Chapter 22 : Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap22-2.gif


This chapter discusses the regulation and antimicrobial function of inducible nitric oxide synthase (iNOS) in phagocytes. The focus is on more recent aspects of the expression of iNOS in macrophages, the molecular mechanisms of iNOS-dependent control of infectious pathogens, and the cross-regulation of iNOS and arginase. iNOS induction and suppression in macrophages are regulated at multiple levels: gene transcription, mRNA stability, mRNA translation, protein stability, and substrate availability. One of the key functions of iNOS, its product nitric oxide (NO), and its oxidation products (collectively termed reactive nitrogen intermediates [RNIs]) is the antimicrobial activity, which, from an operational point of view, can be divided into four major categories, as follows, (i) Direct (‘‘toxic’’) effects of NO on structural components, the replication machinery, nucleic acids, virulence factors, metabolic enzymes, and pathways of infectious pathogens, (ii) iNOS-dependent antimicrobial effects that are independent of its product NO, (iii) NO-mediated inhibition of microbial evasion and resistance mechanisms, and (iv) immunostimulatory function of NO. Importantly, the cytotoxic function of NO and peroxynitrite is not restricted to pathogens, but may also extend to host cells. Today, we know that even the antimicrobial activity of iNOS in macrophages can originate from various direct or indirect processes that do not necessarily require high-output generation of NO. Furthermore, the interplay between iNOS and arginase has led to additional layers of regulation and function. The long-desired therapeutic application of NO donors and arginase inhibitors only begins to emerge.

Citation: Bogdan C. 2009. Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, p 367-378. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch22

Key Concept Ranking

Major Histocompatibility Complex Class II
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Reaction catalyzed by iNOS. FAD, flavin adenine dinucleotide; FMN, flavin adenine mononucleotide; NADP, nicotinamide adenine dinucleotide phosphate; HB, tetrahydrobiopterin.

Citation: Bogdan C. 2009. Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, p 367-378. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Overview of the major signaling pathways leading to the induction of iNOS in macrophages. Please note that not all signaling molecules involved are depicted. iNOS-inducing stimuli are surrounded by bold boxes; promoters are shown in gray. AP-1, activated protein-1; GAS, gamma-activated site; IFN, interferon; IKK, inhibitor of nuclear factor κB (IκB) kinase (IKKε is also termed inducible IKK or IKKi); IRAK, IL-1 receptor-associated kinase; IRF, interferon regulatory factor; ISRE, interferon-stimulated response element; JAK, Janus kinase; JNK, c-Jun NH-terminal kinase; NF-κB, nuclear factor κB; MAPK, mitogen-activated protein kinase; MyD88, myeloid differentiation primary response protein 88; NEMO, NF-κB essential modulator (also termed IKKγ); RIP1, receptor-interacting protein 1; STAT, signal transducer and activator of transcription; TAB1, TAK1-binding protein 1; TAK1, transforming-growth-factor-β-activated kinase; TBK1, TRAF-family-member-associated NF-κB activator (TANK)-binding kinase 1; TLR, toll-like receptor; TNF, tumor necrosis factor; TRADD, TNF receptor-associated death domain; TRAF, tumor necrosis factor receptor-associated factor; TRAM, TRIF-related adaptor molecule, also known as TIR-domain-containing molecule 2 (TICAM2); TRIF, Toll/interleukin 1 receptor (TIR)-domain-containing adaptor protein inducing IFN-β (also known as TIR-domain-containing molecule 1, TICAM1); TYK2, tyrosine kinase 2. In the case of TLR2 and TLR4, a second adaptor protein termed TIRAP (TIR-domain-containing adaptor protein) or MAL (MyD88-adaptor-like protein) is required, which is not shown.

Citation: Bogdan C. 2009. Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, p 367-378. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Mechanisms of the antimicrobial activity of iNOS/NO. For details see text.

Citation: Bogdan C. 2009. Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, p 367-378. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Overview of the arginase pathway and subsequent reactions. For details see text. Mn, manganese cations; OAT, ornithine aminotransferase; ODC, ornithine decarboxylase.

Citation: Bogdan C. 2009. Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, p 367-378. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adachi, Y.,, A. L. Kindzelskii,, A. R. Petty,, J. B. Huang,, N. Maeda,, S. Yotsumoto,, Y. Aratani,, N. Ohno, and, H. R. Petty. 2006. IFN-gamma primes RAW264 macrophages and human monocytes for enhanced oxidant production in response to CpG DNA via metabolic signaling: roles of TLR9 and myeloperoxidase trafficking. J. Immunol. 176:50335040.
2. Agerbeth, B.,, J. Charo,, J. Werr,, B. Olsson,, F. Idali,, L. Lind-bom,, R. Kiessling,, H. Jornvall,, H. Wigzell, and, G. H. Gudmundsson. 2000. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:30863093.
3. Alam, M. S.,, M. H. Zaki,, T. Sawa,, S. Islam,, K. A. Ahmed,, S. Fujii,, T. Okamoto, and, T. Akaike. 2008. Nitric oxide produced in Peyer’s patches exhibits antiapoptotic activity contributing to an antimicrobial effect in murine salmonellosis. Microbiol. Immunol. 52:197-208.
4. Albina, J. E.,, W. L. Henry,, B. Mastrofrancesco,, B.-A. Martin, and, J. S. Reichner. 1995. Macrophage activation by culture in an anoxic environment. J. Immunol. 155:43914396.
5. Barraud, N.,, D. J. Hassett,, S. H. Hwang,, S. A. Rice,, S. Kjelleberg, and, J. S. Webb. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188:73447353.
6. Bellocq, A.,, S. Suberville,, C. Philippe,, F. Bertrand,, J. Perez,, B. Fouqueray,, G. Cherqui, and, L. Baud. 1998. Low environmental pH is responsible for the induction of nitric oxide synthase in macrophages. J. Biol. Chem. 273:50865092.
7. Bergeron, M.,, and M. Olivier. 2006. Trypanosoma cruzi-mediated IFN-gamma-inducible nitric oxide output in macrophages is regulated by iNOS mRNA stability. J. Immunol. 177:62716280.
8. Blanchette, J.,, P. Pouliot, and, M. Olivier. 2007. Role of protein tyrosine phosphatases in the regulation of interferon-[gamma]-induced macrophage nitric oxide generation: implication of ERK pathway and AP-1 activation. J. Leukoc. Biol. 81:835844.
9. Bogdan, C. 2000. The function of nitric oxide in the immune system, p. 443–492. In B. Mayer (ed.), Handbook of Experimental Pharmacology. Volume: Nitric Oxide. Springer, Heidelberg, Germany.
10. Bogdan, C. 2001a. Nitric oxide and the immune response. Nat. Immunol. 2:907916.
11. Bogdan, C. 2001b. Nitric oxide and the regulation of gene expression. Trends Cell Biol. 11:6675.
12. Bogdan, C. 2004. Reactive oxygen and reactive nitrogen metabolites as effector molecules against infectious pathogens, p. 357–396. In S. H. E. Kaufmann,, R. Medzhitov, and, S. Gordon (ed.), The Innate Immune Response to Infection. ASM Press, Washington, DC.
13. Bourret, T. J.,, S. Porwollik,, M. McClelland,, R. Zhao,, T. Greco,, H. Ischiropoulos, and, A. Vazquez-Torres. 2008. Nitric oxide antagonizes the acid tolerance response that protects Salmonella against innate gastric defenses. PLoS ONE 3:e1833.
14. Bussiere, F. I.,, R. Chaturvedi,, Y. Cheng,, A. P. Gobert,, M. Asim,, D. R. Blumberg,, H. Xu,, P. Y. Kim,, A. Hacker,, R. A. Casero, Jr., and, K. T. Wilson. 2005. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 280:24092412.
15. Chakravortty, D.,, I. Hansen-Wester, and, M. Hensel. 2002. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195:11551166.
16. Chaturvedi, R.,, M. Asim,, N. D. Lewis,, H. M. Algood,, T. L. Cover,, P. Y. Kim, and, K. T. Wilson. 2007. L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect. Immun. 75:43054315.
17. Daniliuc, S.,, H. Bitterman,, M. A. Rahat,, A. Kinarty,, D. Rosenzweig, and, N. Lahat. 2003. Hypoxia inactivates inducible nitric oxide synthase in mouse macrophages by disrupting its interaction with alpha-actinin 4. J. Immunol. 171:32253232.
18. Davis, A. S.,, I. Vergne,, S. S. Master,, G. B. Kyei,, J. Chua, and, V. Deretic. 2007. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLOS Pathog. 3:18871894.
19. de Jesus-Berrios, M.,, L. Liu,, J. C. Nussbaum,, G. M. Cox,, J. S. Stamler, and, J. Heitman. 2003. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13:19631968.
20. Douglas, T.,, D. S. Daniel,, B. K. Parida,, C. Jagannath, and, S. Dhandayuthapani. 2004. Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J. Bacteriol. 186:35903598.
21. Duan, J.,, F. Y. Avci, and, D. L. Kasper. 2008. Microbial carbohydrate depolymerization by antigen-presenting cells: deamination prior to presentation by the MHCII pathway. Proc. Natl. Acad. Sci. USA 105:51835188.
22. Duleu, S.,, P. Vincendeau,, P. Courtois,, S. Semballa,, I. Lagroye,, S. Daulouede,, J. L. Boucher,, K. T. Wilson,, B. Veyret, and, A. P. Gobert. 2004. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J. Immunol. 172:62986303.
23. Durbin, J. E.,, R. Hackenmiller,, M. C. Simon, and, D. E. Levy. 1996. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443450.
24. Eckmann, L.,, F. Laurent,, T. D. Langford,, M. L. Hetsko,, J. R. Smith,, M. F. Kagnoff, and, F. D. Gillin. 2000. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J. Immunol. 164:14781487.
25. Ehrchen, J.,, L. Helming,, G. Varga,, B. Pasche,, K. Loser,, M. Gunzer,, C. Sunderkotter,, C. Sorg,, J. Roth, and, A. Lengeling. 2007. Vitamin D receptor signaling contributes to susceptibility to infection with Leishmania major. FASEB J. 21:32083218.
26. Ehrt, S.,, D. Schnappinger,, S. Bekiranov,, J. Drenkow,, S. Shi,, T. R. Gingeras,, T. Gaasterland,, G. Schoolnik, and, C. Nathan. 2001. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194:11231139.
27. El-Gayar, S.,, H. Thüring-Nahler,, J. Pfeilschifter,, M. Röllinghoff, and, C. Bogdan. 2003. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171:45614568.
28. Fang, F. C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Immunol. 2:820832.
29. Feinberg, M. W.,, Z. Cao,, A. K. Wara,, M. A. Lebedeva,, S. Senbanerjee, and, M. K. Jain. 2005. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J. Biol. Chem. 280:3824738258.
30. Gao, J.,, D. C. Morrison,, T. J. Parmely,, S. W. Russell, and, W. J. Murphy. 1997. An interferon-γ-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-γ and lipopolysaccharide. J. Biol. Chem. 272:12261230.
31. Gao, J. J.,, M. B. Filla,, M. J. Fultz,, S. N. Vogel,, S. W. Russell, and, W. J. Murphy. 1998. Autocrine/paracrine IFN-α/β mediates the lipopolysaccharide-induced activation of transcription factor Stat1α in mouse macrophages: pivotal role of Stat1α in induction of the inducible nitric oxide synthase gene. J. Immunol. 161:48034810.
32. Gaur, U.,, S. C. Roberts,, R. P. Dalvi,, I. Corraliza,, B. Ullman, and, M. E. Wilson. 2007. An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J. Immunol. 179:84468453.
33. Gobert, A. P.,, Y. Cheng,, M. Akhtar,, B. D. Mersey,, D. R. Blumberg,, R. K. Cross,, R. Chaturvedi,, C. B. Drachenberg,, J. L. Boucher,, A. Hacker,, R. A. Casero, Jr., and, K. T. Wilson. 2004. Protective role of arginase in a mouse model of colitis. J. Immunol. 173:21092117.
34. Gobert, A. P.,, Y. Cheng,, J. Y. Wang,, J. L. Boucher,, R. K. Iyer,, S. D. Cederbaum,, R. A. Casero, Jr.,, J. C. Newton, and, K. T. Wilson. 2002. Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J. Immunol. 168:46924700.
35. Gobert, A. P.,, S. Daulouede,, M. Lepoivre,, J. L. Boucher,, B. Bouteille,, A. Buguet,, R. Cespuglio,, B. Veyret, and, P. Vincendeau. 2000. L-Arginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis. Infect. Immun. 68:46534657.
36. Gobert, A. P.,, D. J. McGee,, M. Akhtar,, G. L. Mendz,, J. C. Newton,, Y. Cheng,, H. L. T. Mobley, and, K. T. Wilson. 2001. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. USA 98:1384413849.
37. Gobert, A. P.,, B. D. Mersey,, Y. Cheng,, D. R. Blumberg,, J. C. Newton, and, K. T. Wilson. 2002. Urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J. Immunol. 168:60026006.
38. Gotoh, T.,, and M. Mori. 1999. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW264.7 cells. J. Cell Biol. 144:427434.
39. Hesse, M.,, A. W. Cheever,, D. Jankovic, and, T. A. Wynn. 2000. NOS-2 mediates the protective anti-inflammatory and anti-fibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease. Am. J. Pathol. 157:945955.
40. Hesse, M.,, M. Modolell,, A. C. La Flamme,, M. Schito,, J. M. Fuentes,, A. W. Cheever,, E. J. Pearce, and, T. A. Wynn. 2001. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167:65336544.
41. Hiemstra, P. S.,, P. B. Eisenhauer,, S. S. L. Harwig,, M. T. van den Barselaar,, R. van Furth, and, R. I. Lehrer. 1993. Antimicrobial peptides of murine macrophages. Infect. Immun. 61:30383046.
42. Holzmuller, P.,, D. Sereno,, M. Cavaleyra,, I. Mangot,, S. Daulouede,, P. Vincendeau, and, J.-L. Lemesre. 2002. Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes. Infect. Immun. 70:37273735.
43. Hotopp, J. C.,, M. Lin,, R. Madupu,, J. Crabtree,, S. V. Angiuoli,, J. Eisen,, R. Seshadri,, Q. Ren,, M. Wu,, T. R. Utter-back,, S. Smith,, M. Lewis,, H. Khouri,, C. Zhang,, H. Niu,, Q. Lin,, N. Ohashi,, N. Zhi,, W. Nelson,, L. M. Brinkac,, R. J. Dodson,, M. J. Rosovitz,, J. Sundaram,, S. C. Daugherty,, T. Davidsen,, A. S. Durkin,, M. Gwinn,, D. H. Haft,, J. D. Selengut,, S. A. Sullivan,, N. Zafar,, L. Zhou,, F. Benahmed,, H. Forberger,, R. Halpin,, S. Mulligan,, J. Robinson,, O. White,, Y. Rikihisa, and, H. Tettelin. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2:e21.
44. Howe, D.,, L. F. Barrows,, N. M. Lindstrom, and, R. A. Heinzen. 2002. Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Infect. Immun. 70:51405147.
45. Huang, C. J.,, I. U. Haque,, P. N. Slovin,, R. B. Nielsen,, X. Fang, and, J. W. Skimming. 2002. Environmental pH regulates LPS-induced nitric oxide formation in murine macrophages. Nitric Oxide 6:7378.
46. Huang, D.,, D. T. Cai,, R. Y. Chua,, D. M. Kemeny, and, S. H. Wong. 2008. Nitric-oxide synthase 2 interacts with CD74 and inhibits its cleavage by caspase during dendritic cell development. J. Biol. Chem. 283:17131722.
47. Iniesta, V.,, J. Carcelen,, I. Molano,, P. M. V. Peixoto,, E. Redondo,, P. Parra,, M. Mangas,, I. Monroy,, M. L. Campo,, C. G. Nieto, and, I. M. Corraliza. 2005. Arginase I induction during Leishmania major infection mediates the development of disease. Infect. Immun. 73:60856090.
48. Iniesta, V.,, L. C. Gomez-Nieto, and, I. Corraliza. 2001. The inhibition of arginase by Nw-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med. 193:777783.
49. Jacobsen, L. C.,, K. Theilgaard-Mönch,, E. I. Christensen, and, N. Borregaard. 2007. Arginase I is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils. Blood 109:30843087.
50. Jaramillo, M.,, D. C. Gowda,, D. Radzioch, and, M. Olivier. 2003. Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. J. Immunol. 171:42434253.
51. Jaramillo, M.,, P. H. Naccache, and, M. Olivier. 2004. Mono-sodium urate crystals synergize with IFN-gamma to generate macrophage nitric oxide: involvement of extracellular signal-regulated kinase 1/2 and NF-kappa B. J. Immunol. 172:57345742.
52. Johann, A. M.,, V. Barra,, A. M. Kuhn,, A. Weigert,, A. von Knethen, and, B. Brune. 2007. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. FASEB J. 21:27042712.
53. Kamijo, R.,, H. Harada,, T. Matsuyama,, M. Bosland,, J. Gerecitano,, D. Shapiro,, J. Le,, S. I. Koh,, T. Kimura,, S. J. Green,, T. W. Mak,, T. Taniguchi, and, J. Vilcek. 1994. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263:16121615.
54. Kaneda, M.,, K. Kakinuma,, T. Yamaguchi, and, K. Shimada. 1980. Comparative studies on alveolar macrophages and polymorphonuclear leukocytes. II. The ability of guinea pig alveolar macrophages to produce H2O2. J. Biochem. 88:11591165.
55. Karpuzoglu, E.,, and S. A. Ahmed. 2006. Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 15:177186.
56. Kaushal, V.,, P. D. Koeberle,, Y. Wang, and, L. C. Schlichter. 2007. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J. Neurosci. 27:234244.
57. Klebanoff, S. J.,, R. M. Locksley,, E. C. Jong, and, H. Rosen. 1983. Oxidative response of phagocytes to parasite invasion. Ciba Found. Symp. 99:92112.
58. Kleinert, H.,, A. Pautz,, K. Linker, and, P. M. Schwarz. 2004. Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500:255266.
59. Kolodziejski, P.,, A. Musial,, J.-S. Koo, and, N. T. Eissa. 2002. Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc. Natl. Acad. Sci. USA 99:1231512320.
60. Kolodziejski, P. J.,, M. B. Rashid, and, N. T. Eissa. 2003. Intracellular formation of “undisruptable” dimers of inducible nitric oxide synthase. Proc. Natl. Acad. Sci. USA 100:1426314268.
61. Korhonen, R.,, K. Linker,, A. Pautz,, U. Forstermann,, E. Moilanen, and, H. Kleinert. 2007. Post-transcriptional regulation of human inducible nitric-oxide synthase expression by the Jun N-terminal kinase. Mol. Pharmacol. 71:14271434.
62. Kristof, A. S.,, J. Fielhaber,, A. Triantafillopoulos,, S. Nemoto, and, J. Moss. 2006. Phosphatidylinositol 3-kinase-dependent suppression of the human inducible nitric-oxide synthase promoter is mediated by FKHRL1. J. Biol. Chem. 281:2395823968.
63. Kropf, P.,, J. M. Fuentes,, E. Fahnrich,, L. Arpa,, S. Herath,, V. Weber,, G. Soler,, A. Celada,, M. Modolell, and, I. Müller. 2005. Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J. 19:10001002.
64. Kuroda, S.,, M. Nishio,, T. Sasaki,, Y. Horie,, K. Kawahara,, M. Sasaki,, M. Natsui,, T. Matozaki,, H. Tezuka,, T. Ohteki,, I. Forster,, T. W. Mak,, T. Nakano, and, A. Suzuki. 2008. Effective clearance of intracellular Leishmania major in vivo requires Pten in macrophages. Eur. J. Immunol. 38:13311340.
65. Levy, O. 2004. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J. Leukoc. Biol. 76:909925.
66. Lezama-Davila, C. M.,, A. P. Isaac-Marquez,, J. Barbi,, S. Oghumu, and, A. R. Satoskar. 2007. 17Beta-estradiol increases Leishmania mexicana killing in macrophages from DBA/2 mice by enhancing production of nitric oxide but not pro-inflammatory cytokines. Am. J. Trop. Med. Hyg. 76:11251127.
67. Lowry, M. A.,, J. I. Goldberg, and, M. Belosevic. 1998. Induction of nitric oxide (NO) synthesis in murine macrophages requires potassium channel activity. Clin. Exp. Immunol. 111:597603.
68. Marriott, H. M.,, and D. H. Dockrell. 2006. Streptococcus pneumoniae: the role of apoptosis in host defense and pathogenesis. Int. J. Biochem. Cell Biol. 38:18481854.
69. Martin, E.,, C. Nathan, and, Q.-W. Xie. 1994. Role of interferon regulatory factor-1 in induction of nitric oxide synthase. J. Exp. Med. 180:977984.
70. Martinon, F. 2008. Detection of immune danger signals by NALP3. J. Leukoc. Biol. 83:507511.
71. McCollister, B. D.,, T. J. Bourret,, R. Gill,, J. Jones-Carson, and, A. Vazquez-Torres. 2005. Repression of SPI2 transcription by nitric oxide-producing, IFNgamma-activated macrophages promotes maturation of Salmonella phagosomes. J. Exp. Med. 202:625635.
72. McKinney, L. C.,, E. M. Aquilla,, D. Coffin,, D. A. Wink, and, Y. Vodovotz. 2000. Ionizing radiation potentiates the induction of nitric oxide synthase by interferon-gamma and/or lipopolysaccharide in murine macrophage cell lines. Role of tumor necrosis factor-alpha. Ann. N. Y. Acad. Sci. 899:6168.
73. Melillo, G.,, T. Musso,, A. Sica,, L. S. Taylor,, G. W. Cox, and, L. Varesio. 1995. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 182:16831693.
74. Meraz, M. A.,, J. M. White,, K. C. F. Sheehan,, E. A. Bach,, S. J. Rodig,, A. S. Dighe,, D. H. Kaplan,, J. K. Riley,, A. C. Greenlund,, D. Campbell,, K. Carver-Moore,, R. N. DuBois,, R. Clark,, M. Aguet, and, R. D. Schreiber. 1996. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the Jak-STAT signaling pathway. Cell 84:431442.
75. Mi, Z.,, A. Rapisarda,, L. Taylor,, A. Brooks,, M. Creighton-Gutteridge,, G. Melillo, and, L. Varesio. 2008. Synergistic induction of HIF-1alpha transcriptional activity by hypoxia and lipopolysaccharide in macrophages. Cell Cycle 7:232241.
76. Miller, B. H.,, R. A. Fratti,, J. F. Poschet,, G. S. Timmins,, S. S. Master,, M. Burgos, and, M. A. Marletta. 2004. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect. Immun. 2004:28722878.
77. Mitani, T.,, M. Terashima,, H. Yoshimura,, Y. Nariai, and, Y. Tanigawa. 2005. TGF-beta1 enhances degradation of IFN-gamma-induced iNOS protein via proteasomes in RAW 264.7 cells. Nitric Oxide 13:7887.
78. Mori, M. 2007. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J. Nutr. 137:1616S1620S.
79. Morris, S. M., Jr. 2002. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22:87105.
80. Munder, M.,, M. Eichmann,, J. M. Moran,, F. Centeno,, G. Soler, and, M. Modolell. 1999. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163:37713777.
81. Munder, M.,, F. Mollinedo,, J. Calafat,, J. Canchado,, C. GilLamaignere,, J. M. Fuentes,, C. Luckner,, G. Doschko,, G. Soler,, K. Eichmann,, F. M. Muller,, A. D. Ho,, M. Goerner, and, M. Modolell. 2005. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105:25492556.
82. Munder, M.,, H. Schneider,, C. Luckner,, T. Giese,, C.-D. Langhans,, J. M. Fuentes,, P. Kropf,, I. Mueller,, A. Kolb,, M. Modolell, and, A. D. Ho. 2006. Suppression of T cell functions by human granulocyte arginase. Blood 108:16271634.
83. Murphy, B. S.,, V. Sundareshan,, T. J. Cory,, D. Hayes, Jr.,, M. I. Anstead, and, D. J. Feola. 2008. Azithromycin alters macrophage phenotype. J. Antimicrob. Chemother. 61:554560.
84. Myers, J. T.,, A. W. Tsang, and, J. A. Swanson. 2003. Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J. Immunol. 171:54475453.
85. Nathan, C.,, and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97:88418848.
86. Nicholson, B.,, C. K. Manner,, J. Kleeman, and, C. L. MacLeod. 2001. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J. Biol. Chem. 276:1588115885.
87. Niedbala, W.,, B. Cai,, H. Liu,, N. Pitman,, L. Chang, and, F. Y. Liew. 2007. Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc. Natl. Acad. Sci. USA 104:1547815483.
88. Niedbala, W.,, X.-Q. Wei,, C. Campbell,, D. Thomson,, M. Komai-Koma, and, F. Y. Liew. 2002. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP. Proc. Natl. Acad. Sci. USA 99:1618616191.
89. Olds, G. R.,, J. J. Ellner,, L. A. Kearse,, J. W. Kazura, and, A. A. F. Mahmoud. 1980. Role of arginase in killing of schistosomula of Schistosoma mansoni. J. Exp. Med. 151:15571562.
90. Osorio, Y.,, D. L. Bonilla,, A. G. Peniche,, P. C. Melby, and, B. L. Travi. 2008. Pregnancy enhances the innate immune response in experimental cutaneous leishmaniasis through hormone-modulated nitric oxide production. J. Leukoc. Biol. 83:14131422.
91. Padgett, E. L.,, and S. B. Pruett. 1995. Rat, mouse and human neutrophils stimulated by a variety of activating agents produce much less nitrite than rodent macrophages. Immunology 84:135141.
92. Piacenza, L.,, G. Peluffo, and, R. Radi. 2001. L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways. Proc. Natl. Acad. Sci. USA 98:73017306.
93. Pindado, J.,, J. Balsinde, and, M. A. Balboa. 2007. TLR3-dependent induction of nitric oxide synthase in RAW 264.7 macrophage-like cells via a cytosolic phospholipase A2/cyclooxygenase-2 pathway. J. Immunol. 179:48214828.
94. Platanias, L. C. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5:375386.
95. Poole, R. K. 2005. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33:176180.
96. Pritchard, M. T.,, Z. Li, and, E. A. Repasky. 2005. Nitric oxide production is regulated by fever-range thermal stimulation of murine macrophages. J. Leukoc. Biol. 78:630638.
97. Punturieri, A.,, R. S. Alviani,, T. Polak,, P. Copper,, J. Sonstein, and, J. L. Curtis. 2004. Specific engagement of TLR4 or TLR3 does not lead to IFN-beta-mediated innate signal amplification and STAT1 phosphorylation in resident murine alveolar macrophages. J. Immunol. 173:10331042.
98. Ribeiro-Gomes, F. L.,, M. C. Moniz-de-Souza,, M. S. Alexandre-Moreira,, W. B. Dias,, M. F. Lopes,, M. P. Nunes,, G. Lungarella, and, G. A. DosReis. 2007. Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase. J. Immunol. 179:3983994.
99. Rodig, S. J.,, M. A. Meraz,, J. M. White,, P. A. Lampe,, J. K. Riley,, C. D. Arthur,, K. L. King,, K. C. F. Sheehan,, L. Yin,, D. Pennica,, E. M. Johnson, and, R. D. Schreiber. 1998. Disruption of the Jak1 gene demonstrates obligatory and non-redundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373383.
100. Rodriguez, P. C.,, C. P. Hernandez,, D. Quiceno,, S. M. Dubinett,, J. Zabaleta,, J. B. Ochoa,, J. Gilbert, and, A. C. Ochoa. 2005. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202:931939.
101. Rodriguez, P. C.,, A. H. Zea,, J. DeSalvo,, K. S. Culotta,, J. Zabaleta,, D. G. Quiceno,, J. B. Ochoa, and, A. C. Ochoa. 2003. L-arginine consumption by macrophages modulates the expression of CD3ζ chain in T lymphocytes. J. Immunol. 17:12321239.
102. Rothfork, J. M.,, G. S. Timmins,, M. N. Harris,, X. Chen,, A. J. Lusis,, M. Otto,, A. L. Cheung, and, H. D. Gresham. 2004. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proc. Natl. Acad. Sci. USA 101:1386713872.
103. Rutschman, R.,, R. Lang,, M. Hesse,, J. N. Ihle,, T. A. Wynn, and, P. J. Murray. 2001. Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166:21732177.
104. Sable, S. B.,, D. Goyal,, I. Verma,, D. Behera, and, G. K. Khuller. 2007. Lung and blood mononuclear cell responses of tuberculosis patients to mycobacterial proteins. Eur. Respir. J. 29:337346.
105. Scott, P.,, H. Ma,, S. Viriyakosol,, R. Terkeltaub, and, R. Liu-Bryan. 2006. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J. Immunol. 177:63706378.
106. Seib, K. L.,, H. J. Wu,, S. P. Kidd,, M. A. Apicella,, M. P. Jennings, and, A. G. McEwan. 2006. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol. Mol. Biol. Rev. 70:344361.
107. Soderberg, M.,, F. Raffalli-Mathieu, and, M. A. Lang. 2007. Identification of a regulatory cis-element within the 3ʹ-untranslated region of the murine inducible nitric oxide synthase (iNOS) mRNA; interaction with heterogeneous nuclear ribonucleoproteins I and L and role in the iNOS gene expression. Mol. Immunol. 44:434442.
108. Speer, C. P.,, M. J. Pabst,, H. B. Hedegaard,, R. F. Rest, and, R. B. Johnston, Jr. 1984. Enhanced release of oxygen metabolites by monocyte-derived macrophages exposed to proteolytic enzymes: activity of neutrophil elastase and cathepsin G. J. Immunol. 133:21512156.
109. Stempin, C. C.,, T. B. Tanos,, O. A. Coso, and, F. M. Cerban. 2004. Arginase induction promotes Trypanosoma cruzi intracellular replication in Cruzipain-treated J774 cells through the activation of multiple signaling pathways. Eur. J. Immunol. 34:200209.
110. Stuehr, D. J.,, and M. A. Marletta. 1985. Mammalian nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 82:77387742.
111. Stuehr, D. J.,, and M. A. Marletta. 1987. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines or interferon-γ. J. Immunol. 139:518525.
112. Stuehr, D. J.,, J. Santolini,, Z.-Q. Wang,, C.-C. Wei, and, S. Adak. 2004. Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem. 279:3616736170.
113. Takaki, H.,, Y. Minoda,, K. Koga,, G. Takaesu,, A. Yoshimura, and, T. Kobayashi. 2006. TGF-beta1 suppresses IFN-gamma-induced NO production in macrophages by suppressing STAT1 activation and accelerating iNOS protein degradation. Genes Cells 11:871882.
114. Tan, B. H.,, C. Meinken,, M. Bastian,, H. Bruns,, A. Legaspi,, M. T. Ochoa,, S. R. Krutzik,, B. R. Bloom,, T. Ganz,, R. L. Modlin, and, S. Stenger. 2006. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J. Immunol. 177:18641871.
115. Thompson, R. W.,, J. T. Pesce,, T. Ramalingam,, M. S. Wilson,, S. White,, A. W. Cheever,, S. M. Ricklefs,, S. F. Porcella,, L. Li,, L. G. Ellies, and, T. A. Wynn. 2008. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity. PLoS Pathog. 4:e1000023.
116. Uematsu, S.,, and S. Akira. 2006. Toll-like receptors and innate immunity. J. Mol. Med. 84:712725.
117. Uematsu, S.,, and S. Akira. 2008. Toll-Like receptors (TLRs) and their ligands. Handb. Exp. Pharmacol. 120.
118. Valdez, C. A.,, J. E. Saavedra,, B. M. Showalter,, K. M. Davies,, T. C. Wilde,, M. L. Citro,, J. J. Barchi, Jr.,, J. R. Deschamps,, D. Parrish,, S. El-Gayar,, U. Schleicher,, C. Bogdan, and, L. K. Keefer. 2008. Hydrolytic reactivity trends among potential prodrugs of the O(2)-glycosylated diazeniumdiolate family. Targeting nitric oxide to macrophages for antileishmanial activity. J Med Chem. 51:39613970.
119. Vareille, M.,, T. de Sablet,, T. Hindre,, C. Martin, and, A. P. Gobert. 2007. Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. Proc. Natl. Acad. Sci. USA 104:10199101204.
120. Vig, M.,, S. Srivastava,, U. Kandpal,, H. Sade,, V. Lewis,, A. Sarin,, A. George,, V. Bal,, J. M. Durdik, and, S. Rath. 2004. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J. Clin. Invest. 113:17341742.
121. Vila-del Sol, V.,, M. D. Diaz-Munoz, and, M. Fresno. 2007. Requirement of tumor necrosis factor alpha and nuclear factor-kappaB in the induction by IFN-gamma of inducible nitric oxide synthase in macrophages. J. Leukoc. Biol. 81:272283.
122. Vodovotz, Y.,, C. Bogdan,, J. Paik,, Q.-W. Xie, and, C. Nathan. 1993. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor-β. J. Exp. Med. 178:605613.
123. Vodovotz, Y.,, D. Russell,, Q.-W. Xie,, C. Bogdan, and, C. Nathan. 1995. Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J. Immunol. 154:29142925.
124. Webb, J. L.,, M. W. Harvey,, D. W. Holden, and, T. J. Evans. 2001. Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect. Immun. 69:63916400.
125. Wheeler, M. A.,, S. D. Smith,, G. Garcia-Cardena,, C. F. Nathan,, R. M. Weiss, and, W. C. Sessa. 1997. Bacterial infection induces nitric oxide synthase in human neutrophils. J. Clin. Invest. 99:110116.
126. Wilhelm, P.,, U. Ritter,, S. Labbow,, N. Donhauser,, M. Röllinghoff,, C. Bogdan, and, H. Körner. 2001. Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking tumor necrosis factor. J. Immunol. 166:40124019.
127. Winberg, M. E.,, B. Rasmusson, and, T. Sundqvist. 2007. Leishmania donovani: inhibition of phagosomal maturation is rescued by nitric oxide in macrophages. Exp. Parasitol. 117:165170.
128. Won, J. S.,, Y. B. Im,, A. K. Singh, and, I. Singh. 2004. Dual role of cAMP in iNOS expression in glial cells and macrophages is mediated by differential regulation of p38-MAPK/ATF-2 activation and iNOS stability. Free Radic. Biol. Med. 37:18341844.
129. Wu, G.,, and S. M. Morris. 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336:117.
130. Xie, Q.-W.,, Y. Kasshiwabara, and, C. Nathan. 1994. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:47054708.
131. Yeramian, A.,, L. Martin,, N. Serrat,, L. Arpa,, C. Soler,, J. Bertran,, C. McLeod,, M. Palacin,, M. Modolell,, J. Lloberas, and, A. Celada. 2006. Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J. Immunol. 176:59185924.
132. Yoshioka, Y.,, T. Kitao,, T. Kishino,, A. Yamamuro, and, S. Maeda. 2006. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase. J. Immunol. 176:46754681.
133. Zabaleta, J.,, D. J. McGee,, A. H. Zea,, C. P. Hernandez,, P. C. Rodriguez,, R. A. Sierra,, P. Correa, and, A. C. Ochoa. 2004. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J. Immunol. 173:586593.
134. Zaki, M. H.,, T. Akuta, and, T. Akaike. 2005. Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J. Pharmacol. Sci. 98:117129.
135. Zamboni, D. S.,, and M. Rabinovitch. 2004. Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through down-modulation of nitric oxide production. Infect. Immun. 72:20752080.
136. Zea, A. H.,, K. S. Culotta,, J. Ali,, C. Mason,, H. J. Park,, J. Zabaleta,, L. F. Garcia, and, A. C. Ochoa. 2006. Decreased expression of CD3zeta and nuclear transcription factor kappa B in patients with pulmonary tuberculosis: potential mechanisms and reversibility with treatment. J. Infect. Dis. 194:13851393.
137. Zhang, M.,, T. Caragine,, H. Wang,, P. S. Cohen,, G. Botch-kina,, K. Soda,, M. Bianchi,, P. Ulrich,, A. Cerami,, B. Sherry, and, K. J. Tracey. 1997. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counter-regulatory mechanism that restrains the immune response. J. Exp. Med. 185:17591768.


Generic image for table

Overview of antimicrobial effector mechanisms of phagocytes

Citation: Bogdan C. 2009. Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes, p 367-378. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error