Glomski. 2002. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158:409414.
207. Presanis, J. S.,, M. Kojirna, and, R. B. Sim. 2003. Biochemistry and genetics of mannan-binding lectin (MBL). Biochem. Soc. Trans. 31:748752.
208. Puente Navazo, M. D.,, L. Daviet,, E. Ninio, and, J. L. McGregor. 1996. Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler. Thromb. Vasc. Biol. 16:10331039.
209. Puig-Kroger, A.,, A. Dominguez-Soto,, L. Martinez-Munoz,, D. Serrano-Gomez,, M. Lopez-Bravo,, E. Sierra-Filardi,, E. Fernandez-Ruiz,, N. Ruiz-Velasco,, C. Ardavin,, Y. Groner,, N. Tandon,, A. L. Corbi, and, M. A. Vega. 2006. RUNX3 negatively regulates CD36 expression in myeloid cell lines. J. Immunol. 177:21072114.
210. Quinn, J. M.,, and M. T. Gillespie. 2005. Modulation of osteoclast formation. Biochem. Biophys. Res. Commun. 328:739745.
211. Raes, G.,, P. De Baetselier,, W. Noel,, A. Beschin,, F. Brombacher, and, G. Hassanzadeh Gh. 2002. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J. Leukoc. Biol. 71:597602.
212. Ramachandra, L.,, E. Noss,, W. H. Boom, and, C. V. Harding. 1999. Phagocytic processing of antigens for presentation by class II major histocompatibility complex molecules. Cell. Microbiol. 1:205214.
213. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan, and, C. E. Barry III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:8487.
214. Ren, Y.,, R. L. Silverstein,, J. Allen, and, J. Savill. 1995. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med. 181:18571862.
215. Resnick, D.,, J. E. Chatterton,, K. Schwartz,, H. Slayter, and, M. Krieger. 1996. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain. J. Biol. Chem. 271:2692426930.
216. Rich, K. A.,, C. Burkett, and, P. Webster. 2003. Cytoplasmic bacteria can be targets for autophagy. Cell. Microbiol. 5:455468.
217. Rohrer, L.,, M. Freeman,, T. Kodama,, M. Penman, and, M. Krieger. 1990. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343:570572.
218. Russell, D. G.,, and R. M. Yates. 2007. TLR signalling and phagosome maturation: an alternative viewpoint. Cell. Microbiol. 9:849850.
219. Sankala, M.,, A. Brannstrom,, T. Schulthess,, U. Bergmann,, E. Morgunova,, J. Engel,, K. Tryggvason, and, T. Pikkarainen. 2002. Characterization of recombinant soluble macrophage scavenger receptor MARCO. J. Biol. Chem. 277:3337833385.
220. Sano, H.,, H. Sohma,, T. Muta,, S. Nomura,, D. R. Voelker, and, Y. Kuroki. 1999. Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J. Immunol. 163:387395.
221. Santiago-Garcia, J.,, T. Kodama, and, R. E. Pitas. 2003. The Class A Scavenger Receptor binds to proteoglycans and mediates adhesion of macrophages to the extracellular matrix. J. Biol. Chem. 278:69426946.
222. Santic, M.,, M. Molmeret, and, Y. Abu Kwaik. 2005. Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-gamma. Cell. Microbiol. 7:957967.
223. Savill, J.,, I. Dransfield,, N. Hogg, and, C. Haslett. 1990. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343:170173.
224. Savill, J.,, N. Hogg,, Y. Ren, and, C. Haslett. 1992. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90:15131522.
225. Schaible, U. E.,, and S. H. Kaufmann. 2004. Iron and microbial infection. Nat. Rev. Microbiol. 2:946953.
226. Schlesinger, L. S.,, S. R. Hull, and, T. M. Kaufman. 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152:40704079.
227. Schmid, D.,, J. Dengjel,, O. Schoor,, S. Stevanovic, and, C. Munz. 2006. Autophagy in innate and adaptive immunity against intracellular pathogens. J. Mol. Med. 84:194202.
228. Schulert, G. S.,, and L. A. Allen. 2006. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J. Leukoc. Biol. 80:563571.
229. Scotton, C. J.,, F. O. Martinez,, M. J. Smelt,, M. Sironi,, M. Locati,, A. Mantovani, and, S. Sozzani. 2005. Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J. Immunol. 174:834845.
230. Serghides, L.,, T. G. Smith,, S. N. Patel, and, K. C. Kain. 2003. CD36 and malaria: friends or foes? Trends Parasitol. 19:461469.
231. Seth, R. B.,, L. Sun, and, Z. J. Chen. 2006. Antiviral innate immunity pathways. Cell Res. 16:141147.
232. Shi, Y.,, Y. Tohyama,, T. Kadono,, J. He,, S. M. Shahjahan Miah,, R. Hazama,, C. Tanaka,, K. Tohyama, and, H. Yamamura. 2006. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 107:45544562.
233. Silverstein, R. L.,, A. S. Asch, and, R. L. Nachman. 1989. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J. Clin. Invest. 84:546552.
234. Smith, P. D.,, C. Ochsenbauer-Jambor, and, L. E. Smythies. 2005. Intestinal macrophages: unique effector cells of the innate immune system. Immunol. Rev. 206:149159.
235. Stack, J.,, I. R. Haga,, M. Schroder,, N. W. Bartlett,, G. Maloney,, P. C. Reading,, K. A. Fitzgerald,, G. L. Smith, and, A. G. Bowie. 2005. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201:10071018.
236. Stanley, E.,, G. J. Lieschke,, D. Grail,, D. Metcalf,, G. Hodgson,, J. A. Gall,, D. W. Maher,, J. Cebon,, V. Sinickas, and, A. R. Dunn. 1994. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91:55925596.