1887

Chapter 29 : The Parasite Point of View: Insights and Questions on the Cell Biology of and Parasite-Phagocyte Interactions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Parasite Point of View: Insights and Questions on the Cell Biology of and Parasite-Phagocyte Interactions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap29-2.gif

Abstract:

This chapter mainly deals with the cell biology of three kinetoplastid parasites: , the species, and . The chapter discusses some well-studied and some less well-studied aspects of parasite cell biology important for interaction with the host mammalian cell. It suggests that there are lacunae in our knowledge of the intrinsic life cycle and parasite cell biology underpinning the pathology of Chaga's diseases. The etiological agent of Chaga's disease, , is transmitted by various members of the family of insects. The intracellular forms of parasites such as and are often referred to as the ‘‘aflagellate amastigote form." With the advent of the electron microscope it became clear that in the case of and the axoneme in the amastigote form is not enclosed by cytoplasm. The flagellar pocket is a key feature of both free-living and pathogenic kinetoplastid protozoa. The plasma membrane of the organisms is characterized by a subpellicular corset of microtubules that defines the shape and form of the parasite. The trypanosomatid parasites exhibit the common feature of polycistronic transcription and -splicing. parasites exhibit an intriguing array of glycoconjugate surface molecules, including membrane-bound lipophosphoglycan (LPG) and proteophosphoglycan as well as secreted phosphoglycan, proteophosphoglycan and acid phosphatase. has developed such a predifferentiated, nonproliferative form of parasite—the metacyclic promastigote—which is the cell type that initiates the initial phagocyte infection.

Citation: Gull K. 2009. The Parasite Point of View: Insights and Questions on the Cell Biology of and Parasite-Phagocyte Interactions, p 453-462. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch29
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Illustration of the structure of the three main forms of the kinetoplastid parasites. In each case, the nucleus is represented by the black circle, the kinetoplast is represented by the black oblong, and the flagellum emerges into the flagellar pocket.

Citation: Gull K. 2009. The Parasite Point of View: Insights and Questions on the Cell Biology of and Parasite-Phagocyte Interactions, p 453-462. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816650.ch29
1. Alexander, J.,, A. R. Satoskar, and, D. G. Russell. 1999. Leishmania species: models of intracellular parasitism. J. Cell Sci. 112:29933002.
2. Andrade, L. O.,, and N. W. Andrews. 2004. Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J. Exp. Med. 200:11351143.
3. Andrade, L. O.,, and N. W. Andrews. 2005. The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat. Rev. Microbiol. 3:819823.
4. Antoine, J. C.,, E. Prina,, T. Lang, and, N. Courret. 1998. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol. 6:392401.
5. Barillas-Mury, C.,, and S. Kumar. 2005. Plasmodium-mosquito interactions: a tale of dangerous liaisons. Cell. Microbiol. 7:15391545.
6. Berriman, M.,, E. Ghedin,, C. Hertz-Fowler,, G. Blandin,, H. Renauld,, D. C. Bartholomeu,, N. J. Lennard,, E. Caler,, N. E. Hamlin,, B. Haas,, U. Böhme,, L. Hannick,, M. A. Aslett,, J. Shallom,, L. Marcello,, L. Hou,, B. Wickstead,, U. C. Alsmark,, C. Arrowsmith,, R. J. Atkin,, A. J. Barron,, F. Bringaud,, K. Brooks,, M. Carrington,, I. Cherevach,, T. J. Chillingworth,, C. Churcher,, L. N. Clark,, C. H. Corton,, A. Cronin,, R. M. Davies,, J. Doggett,, A. Djikeng,, T. Feldblyum,, M. C. Field,, A. Fraser,, I. Goodhead,, Z. Hance,, D. Harper,, B. R. Harris,, H. Hauser,, J. Hostetler,, A. Ivens,, K. Jagels,, D. Johnson,, J. Johnson,, K. Jones,, A. X. Kerhornou,, H. Koo,, N. Larke,, S. Landfear,, C. Larkin,, V. Leech,, A. Line,, A. Lord,, A. Macleod,, P. J. Mooney,, S. Moule,, D. M. Martin,, G. W. Morgan,, K. Mungall,, H. Norbertczak,, D. Ormond,, G. Pai,, C. S. Peacock,, J. Peterson,, M. A. Quail,, E. Rabbinowitsch,, M. A. Rajandream,, C. Reitter,, S. L. Salzberg,, M. Sanders,, S. Schobel,, S. Sharp,, M. Simmonds,, A. J. Simpson,, L. Tallon,, C. M. Turner,, A. Tait,, A. R. Tivey,, S. Van Aken,, D. Walker,, D. Wanless,, S. Wang,, B. White,, O. White,, S. Whitehead,, J. Woodward,, J. Wortman,, M. D. Adams,, T. M. Embley,, K. Gull,, E. Ullu,, J. D. Barry,, A. H. Fairlamb,, F. Opperdoes,, B. G. Barrell,, J. E. Donelson,, N. Hall,, C. M. Fraser,, S. E. Melville, and, N. M. El-Sayed. 2005. The genome of the African trypano-some Trypanosoma brucei. Science 309:416422.
7. Briggs, L. J.,, J. A. Davidge,, B. Wickstead,, M. L. Ginger, and, K. Gull. 2004. More than one way to build a flagellum: comparative genomics of parasitic protozoa. Curr. Biol. 14:R611R612.
8. Broadhead, R.,, H. R. Dawe,, H. Farr,, S. Griffiths,, S. R. Hart,, N. Portman,, M. K. Shaw,, M. L. Ginger,, S. J. Gaskell,, P. G. McKean, and, K. Gull. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224227.
9. Castro, R.,, K. Scott,, T. Jordan,, B. Evans,, J. Craig,, E. L. Peters, and, K. Swier. 2006. The ultrastructure of the parasitophorous vacuole formed by Leishmania major. J. Parasitol. 92:11621170.
10. Christophers, S. R. 1904. A preliminary report on a parasite found in persons suffering from enlargement of the spleen in India. Sci. Mem. Off. Med. San. Dep. Gov. India N.S. VIII.
11. Cohen-Fruee, G.,, T. R. Holzer,, J. D. Forney, and, W. R. McMaster. 2007. Global gene expression in Leishmania. Int. J. Parasitol. 37:10771086.
12. Courret, N.,, C. Frehel,, N. Gouhier,, M. Pouchelet,, E. Pina,, P. Roux, and, J. C. Antoine. 2002. Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J. Cell Sci. 115:23032316.
13. Cunningham, D. D. 1885. On the presence of peculiar parasite organisms in the tissue of a specimen of Delhi boil. Sci. Mem. Med. Off. Army India I:21.
14. Dawe, H. R.,, H. Farr, and, K. Gull. 2007. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci. 120:715.
15. Desjardins, M.,, and A. Descoteaux. 1997. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J. Exp. Med. 185:20612068.
16. de Souza, W. 2005. Microscopy and cytochemistry of the biogenesis of the parasitophorous vacuole. Histochem. Cell Biol. 123:118.
17. De Souza, W. 2006. Secretory organelles of pathogenic protozoa. An. Acad. Bras. Cienc. 78:271291.
18. Duarte, M. I. S.,, O. N. Mariano, and, C. E. P. Corbett. 1989. Liver parenchymal-cell parasitism in human visceral leishmaniasis. Virchows Arch. A Pathol. Anat. Histopathol. 415:16.
19. Elmendorf, H. G.,, S. C. Dawson, and, M. McCaffery. 2003. The cytoskeleton of Giardia lamblia. Int. J. Parasitol. 33:328.
20. El-Sayed, N. M.,, P. J. Myler,, D. C. Bartholomeu,, D. Nilsson,, G. Aggarwal,, A. N. Tran,, E. Ghedin,, E. A. Worthey,, A. L. Delcher,, G. Blandin,, S. J. Westenberger,, E. Caler,, G. C. Cerqueira,, C. Branche,, B. Haas,, A. Anupama,, E. Arner,, L. Aslund,, P. Attipoe,, E. Bontempi,, F. Bringaud,, P. Burton,, E. Cadag,, D. A. Campbell,, M. Carrington,, J. Crabtree,, H. Darban,, J. F. da Silveira,, P. de Jong,, K. Edwards,, P. T. Englund,, G. Fazelina,, T. Feldblyum,, M. Ferella,, A. C. Frasch,, K. Gull,, D. Horn,, L. Hou,, Y. Huang,, E. Kindlund,, M. Klingbeil,, S. Kluge,, H. Koo,, D. Lacerda,, M. J. Levin,, H. Lorenzi,, T. Louie,, C. R. Machado,, R. McCulloch,, A. McKenna,, Y. Mizuno,, J. C. Mottram,, S. Nelson,, S. Ochaya,, K. Osoegawa,, G. Pai,, M. Parsons,, M. Pentony,, U. Pettersson,, M. Pop,, J. L. Ramirez,, J. Rinta,, L. Robertson,, S. L. Salzberg,, D. O. Sanchez,, A. Seyler,, R. Sharma,, J. Shetty,, A. J. Simpson,, E. Sisk,, M. T. Tammi,, R. Tarleton,, S. Teixeira,, S. Van Aken,, C. Vogt,, P. N. Ward,, B. Wickstead,, J. Wortman,, O. White,, C. M. Fraser,, K. D. Stuart, and, B. Andersson. 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409415.
21. Engwerda, C. R.,, M. Ato, and, P. M. Kaye. 2004. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol. 20:524530.
22. Field, M. C.,, S. K. A. Natesan,, C. Gabernet-Castello, and, V. L. Koumandou. 2007. Intracellular trafficking in the trypanosomatids. Traffic 8:629639.
23. Fridberg, A.,, K. T. Buchanan, and, D. M. Engman. 2007. Flagellar membrane trafficking in kinetoplastids. Parasitol. Res. 100:205212.
24. Garin, Y. J. F.,, P. Meneceur,, F. Pratlong,, J. P. Dedet,, F. Derouin, and, F. Lorenzo. 2005. A2 gene of Old World cutaneous Leishmania is a single highly conserved functional gene. BMC Infect. Dis. 5:18.
25. Glyn, M.,, and K. Gull. 1990. Flagellum retraction and axoneme depolymerization during the transformation of flagellates to amebas in physarum. Protoplasma 158:130141.
26. Griffiths, S.,, N. Portman,, P. R. Tatlor,, S. Gordon,, M. L. Ginger, and, K. Gull. 2007. RNA interference mutant induction in vivo demonstrates the essential nature of trypano-some flagellar function during mammalian infection. Eukaryot. Cell 6:12481250.
27. Gull, K. 1999. The cytoskeleton of trypanosomatid parasites. Annu. Rev. Microbiol. 53:629655.
28. Gull, K. 2003. Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. Curr. Opin. Microbiol. 6:365370.
29. Handman, E.,, and D. V. R. Bullen. 2002. Interaction of Leishmania with the host macrophage. Trends Parasitol. 18:332334.
30. Huynh, C.,, D. L. Sacks, and, N. W. Andrews. 2006. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J. Exp. Med. 203:23632375.
31. Ilg, T. 2000. Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J. 19:19531962.
32. Ivens, A. C.,, C. S. Peacock,, E. A. Worthey,, L. Murphy,, G. Aggarwal,, M. Berriman,, E. Sisk,, M. A. Rajandream,, E. Adlem,, R. Aert,, A. Anupama,, Z. Apostolou,, P. Attipoe,, N. Bason,, C. Bauser,, A. Beck,, S. M. Beverley,, G. Bianchettin,, K. Borzym,, G. Bothe,, C. V. Bruschi,, M. Collins,, E. Cadag,, L. Ciarloni,, C. Clayton,, R. M. Coulson,, A. Cronin,, A. K. Cruz,, R. M. Davies,, J. De Gaudenzi,, D. E. Dobson,, A. Duesterhoeft,, G. Fazelina,, N. Fosker,, A. C. Frasch,, A. Fraser,, M. Fuchs,, C. Gabel,, A. Goble,, A. Goffeau,, D. Harris,, C. Hertz-Fowler,, H. Hilbert,, D. Horn,, Y. Huang,, S. Klages,, A. Knights,, M. Kube,, N. Larke,, L. Litvin,, A. Lord,, T. Louie,, M. Marra,, D. Masuy,, K. Matthews,, S. Michaeli,, J. C. Mottram,, S. Müller-Auer,, H. Munden,, S. Nelson,, H. Norbertczak,, K. Oliver,, S. O’Neil,, M. Pentony,, T. M. Pohl,, C. Price,, B. Purnelle,, M. A. Quail,, E. Rabbinowitsch,, R. Reinhardt,, M. Rieger,, J. Rinta,, J. Robben,, L. Robertson,, J. C. Ruiz,, S. Rutter,, D. Saunders,, M. Schäfer,, J. Schein,, D. C. Schwartz,, K. Seeger,, A. Seyler,, S. Sharp,, H. Shin,, D. Sivam,, R. Squares,, S. Squares,, V. Tosato,, C. Vogt,, G. Volckaert,, R. Wambutt,, T. Warren,, H. Wedler,, J. Woodward,, S. Zhou,, W. Zimmermann,, D. F. Smith,, J. M. Blackwell,, K. D. Stuart,, B. Barrell, and, P. J. Myler. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science 309:436442.
33. Kaye, P. M. 2006. Macrophage-Leishmania interaction: complexities and uncertainties from the study of leishmaniasis in vivo, p. 11. In E. Y. Denkers and, R. T. Gazzinelli (ed.), Protozoans in Macrophages. Landes Biosciences, Austin, TX.
34. Khan, S. M.,, and A. P. Waters. 2004. Malaria parasite transmission stages: an update. Trends Parasitol. 20:575580.
35. Kim, H. K.,, J. G. Kang,, S. Yumura,, C. J. Walsh,, J. W. Cho, and, J. Lee. 2005. De novo formation of basal bodies in Naegleria gruberi: regulation by phosphorylation. J. Cell Biol. 169:719724.
36. Kima, P. E. 2007. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int. J. Parasitol. 37:10871096.
37. Landfear, S. M.,, and M. Ignatushchenko. 2001. The flagellum and flagellar pocket of trypanosomatids. Mol. Biochem. Parasitol. 115:117.
38. Leishman, W. B. 1903. On the possibility of trypanosomiasis in India. Br. Med. J. I:1252.
39. Mansfield, J. M.,, and D. M. Paulnock. 2005. Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol. 27:361371.
40. Marquis, J. F.,, and P. Gros. 2007. Intracellular Leishmania: your iron or mine? Trends Microbiol. 15:9395.
41. Matthews, K. R. 2005. The developmental cell biology of Trypanosoma brucei. J. Cell Sci. 118:283290.
42. Maudlin, I. 2006. African trypanosomiasis. Ann. Trop. Med. Parasitol. 100:679701.
43. McConville, M. J.,, and E. Handman. 2007. The molecular basis of Leishmania pathogenesis. Int. J. Parasitol. 37:10471051.
44. Morgan, G. W.,, B. S. Hall,, P. W. Denny,, M. Carrington, and, M. C. Field. 2002a. The kinetoplastida endocytic apparatus. Part I: A dynamic system for nutrition and evasion of host defences. Trends Parasitol. 18:491496.
45. Morgan, G. W.,, B. S. Hall,, P. W. Denny,, M. C. Field, and, M. Carrington. 2002b. The endocytic apparatus of the kinetoplastida. Part II: Machinery and components of the system. Trends Parasitol. 18:540546.
46. Murray, H. W. 2001. Tissue granuloma structure-function in experimental visceral leishmaniasis. Int. J. Exp. Pathol. 82:249267.
47. Murray, H. W.,, J. D. Berman,, C. R. Davies, and, N. G. Saravia. 2005. Advances in leishmaniasis. Lancet 366:15611577.
48. Naderer, T.,, J. E. Vince, and, M. J. McConville. 2004. Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Curr. Mol. Med. 4:649665.
49. Nwaka, S.,, and A. Hudson. 2006. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov. 5:941955.
50. Ogbadoyi, E. O.,, D. R. Robinson, and, K. Gull. 2003. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14:17691779.
51. Palenchar, J. B.,, and V. Bellofatto. 2006. Gene transcription in trypanosomes. Mol. Biochem. Parasitol. 146:135141.
52. Pan, A. A.,, and S. C. Pan. 1986. Leishmania mexicana: comparative fine structure of amastigotes and promastigotes in vitro and in vivo. Exp. Parasitol. 62:254265.
53. Pan, J. M.,, Q. Wang, and, W. J. Snell. 2005. Cilium-generated signaling and cilia-related disorders. Lab. Investig. 85:452463.
54. Pays, E. 2005. Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol. 21:517520.
55. Pays, E. 2006. The variant surface glycoprotein as a tool for adaptation in African trypanosomes. Microbes Infect. 8:930937.
56. Pays, E.,, L. Vanhamme, and, D. Perez-Morga. 2004. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr. Opin. Microbiol. 7:369374.
57. Pays, E.,, B. Vanhollebeke,, L. Vanhamme,, F. Paturiaux-Hanocq,, D. P. Nolan, and, D. Perez-Morga. 2006. The trypanolytic factor of human serum. Nat. Rev. Microbiol. 4:477486.
58. Pearson, R. D.,, J. A. Sullivan,, D. Roberts,, R. Romito, and, G. L. Mandell. 1983. Interaction of Leishmania donovani promastigotes with human phagocytes. Infect. Immun. 40:411416.
59. Piscopo, T. V.,, and A. C. Mallia. 2006. Leishmaniasis. Postgrad. Med. J. 82:649657.
60. Praetorius, H. A.,, and K. R. Spring. 2005. A physiological view of the primary cilium. Annu. Rev. Physiol. 67:515529.
61. Rittig, M. G.,, and C. Bogdan. 2000. Leishmania-host-cell interaction: complexities and alternative views. Parasitol. Today 16:292297.
62. Rittig, M. G.,, K. Schroppel,, K. H. Seack,, U. Sander,, E. N. N’Diaye,, I. Maridonneau-Parini,, W. Solbach, and, C. Bogdan. 1998. Coiling phagocytosis of trypanosomatids and fungal cells. Infect. Immun. 66:43314339.
63. Rodriguez, A.,, I. Martinez,, A. Chung,, C. H. Berlot, and, N. W. Andrews. 1999. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J. Biol. Chem. 274:1675416759.
64. Schenkman, S.,, and R. A. Mortara. 1992. Hela cells extend and internalize pseudopodia during active invasion by Trypanosoma cruzi trypomastigotes. J. Cell Sci. 101:895905.
65. Sherwin, T.,, and K. Gull. 1989. The cell-division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos. Trans. R. Soc. Lond. B 323:573588.
66. Shi, M. Q.,, G. J. Wei,, W. L. Pan, and, H. Tabel. 2004. Trypanosoma congolense infections: antibody-mediated phagocytosis by Kupffer cells. J. Leukoc. Biol. 76:399405.
67. Shlomai, J. 2004. The structure and replication of kinetoplast DNA. Curr. Mol. Med. 4:623647.
68. Spath, G. F.,, L. Epstein,, B. Leader,, S. M. Singer,, H. A. Avila,, S. J. Turco, and, S. M. Beverley. 2000. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA 97:92589263.
69. Spath, G. F.,, L. A. Garraway,, S. J. Turco, and, S. M. Beverley. 2003. The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc. Natl. Acad. Sci. USA 100:95369541.
70. Takayana, T.,, Y. Nakatake, and, G. L. Enriquez. 1974a. Trypanosoma gambiense—phagocytosis in vitro. Exp. Parasitol. 36:106113.
71. Takayana,, T., Y. Nakatake,, and G. L. Enriquez. 1974b. Attachment and ingestion of Trypanosoma gambiense to rat macrophage by specific antiserum. J. Parasitol. 60:336339.
72. Tardieux, I.,, P. Webster,, J. Ravesloot,, W. Boron,, J. A. Lunn,, J. E. Heuser, and, N. W. Andrews. 1992. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71:11171130.
73. Taylor, J. E.,, and G. Rudenko. 2006. Switching trypanosome coats: what’s in the wardrobe? Trends Genet. 22:614620.
74. Teixeira, A. R. L.,, N. Nitz,, M. C. Guimaro,, C. Gomes, and, C. A. Santos-Buch. 2006. Chagas disease. Postgrad. Med. J. 82:788798.
75. Tull, D.,, J. E. Vince,, J. M. Callaghan,, T. Naderer,, T. Spurck,, G. I. McFadden,, G. Currie,, K. Ferguson,, A. Bacic, and, M. J. McConville. 2004. SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol. Biol. Cell 15:47754786.
76. Turco, S. J.,, G. F. Spath, and, S. M. Beverley. 2001. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol. 17:223226.
77. Vannier-Santos, M. A.,, A. Martiny, and, W. de Souza. 2002. Cell biology of Leishmania spp.: invading and evading. Curr. Pharm. Design 8:297318.
78. Wenyon, C. M. 1926. Protozoölogy. William Wood and Co., New York, NY.
79. Whitten, M. M. A.,, S. H. Shiao, and, E. A. Levashina. 2006. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol. 28:121130.
80. Zhang, W. W.,, and G. Matlashewski. 1997. Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proc. Natl. Acad. Sci. USA 94:88078811.
81. Zhang, W. W.,, and G. Matlashewski. 2001. Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol. Microbiol. 39:935948.
82. Zhang, W. W.,, S. Mendez,, A. Ghosh,, P. Myler,, A. Ivens,, J. Clos,, D. L. Sacks, and, G. Matlashewski. 2003. Comparison of the A2 gene locus in Leishmania donovani and Leishmania major and its control over cutaneous infection. J. Biol. Chem. 278:3550835515.
83. Zufferey, R.,, S. Allen,, T. Barron,, D. R. Sullivan,, P. W. Denny,, I. C. Almeida,, D. F. Smith,, S. J. Turco,, M. A. J. Ferguson, and, S. M. Beverley. 2003. Ether phospholipids and glycosylinositolphospholipids are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. J. Biol. Chem. 278:4470844718.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error