1887

Chapter 6 : Toll-Like Receptors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Toll-Like Receptors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap06-2.gif

Abstract:

This chapter focuses on examples of Toll-like receptors (TLRs) research where questions have been particularly well addressed as potential paradigms for the entire TLR system. Lipopolysaccharide (LPS) has been used for decades in immunology laboratories because of its multiple effects on innate immune cells as well as B lymphocytes and, after discovery of TLR4 as its vertebrate host counterpart receptor, has served as an important paradigm to understand the interaction and function of other TLRs with various microbial components. The malarial parasite is remarkably nonimmunogenic, both for the innate and the acquired immune systems. The early elimination of invasive microorganisms is a fundamental function of the innate immune system. Macrophages, dendritic cells (DCs), and polymorphonuclear leukocytes recognize components of invasive pathogens and orchestrate an early antimicrobial defense. Two major families of non-TLRs that have received the most attention to date are the NOD-like receptor (NLR) family of receptors and the associated inflammasomes. Recent studies indicate the existence of non-TLR pattern recognition systems that function as sensors of viral and bacterial components.

Citation: Gazzinelli R, Fitzgerald K, Golenbock D. 2009. Toll-Like Receptors, p 107-122. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch6

Key Concept Ranking

Infection and Immunity
0.8453668
Immune Receptors
0.66842103
Bacterial Cell Wall
0.5933932
Immune Systems
0.5863454
Innate Immune System
0.5803234
Viruses
0.5419795
0.8453668
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Innate immunity in malaria. During the asexual portion of the cycle, merozoites are released from erythrocytes into the systemic circulation. Parasite GPI anchors and hemozoin-bound DNA trigger cytokine production. GPI anchors bind to surface TLR2 on CD14 monocytes, macrophages, and DCs. CpG-containing ODN is associated with hemozoin and triggers endosomal TLR9. Hemozoin-induced lysosomal destabilization releases DNA to access cytosolic sensors. AT-rich ODN triggers an as yet uncharacterized cytosolic DNA sensor and elicits IFN-β via NALP3, TBK1, and IRF1 to regulate IFN-β production. AT-rich ODN also elicits cytokine production (TNF, IL-6) and caspase-1-mediated processing of pro-IL-1β. These latter cytokines, still not entirely characterized, cause fever. Immune mediators also increase adhesion molecule expression on capillary endothelium. Infected erythrocytes, especially those with large schizonts, will bind to microcapillary beds in the brain.

Citation: Gazzinelli R, Fitzgerald K, Golenbock D. 2009. Toll-Like Receptors, p 107-122. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Molecular and cellular steps of TLR activation. TLR4 and TLR9 are by far the best-understood surface and endosomal TLRs, respectively. TLR4 is most often located on the cell surface and it is highly specific for gram-negative derived lipid A. The recognition and sensitivity of TLR4 signaling by bacterial lipid A highly depends on the coreceptor named CD14 and MD-2. The TLR4 intracellular signaling also depends on four adapter molecules, which work in pairs, i.e., MyD88/Mal and TRIF/TRAM, which are essential for induction of IRAK/TRAF6 and TBK1/IKKe, which are then responsible for activation of NF-κB and IRF3 responses, respectively. However, TLR9 normally resides in the ER and migrates to the endolysosomal compartment in an UNCN93Bi-dependent manner, where it is activated by its agonists. TLR9 activation also depends on the MyD88 adapter molecule and results in activation of IRAK/TRAF6, culminating in stimulation of NF-κB. During activation of TLR9, MyD88 also activates IRF7- and IFN-related responses.

Citation: Gazzinelli R, Fitzgerald K, Golenbock D. 2009. Toll-Like Receptors, p 107-122. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816650.ch06
1. Adachi, O.,, T. Kawai,, K. Takeda,, M. Matsumoto,, H. Tsutsui,, M. Sakagami,, K. Nakanishi, and, S. Akira. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1-and IL-18-mediated function. Immunity 9:143150.
2. Ahmad-Nejad, P.,, H. Häcker,, M. Rutz,, S. Bauer,, R. M. Vabulas, and, H. Wagner. 2002. Bacterial CpG DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32:19581968.
3. Akashi, S.,, Y. Nagai,, H. Ogata,, M. Oikawa,, K. Fukase,, S. Kusumoto,, K. Kawasaki,, M. Nishijima,, S. Hayashi,, M. Kimoto, and, K. Miyake. 2001. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol. 13:15951599.
4. Akashi, S.,, S. Saitoh,, Y. Wakabayashi,, T. Kikuchi,, N. Takamura,, Y. Nagai,, Y. Kusumoto,, K. Fukase,, S. Kusumoto,, Y. Adachi,, A. Kosugi, and, K. Miyake. 2003. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J. Exp. Med. 198:10351042.
5. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783801.
6. Alexopoulou, L.,, A. C. Holt,, R. Medzhitov, and, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732738.
7. Almeida, I. C.,, M. M. Camargo,, D. O. Procopio,, L. S. Silva,, A. Mehlert,, L. R. Travassos,, R. T. Gazzinelli, and, M. A. Ferguson. 2000. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 19:14761485.
8. Almeida, I. C.,, and R. T. Gazzinelli. 2001. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. J. Leukoc. Biol. 70:467477.
9. Anderson, K. V. 2000. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12:1319.
10. Anderson, K. V.,, L. Bokla, and, C. Nüsslein-Volhard. 1985a. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791-798.
11. Anderson, K. V.,, G. Jurgens, and, C. Nüsslein-Volhard. 1985b. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779789.
12. Andrejeva, J.,, K. S. Childs,, D. F. Young,, T. S. Carlos,, N. Stock,, S. Goodbourn, and, R. E. Randall. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA heli-case, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101:1726417269.
13. Aosai, F.,, M. Chen,, H. K. Kang,, H. S. Mun,, K. Norose,, L. X. Piao,, M. Kobayashi,, O. Takeuchi,, S. Akira, and, A. Yano. 2002. Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen. Cell Stress Chaperones 7:357364.
14. Bafica, A.,, H. C. Santiago,, R. Goldszmid,, C. Ropert,, R. T. Gazzinelli, and, A. Sher. 2006. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J. Immunol. 177:35153519.
15. Balachandran, S.,, E. Thomas, and, G. N. Barber. 2004. A FADD-dependent innate immune mechanism in mammalian cells. Nature 432:401405.
16. Barrat, F. J.,, T. Meeker,, J. Gregorio,, J. H. Chan,, S. Uematsu,, S. Akira,, B. Chang,, O. Duramad, and, R. L. Coffman. 2005. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202:11311139.
17. Bartholomeu, D. C.,, C. Ropert,, M. B. Melo,, P. Parroche,, C. F. Junqueira,, S. M. Teixeira,, C. Sirois,, P. Kasperkovitz,, C. F. Knetter,, E. Lien,, E. Latz,, D. T. Golenbock, and, R. T. Gazzinelli. 2008. Recruitment and endo-lysosomal activation of TLR9 in dendritic cells infected with Trypanosoma cruzi. J. Immunol. 181:13331344.
18. Becker, I.,, N. Salaiza,, M. Aguirre,, J. Delgado,, N. Carrillo-Carrasco,, L. G. Kobeh,, A. Ruiz,, R. Cervantes,, A. P. Torres,, N. Cabrera,, A. Gonzalez,, C. Maldonado, and, A. Isibasi. 2003. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol. Biochem. Parasitol. 130:6574.
19. Belvin, M. P.,, and K. V. Anderson. 1996. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell. Dev. Biol. 12:393416.
20. Bernheiden, M.,, J. M. Heinrich,, G. Minigo,, C. Schutt,, F. Stelter,, M. Freeman,, D. Golenbock, and, R. S. Jack. 2001. LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J. Endotoxin Res. 7:447450.
21. Beutler, B.,, Z. Jiang,, P. Georgel,, K. Crozat,, B. Croker,, S. Rutschmann,, X. Du, and, K. Hoebe. 2006. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24:353389.
22. Bieback, K.,, E. Lien,, I. M. Klagge,, E. Avota,, J. Schneider-Schaulies,, W. P. Duprex,, H. Wagner,, C. J. Kirschning,, V. Ter Meulen, and, S. Schneider-Schaulies. 2002. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol. 76:87298736.
23. Biron, C. A.,, and R. T. Gazzinelli. 1995. Effects of IL-12 on immune responses to microbial infections: a key mediator in regulating disease outcome. Curr. Opin. Immunol. 7:485496.
24. Bjorkbacka, H.,, K. A. Fitzgerald,, F. Huet,, X. Li,, J. A. Gregory,, M. A. Lee,, C. M. Ordija,, N. E. Dowley,, D. T. Golenbock, and, M. W. Freeman. 2004. The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol. Genomics 19:319330.
25. Bonnard, M.,, C. Mirtsos,, S. Suzuki,, K. Graham,, J. Huang,, M. Ng,, A. Itie,, A. Wakeham,, A. Shahinian,, W. J. Henzel,, A. J. Elia,, W. Shillinglaw,, T. W. Mak,, Z. Cao, and, W. C. Yeh. 2000. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J. 19:49764985.
26. Brown, W. C.,, and R. S. Corral. 2002. Stimulation of B lymphocytes, macrophages, and dendritic cells by protozoan DNA. Microbes Infect. 4:969-974.
27. Burns, K.,, J. Clatworthy,, L. Martin,, F. Martinon,, C. Plumpton,, B. Maschera,, A. Lewis,, K. Ray,, J. Tschopp, and, F. Volpe. 2000. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell Biol. 2:346351.
28. Burzyn, D.,, J. C. Rassa,, D. Kim,, I. Nepomnaschy,, S. R. Ross, and, I. Piazzon. 2004. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. Virol. 78:576584.
29. Camargo, M. M.,, I. C. Almeida,, M. E. Pereira,, M. A. Ferguson,, L. R. Travassos, and, R. T. Gazzinelli. 1997. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J. Immunol. 158:58905901.
30. Campos, M. A.,, I. C. Almeida,, O. Takeuchi,, S. Akira,, E. P. Valente,, D. O. Procopio,, L. R. Travassos,, J. A. Smith,, D. T. Golenbock, and, R. T. Gazzinelli. 2001. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167:416423.
31. Cao, Z.,, W. J. Henzel, and, X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271:11281131.
32. Chen, M.,, F. Aosai,, K. Norose,, H. S. Mun,, O. Takeuchi,, S. Akira, and, A. Yano. 2002. Involvement of MyD88 in host defense and the down-regulation of anti-heat shock protein 70 autoantibody formation by MyD88 in Toxoplasma gondii-infected mice. J. Parasitol. 88:10171019.
33. Chen, Z. J. 2005. Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. 7:758765.
34. Chow, J. C.,, D. W. Young,, D. T. Golenbock,, W. J. Christ, and, F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274:1068910692.
35. Christ, W. J.,, O. Asano,, A. L. Robidoux,, M. Perez,, Y. Wang,, G. R. Dubuc,, W. E. Gavin,, L. D. Hawkins,, P. D. McGuinness,, M. A. Mullarkey, et al. 1995. E5531, a pure endotoxin antagonist of high potency. Science 268:8083.
36. Coban, C.,, K. J. Ishii,, T. Kawai,, H. Hemmi,, S. Sato,, S. Uematsu,, M. Yamamoto,, O. Takeuchi,, S. Itagaki,, N. Kumar,, T. Horii, and, S. Akira. 2005. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201:1925.
37. Collins, W. E.,, and G. M. Jeffery. 1999. A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. Am. J. Trop. Med. Hyg. 61:2035.
38. Compton, T.,, E. A. Kurt-Jones,, K. W. Boehme,, J. Belko,, E. Latz,, D. T. Golenbock, and, R. W. Finberg. 2003. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77:45884596.
39. Cusson-Hermance, N.,, S. Khurana,, T. H. Lee,, K. A. Fitzgerald, and, M. A. Kelliher. 2005. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280:3656036566.
40. Debierre-Grockiego, F.,, M. A. Campos,, N. Azzouz,, J. Schmidt,, U. Bieker,, M. G. Resende,, D. S. Mansur,, R. Weingart,, R. R. Schmidt,, D. T. Golenbock,, R. T. Gazzinelli, and, R. T. Schwarz. 2007. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxo-plasma gondii. J. Immunol. 179:11291137.
41. Delude, R. L.,, R. Savedra, Jr.,, H. Zhao,, R. Thieringer,, S. Yamamoto,, M. J. Fenton, and, D. T. Golenbock. 1995. CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc. Natl. Acad. Sci. USA 92:92889292.
42. de Veer, M. J.,, J. M. Curtis,, T. M. Baldwin,, J. A. DiDonato,, A. Sexton,, M. J. McConville,, E. Handman, and, L. Schofield. 2003. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur. J. Immunol. 33:28222831.
43. Diebold, S. S.,, T. Kaisho,, H. Hemmi,, S. Akira, and, C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:15291531.
44. Divanovic, S.,, A. Trompette,, S. F. Atabani,, R. Madan,, D. T. Golenbock,, A. Visintin,, R. W. Finberg,, A. Tarakhovsky,, S. N. Vogel,, Y. Belkaid,, E. A. Kurt-Jones, and, C. L. Karp. 2005. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6:571578.
45. Dobrovolskaia, M. A.,, and S. N. Vogel. 2002. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 4:903914.
46. Drennan, M. B.,, B. Stijlemans,, J. Van den Abbeele,, V. J. Quesniaux,, M. Barkhuizen,, F. Brombacher,, P. De Baetselier,, B. Ryffel, and, S. Magez. 2005. The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J. Immunol. 175:25012509.
47. Ewald, S. E.,, B. L. Lee,, L. Lau,, K. E. Wickliffe,, G. P. Shi,, H. A. Chapman, and, G. M. Barton. 2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658662.
48. Ferrero, E.,, C. L. Hsieh,, U. Francke, and, S. M. Goyert. 1990. CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J. Immunol. 145:331336.
49. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao, and, T. Maniatis. 2003a. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496.
50. Fitzgerald, K. A.,, E. M. Palsson-McDermott,, A. G. Bowie,, C. A. Jefferies,, A. S. Mansell,, G. Brady,, E. Brint,, A. Dunne,, P. Gray,, M. T. Harte,, D. McMurray,, D. E. Smith,, J. E. Sims,, T. A. Bird, and, L. A. O’Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:7883.
51. Fitzgerald, K. A.,, D. C. Rowe,, B. J. Barnes,, A. Visintin,, E. Latz,, B. Monks,, P. M. Pitha, and, D. T. Golenbock. 2003b. LPS/TLR4 signaling to IRF-3/7 and NF-kB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198:10431055.
52. Flandin, J. F.,, F. Chano, and, A. Descoteaux. 2006. RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gamma-primed macrophages. Eur. J. Immunol. 36:411420.
53. Gangloff, M.,, A. N. Weber,, R. J. Gibbard, and, N. J. Gay. 2003. Evolutionary relationships, but functional differences, between the Drosophila and human Toll-like receptor families. Biochem. Soc. Trans. 31:659663.
54. Gay, N. J.,, and F. J. Keith. 1991. Drosophila Toll and IL-1 receptor. Nature 351:355356.
55. Gazzinelli, R. T.,, and E. Y. Denkers. 2006. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat. Rev. Immunol. 6:895906.
56. Gitlin, L.,, W. Barchet,, S. Gilfillan,, M. Cella,, B. Beutler,, R. A. Flavell,, M. S. Diamond, and, M. Colonna. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103:84598464.
57. Gohda, J.,, T. Matsumura, and, J. Inoue. 2004. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173:29132917.
58. Golenbock, D. T.,, R. Y. Hampton,, N. Qureshi,, K. Takayama, and, C. R. Raetz. 1991. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266:1949019498.
59. Hacker, H.,, V. Redecke,, B. Blagoev,, I. Kratchmarova,, L. C. Hsu,, G. G. Wang,, M. P. Kamps,, E. Raz,, H. Wagner,, G. Hacker,, M. Mann, and, M. Karin. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204207.
60. Hajjar, A. M.,, R. K. Ernst,, J. H. Tsai,, C. B. Wilson, and, S. I. Miller. 2002. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3:354359.
61. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill, and, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:10991103.
62. Hemmi, H.,, T. Kaisho,, O. Takeuchi,, S. Sato,, H. Sanjo,, K. Hoshino,, T. Horiuchi,, H. Tomizawa,, K. Takeda, and, S. Akira. 2002. Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3:196200.
63. Hemmi, H.,, O. Takeuchi,, T. Kawai,, T. Kaisho,, S. Sato,, H. Sanjo,, M. Matsumoto,, K. Hoshino,, H. Wagner,, K. Takeda, and, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740745.
64. Hemmi, H.,, O. Takeuchi,, S. Sato,, M. Yamamoto,, T. Kaisho,, H. Sanjo,, T. Kawai,, K. Hoshino,, K. Takeda, and, S. Akira. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199:16411650.
65. Heppner, G.,, and D. W. Weiss. 1965. High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures. J. Bacteriol. 90:696703.
66. Hoebe, K.,, X. Du,, P. Georgel,, E. Janssen,, K. Tabeta,, S. O. Kim,, J. Goode,, P. Lin,, N. Mann,, S. Mudd,, K. Crozat,, S. Sovath,, J. Han, and, B. Beutler. 2003a. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743748.
67. Hoebe, K.,, E. M. Janssen,, S. O. Kim,, L. Alexopoulou,, R. A. Flavell,, J. Han, and, B. Beutler. 2003b. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4:12231229.
68. Horng, T.,, G. M. Barton, and, R. Medzhitov. 2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2:835841.
69. Hornung, V.,, F. Bauernfeind,, A. Halle,, E. O. Samstad,, H. Kono,, K. L. Rock,, K. A. Fitzgerald, and, E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9:847856.
70. Hoshino, K.,, O. Takeuchi,, T. Kawai,, H. Sanjo,, T. Ogawa,, Y. Takeda,, K. Takeda, and, S. Akira. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162:37493752.
71. Jack, R. S.,, X. Fan,, M. Bernheiden,, G. Rune,, M. Ehlers,, A. Weber,, G. Kirsch,, R. Mentel,, B. Furll,, M. Freudenberg,, G. Schmitz,, F. Stelter, and, C. Schutt. 1997. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 389:742745.
72. Janeway, C. A., Jr.,, and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197216.
73. Jaramillo, M.,, D. C. Gowda,, D. Radzioch, and, M. Olivier. 2003. Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. J. Immunol. 171:42434253.
74. Jaramillo, M.,, I. Plante,, N. Ouellet,, K. Vandal,, P. A. Tessier, and, M. Olivier. 2004. Hemozoin-inducible proinflammatory events in vivo: potential role in malaria infection. J. Immunol. 172:31013110.
75. Jin, M. S.,, S. E. Kim,, J. Y. Heo,, M. E. Lee,, H. M. Kim,, S. G. Paik,, H. Lee, and, J. O. Lee. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a triacylated lipopeptide. Cell 130:10711082.
76. Jurk, M.,, F. Heil,, J. Vollmer,, C. Schetter,, A. M. Krieg,, H. Wagner,, G. Lipford, and, S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3:499.
77. Kagan, J. C.,, and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125:943955.
78. Kaisho, T.,, and S. Akira. 2002. Toll-like receptors as adjuvant receptors. Biochim. Biophys. Acta 1589:113.
79. Kaisho, T.,, O. Takeuchi,, T. Kawai,, K. Hoshino, and, S. Akira. 2001. Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166:56885694.
80. Kanneganti, T. D.,, M. Lamkanfi, and, G. Nunez. 2007. Intracellular NOD-like receptors in host defense and disease. Immunity 27:549559.
81. Karin, M.,, and F. R. Greten. 2005. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5:749759.
82. Kato, H.,, S. Sato,, M. Yoneyama,, M. Yamamoto,, S. Uematsu,, K. Matsui,, T. Tsujimura,, K. Takeda,, T. Fujita,, O. Takeuchi, and, S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:1928.
83. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
84. Kawai, T.,, O. Adachi,, T. Ogawa,, K. Takeda, and, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115122.
85. Kawai, T.,, K. Takahashi,, S. Sato,, C. Coban,, H. Kumar,, H. Kato,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981988.
86. Kawai, T.,, O. Takeuchi,, T. Fujita,, J. Inoue,, P. F. Muhlradt,, S. Sato,, K. Hoshino, and, S. Akira. 2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167:58875894.
87. Kim, H. M.,, B. S. Park,, J. I. Kim,, S. E. Kim,, J. Lee,, S. C. Oh,, P. Enkhbayar,, N. Matsushima,, H. Lee,, O. J. Yoo, and, J. O. Lee. 2007. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906917.
88. Kim, Y. M.,, M. M. Brinkmann,, M. E. Paquet, and, H. L. Ploegh. 2008. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452:234238.
89. Krishnegowda, G.,, A. M. Hajjar,, J. Zhu,, E. J. Douglass,, S. Uematsu,, S. Akira,, A. S. Woods, and, D. C. Gowda. 2005. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280:86068616.
90. Krug, A.,, G. D. Luker,, W. Barchet,, D. A. Leib,, S. Akira, and, M. Colonna. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:14331437.
91. Kurt-Jones, E. A.,, L. Popova,, L. Kwinn,, L. M. Haynes,, L. P. Jones,, R. A. Tripp,, E. E. Walsh,, M. W. Freeman,, D. T. Golenbock,, L. J. Anderson, and, R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:398401.
92. Latz, E.,, A. Schoenemeyer,, A. Visintin,, K. A. Fitzgerald,, B. G. Monks,, C. F. Knetter,, E. Lien,, N. J. Nilsen,, T. Espevik, and, D. T. Golenbock. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5:190198.
93. Latz, E.,, A. Verma,, A. Visintin,, M. Gong,, C. M. Sirois,, D. C. Klein,, B. G. Monks,, C. J. McKnight,, M. S. Lamphier,, W. P. Duprex,, T. Espevik, and, D. T. Golenbock. 2007. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol. 8:772779.
94. Lee, J.,, J. H. Mo,, K. Katakura,, I. Alkalay,, A. N. Rucker,, Y. T. Liu,, H. K. Lee,, C. Shen,, G. Cojocaru,, S. Shenouda,, M. Kagnoff,, L. Eckmann,, Y. Ben-Neriah, and, E. Raz. 2006. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell. Biol. 8:13271336.
95. Le Goffic, R.,, V. Balloy,, M. Lagranderie,, L. Alexopoulou,, N. Escriou,, R. Flavell,, M. Chignard, and, M. Si-Tahar. 2006. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2:e53.
96. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973983.
97. Leulier, F.,, and B. Lemaitre. 2008. Toll-like receptors—taking an evolutionary approach. Nat. Rev. Genet. 9:165178.
98. Li, S.,, A. Strelow,, E. J. Fontana, and, H. Wesche. 2002. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. USA 99:55675572.
99. Lien, E.,, and R. R. Ingalls. 2002. Toll-like receptors. Crit. Care Med. 30:S1S11.
100. Lien, E.,, T. J. Sellati,, A. Yoshimura,, T. H. Flo,, G. Rawadi,, R. W. Finberg,, J. D. Carroll,, T. Espevik,, R. R. Ingalls,, J. D. Radolf, and, D. T. Golenbock. 1999. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274:3341933425.
101. Lien, E.,, T. K. Means,, H. Heine,, A. Yoshimura,, S. Kusumoto,, K. Fukase,, M. J. Fenton,, M. Oikawa,, N. Qureshi,, B. Monks,, R. W. Finberg,, R. R. Ingalls, and, D. T. Golenbock. 2000. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105:497504.
102. Liu, L.,, I. Botos,, Y. Wang,, J. N. Leonard,, J. Shiloach,, D. M. Segal, and, D. R. Davies. 2008. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320:379381.
103. Lu, X.,, M. Wang,, J. Qi,, H. Wang,, X. Li,, D. Gupta, and, R. Dziarski. 2006. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. 281:58955907.
104. Lund, J. M.,, L. Alexopoulou,, A. Sato,, M. Karow,, N. C. Adams,, N. W. Gale,, A. Iwasaki, and, R. A. Flavell. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101:55985603.
105. Lund, J.,, A. Sato,, S. Akira,, R. Medzhitov, and, A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198:513520.
106. Maniatis, T. 1986. Mechanisms of human beta-interferon gene regulation. Harvey Lect. 82:71104.
107. Martin, M. U.,, and H. Wesche. 2002. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta 1592:265280.
108. McWhirter, S. M.,, K. A. Fitzgerald,, J. Rosains,, D. C. Rowe,, D. T. Golenbock, and, T. Maniatis. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101:233238.
109. Means, T. K.,, E. Latz,, F. Hayashi,, M. R. Murali,, D. T. Golenbock, and, A. D. Luster. 2005. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115:407417.
110. Medzhitov, R.,, P. Preston-Hurlburt, and, C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394397.
111. Medzhitov, R.,, P. Preston-Hurlburt,, E. Kopp,, A. Stadlen,, C. Chen,, S. Ghosh, and, C. A. Janeway, Jr. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2:253258.
112. Meylan, E.,, K. Burns,, K. Hofmann,, V. Blancheteau,, F. Martinon,, M. Kelliher, and, J. Tschopp. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5:503507.
113. Morisato, D.,, and K. V. Anderson. 1994. The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76:677688.
114. Oganesyan, G.,, S. K. Saha,, B. Guo,, J. Q. He,, A. Shahangian,, B. Zarnegar,, A. Perry, and, G. Cheng. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208211.
115. Ohto, U.,, K. Fukase,, K. Miyake, and, Y. Satow. 2007. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316:16321634.
116. Oliveira, A. C.,, J. R. Peixoto,, L. B. de Arruda,, M. A. Campos,, R. T. Gazzinelli,, D. T. Golenbock,, S. Akira,, J. O. Previato,, L. Mendonca-Previato,, A. Nobrega, and, M. Bellio. 2004. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J. Immunol. 173:56885696.
117. O’Neill, L. A.,, K. A. Fitzgerald, and, A. G. Bowie. 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24:286290.
118. Oshiumi, H.,, M. Matsumoto,, K. Funami,, T. Akazawa, and, T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161167.
119. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder, and, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97:1376613771.
120. Park, B.,, M. M. Brinkmann,, E. Spooner,, C. C. Lee,, Y. M. Kim, and, H. L. Ploegh. 2008. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9:14071414.
121. Parroche, P.,, F. N. Lauw,, N. Goutagny,, E. Latz,, B. G. Monks,, A. Visintin,, K. A. Halmen,, M. Lamphier,, M. Olivier,, D. C. Bartholomeu,, R. T. Gazzinelli, and, D. T. Golenbock. 2007. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA 104:19191924.
122. Perry, A. K.,, E. K. Chow,, J. B. Goodnough,, W. C. Yeh, and, G. Cheng. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J. Exp. Med. 199:16511658.
123. Poltorak, A.,, X. He,, I. Smirnova,, M. Y. Liu,, C. Van Huffel,, X. Du,, D. Birdwell,, E. Alejos,, M. Silva,, C. Galanos,, M. Freudenberg,, P. Ricciardi-Castagnoli,, B. Layton, and, B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:20852088.
124. Poltorak, A.,, P. Ricciardi-Castagnoli,, S. Citterio, and, B. Beutler. 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97:21632167.
125. Raetz, C. R. 1984. The enzymatic synthesis of lipid A: molecular structure and biologic function of monosaccharide precursors. Rev. Infect. Dis. 6:463471.
126. Rassa, J. C.,, J. L. Meyers,, Y. Zhang,, R. Kudaravalli, and, S. R. Ross. 2002. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc. Natl. Acad. Sci. USA 99:22812286.
127. Ray, B. L.,, G. Painter, and, C. R. Raetz. 1984. The biosynthesis of gram-negative endotoxin. Formation of lipid A disaccharides from monosaccharide precursors in extracts of Escherichia coli. J. Biol. Chem. 259:48524859.
128. Rock, F. L.,, G. Hardiman,, J. C. Timans,, R. A. Kastelein, and, J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95:588593.
129. Rowe, D. C.,, A. F. McGettrick,, E. Latz,, B. G. Monks,, N. J. Gay,, M. Yamamoto,, S. Akira,, L. A. O’Neill,, K. A. Fitzgerald, and, D. T. Golenbock. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc. Natl. Acad. Sci. USA 103:62996304.
130. Rudd, B. D.,, E. Burstein,, C. S. Duckett,, X. Li, and, N. W. Lukacs. 2005. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J. Virol. 79:33503357.
131. Rudd, B. D.,, J. J. Smit,, R. A. Flavell,, L. Alexopoulou,, M. A. Schaller,, A. Gruber,, A. A. Berlin, and, N. W. Lukacs. 2006. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol. 176:19371942.
132. Saitoh, S.,, S. Akashi,, T. Yamada,, N. Tanimura,, M. Kobayashi,, K. Konno,, F. Matsumoto,, K. Fukase,, S. Kusumoto,, Y. Nagai,, Y. Kusumoto,, A. Kosugi, and, K. Miyake. 2004a. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16:961969.
133. Saitoh, S.,, S. Akashi,, T. Yamada,, N. Tanimura,, F. Matsumoto,, K. Fukase,, S. Kusumoto,, A. Kosugi, and, K. Miyake. 2004b. Ligand-dependent Toll-like receptor 4 (TLR4)-oligomerization is directly linked with TLR4-signaling. J. Endotoxin Res. 10:257260.
134. Saitoh, S.,, and K. Miyake. 2006. Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem. Rec. 6:311319.
135. Sato, S.,, H. Sanjo,, K. Takeda,, J. Ninomiya-Tsuji,, M. Yamamoto,, T. Kawai,, K. Matsumoto,, O. Takeuchi, and, S. Akira. 2005. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6:10871095.
136. Sato, S.,, M. Sugiyama,, M. Yamamoto,, Y. Watanabe,, T. Kawai,, K. Takeda, and, S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171:43044310.
137. Schneider, D. S.,, Y. Jin,, D. Morisato, and, K. V. Anderson. 1994. A processed form of the Spatzle protein defines dorsalventral polarity in the Drosophila embryo. Development 120:12431250.
138. Schroder, M.,, and A. G. Bowie. 2005. TLR3 in antiviral immunity: key player or bystander? Trends Immunol. 26:462468.
139. Schromm, A. B.,, E. Lien,, P. Henneke,, J. C. Chow,, A. Yoshimura,, H. Heine,, E. Latz,, B. G. Monks,, D. A. Schwartz,, K. Miyake, and, D. T. Golenbock. 2001. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J. Exp. Med. 194:7988.
140. Schulz, O.,, S. S. Diebold,, M. Chen,, T. I. Naslund,, M. A. Nolte,, L. Alexopoulou,, Y. T. Azuma,, R. A. Flavell,, P. Liljestrom, and, C. Reis e Sousa. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887892.
141. Sharma, S.,, B. R. tenOever,, N. Grandvaux,, G. P. Zhou,, R. Lin, and, J. Hiscott. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:11481151.
142. Shiba, T.,, S. Kusumoto,, M. Inage,, M. Imoto,, H. Chaki, and, T. Shimamoto. 1984. Recent developments in the organic synthesis of lipid A in relation to biologic activities. Rev. Infect. Dis. 6:478482.
143. Shimada, T.,, T. Kawai,, K. Takeda,, M. Matsumoto,, J. Inoue,, Y. Tatsumi,, A. Kanamaru, and, S. Akira. 1999. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to IkappaB kinases. Int. Immunol. 11:13571362.
144. Shimazu, R.,, S. Akashi,, H. Ogata,, Y. Nagai,, K. Fukudome,, K. Miyake, and, M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189:17771782.
145. Shoda, L. K.,, K. A. Kegerreis,, C. E. Suarez,, I. Roditi,, R. S. Corral,, G. M. Bertot,, J. Norimine, and, W. C. Brown. 2001. DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide. Infect. Immun. 69:21622171.
146. Strain, S. M.,, I. M. Armitage,, L. Anderson,, K. Takayama,, N. Qureshi, and, C. R. Raetz. 1985. Location of polar substituents and fatty acyl chains on lipid A precursors from a 3-deoxy-D-manno-octulosonic acid-deficient mutant of Salmonella typhimurium. Studies by 1H, 13C, and 31P nuclear magnetic resonance. J. Biol. Chem. 260:1608916098.
147. Tabeta, K.,, K. Hoebe,, E. M. Janssen,, X. Du,, P. Georgel,, K. Crozat,, S. Mudd,, N. Mann,, S. Sovath,, J. Goode,, L. Shamel,, A. A. Herskovits,, D. A. Portnoy,, M. Cooke,, L. M. Tarantino,, T. Wiltshire,, B. E. Steinberg,, S. Grinstein, and, B. Beutler. 2006. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7:156164.
148. Taguchi, T.,, J. L. Mitcham,, S. K. Dower,, J. E. Sims, and, J. R. Testa. 1996. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32:486488.
149. Takayama, K.,, N. Qureshi,, P. Mascagni,, M. A. Nashed,, L. Anderson, and, C. R. Raetz. 1983. Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. Complete structure of A diacyl GlcN-1-P found in a phosphatidylglycerol-deficient mutant. J. Biol. Chem. 258:73797385.
150. Takeuchi, O.,, A. Kaufmann,, K. Grote,, T. Kawai,, K. Hoshino,, M. Morr,, P. F. Muhlradt, and, S. Akira. 2000. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164:554557.
151. Takeuchi, O.,, T. Kawai,, P. F. Muhlradt,, M. Morr,, J. D. Radolf,, A. Zychlinsky,, K. Takeda, and, S. Akira. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13:933940.
152. Tojima, Y.,, A. Fujimoto,, M. Delhase,, Y. Chen,, S. Hatakeyama,, K. Nakayama,, Y. Kaneko,, Y. Nimura,, N. Motoyama,, K. Ikeda,, M. Karin, and, M. Nakanishi. 2000. NAK is an IkappaB kinase-activating kinase. Nature 404:778782.
153. Triantafilou, M.,, K. Miyake,, D. T. Golenbock, and, K. Triantafilou. 2002. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell Sci. 115:26032611.
154. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3:133146.
155. Trinchieri, G.,, and A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7:179190.
156. Underhill, D. M.,, A. Ozinsky,, A. M. Hajjar,, A. Stevens,, C. B. Wilson,, M. Bassetti, and, A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811815.
157. Viriyakosol, S.,, P. S. Tobias,, R. L. Kitchens, and, T. N. Kirkland. 2001. MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 276:3804438051.
158. Visintin, A.,, K. A. Halmen,, E. Latz,, B. G. Monks, and, D. T. Golenbock. 2005. Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. J. Immunol. 175:64656472.
159. Wang, T.,, T. Town,, L. Alexopoulou,, J. F. Anderson,, E. Fikrig, and, R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10:13661373.
160. Wasserman, S. A. 1993. A conserved signal transduction pathway regulating the activity of the rel-like proteins dorsal and NF-kappa B. Mol. Biol. Cell 4:767771.
161. Watson, J.,, and R. Riblet. 1974. Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic respones to lipopolysaccharides. J. Exp. Med. 140:11471161.
162. Watson, J.,, R. Riblet, and, B. A. Taylor. 1977. The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J. Immunol. 118:20882093.
163. Yamamoto, M.,, S. Sato,, H. Hemmi,, K. Hoshino,, T. Kaisho,, H. Sanjo,, O. Takeuchi,, M. Sugiyama,, M. Okabe,, K. Takeda, and, S. Akira. 2003a. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640643.
164. Yamamoto, M.,, S. Sato,, H. Hemmi,, S. Uematsu,, K. Hoshino,, T. Kaisho,, O. Takeuchi,, K. Takeda, and, S. Akira. 2003b. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4:11441150.
165. Yarovinsky, F.,, D. Zhang,, J. F. Andersen,, G. L. Bannenberg,, C. N. Serhan,, M. S. Hayden,, S. Hieny,, F. S. Sutterwala,, R. A. Flavell,, S. Ghosh, and, A. Sher. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:16261629.
166. Yoneyama, M.,, M. Kikuchi,, T. Natsukawa,, N. Shinobu,, T. Imaizumi,, M. Miyagishi,, K. Taira,, S. Akira, and, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730737.
167. Yoshimura, A.,, E. Lien,, R. R. Ingalls,, E. Tuomanen,, R. Dziarski, and, D. Golenbock. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163:15.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error