1887

Chapter 2 : Moshe Benziman and the Discovery of Cyclic Di-GMP

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Moshe Benziman and the Discovery of Cyclic Di-GMP, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap02-2.gif

Abstract:

The story of cyclic dimeric GMP (c-di-GMP), the subject of this chapter, now recognized as a universal bacterial second messenger. A cellulose molecule is a homopolymer of D-glucose residues linked in β-1,4-glucosidic bonds. The nature of the immediate precursor of cellulose, UDP-glucose, has been identified, and the biochemical pathways leading to its formation have been established. The work of Moshe Benziman, his students, and his colleagues, who studied cellulose biosynthesis in a relatively simple bacterial model, made a major contribution toward a better understanding of cellulose biosynthesis. The complexity of the plant cell wall biogenesis makes studies of the cellulose biosynthesis in plants a very difficult task and prompted the search for a more convenient experimental model. A series of experiments was aimed at pinpointing the cellulose biosynthesis pathway and identifying the immediate precursor of cellulose. The discovery of the GTP-mediated activation of cellulose synthase provided the platform for an important advance, solubilization of the high-activity enzyme system while preserving its capability to respond to the GTP-mediated regulatory mechanism. The finding that the regulatory protein, necessary for activation of the cellulose synthase, was actually a diguanylate cyclase (cyclic Di-GMP (c-di-GMP) synthase, DGC) constituted a key step toward characterization of the enzymes involved in biosynthesis and hydrolysis of c-di-GMP. The discovery of c-di-GMP presented a tempting platform to study molecular pathways possibly connected to this nucleotide, not only in other bacteria but also in eukaryotic systems.

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Moshe Benziman in a 1996 photograph.

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(A) Dorit Amikam as a visiting scientist in Moshe Benziman’s laboratory in 1987. (B) Moshe Benziman with his favorite pipe.

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Cellulose pellicle formed by a static culture of after 24 h at 30°C (reprinted from reference with permission).

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

A model for regulation of cellulose biosynthesis in by c-di-GMP (reprinted from reference with permission).

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Organization of operons in (reprinted from reference with permission).

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Domain architectures of DGC1 and PDE-A1. Graphical representations in the SMART database ( ) of the domain structure of the and gene products (GenBank accession no. AF052517; UniProt entries O87374 and O87373, respectively).

Citation: Amikam D, Weinhouse H, Galperin M. 2010. Moshe Benziman and the Discovery of Cyclic Di-GMP, p 11-23. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816667.ch02
1. Aloni, Y.,, D. P. Delmer, and, M. Benziman. 1982. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc. Natl. Acad. Sci. USA 79:64486452.
2. Aloni, Y.,, R. Cohen,, M. Benziman, and, D. Delmer. 1983. Solubilization of the UDP-glucose:1,4-beta-D-glucan 4-beta-D-glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane-bound form of the enzyme. J. Biol. Chem. 258: 44194423.
3. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zheng,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
4. Amikam, D., and, M. Benziman. 1989. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 171:66496655.
5. Amikam, D.,, O. Steinberger,, T. Shkolnik, and, Z. Ben-Ishai. 1995. The novel cyclic dinucleotide 3′-5′ cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem. J. 311:921927.
6. Amikam, D., and, M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22: 36.
7. Amor, Y.,, R. Mayer,, M. Benziman, and, D. Delmer. 1991. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants. Plant Cell 3:989995.
8. Anantharaman, V., and, L. Aravind. 2000. Cache—a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25: 535537.
9. Anantharaman, V.,, E. V. Koonin, and, L. Aravind. 2001. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J. Mol. Biol. 307:12711292.
10. Aschner, M. 1937. Cultivation of cellulose-splitting bacteria on membranes of Acetobacter xylinum. J. Bacteriol. 33:249252.
11. Aschner, M., and, S. Hestrin. 1946. Fibrillar structure of cellulose of bacterial and animal origin. Nature 157:659.
12. Ausmees, N.,, H. Jonsson,, S. Hoglund,, H. Ljunggren, and, M. Lindberg. 1999. Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145:12531262.
13. Ausmees, N.,, R. Mayer,, H. Weinhouse,, G. Volman,, D. Amikam,, M. Benziman, and, M. Lindberg. 2001. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol. Lett. 204:163167.
14. Bar-Sagi,, D., and, J. R. Feramisco. 1985. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42:841848.
15. Benziman, M., and, H. Burger-Rachamimov. 1962. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. J. Bacteriol. 84:625630.
16. Benziman, M., and, H. Goldhamer. 1968. The role of ubiquinone in the respiratory chain of Acetobacter xylinum. Biochem. J. 108:311316.
17. Benziman, M. 1969. Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum. J. Bacteriol. 98:10051010.
18. Benziman, M., and, A. Mazover. 1973. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-specific glucose 6-phosphate dehydrogenases of Acetobacter xylinum and their role in the regulation of the pentose cycle. J. Biol. Chem. 248:16031608.
19. Bergey, D. H.,, F. C. Harrison,, R. S. Breed,, B. W. Hammer, and, F. M. Huntoon. 1925. Bergey’s Manual of Determinative Bacteriology, 2nd ed. The Williams and Wilkins Co., Baltimore, MD.
20. Bibikov, S. I.,, L. A. Barnes,, Y. Gitin, and, J. S. Parkinson. 2000. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc. Natl. Acad. Sci. USA 97:58305835.
21. Bobrov, A. G.,, O. Kirillina, and, R. D. Perry. 2005. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol. Lett. 247:123130.
22. Bobrov, A. G.,, O. Kirillina, and, R. D. Perry. 2007. Regulation of biofilm formation in Yersinia pestis. Adv. Exp. Med. Biol. 603:201210.
23. Brown, A. J. 1886. On acetic ferment which forms cellulose. J. Chem. Soc. Trans. (London) 49:432439.
24. Brown, A. J. 1887. Note on the cellulose formed by Bacterium xylinum. J. Chem. Soc. Trans. (London) 49:432439.
25. Brown, R. M., and, I. M. Saxena (ed.). 2007. Cellulose: Molecular and Structural Biology. Springer, New York, NY.
26. Chang, A. L.,, J. R. Tuckerman,, G. Gonzalez,, R. Mayer,, H. Weinhouse,, G. Volman,, D. Amikam,, M. Benziman, and, M. A. Gilles-Gonzalez. 2001. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40:34203426.
27. D’Argenio,, D. A., and, S. I. Miller. 2004. Cyclic di-GMP as a bacterial second messenger. Microbiology 150:24972502.
28. Delmer, D. P. 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:245276.
29. Delmer, D. P. 2000. Structure and biosynthesis of cellulose. Part II: biosynthesis, p. 199-216. In S.-D. Kung and, S.-F. Yang (ed.), Discoveries in Plant Biology, vol. 3. World Scientific Publishing Co., Singapore, Singapore.
30. Doblin, M. S.,, I. Kurek,, D. Jacob-Wilk, and, D. P. Delmer. 2002. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43:14071420.
31. Drummond, M. H., and, J. C. Wootton. 1987. Sequence of nifL from Klebsiella pneumoniae: mode of action and relationship to two families of regulatory proteins. Mol. Microbiol. 1:3744.
32. French, A. D. 2000. Structure and biosynthesis of cellulose. Part I: structure, p. 163-197. In S.-D. Kung and, S.-F. Yang (ed.), Discoveries in Plant Biology, vol. 3. World Scientific Publishing Co., Singapore, Singapore.
33. Galperin, M. Y.,, D. A. Natale,, L. Aravind, and, E. V. Koonin. 1999. A specialized version of the HD hydrolase domain implicated in signal transduction. J. Mol. Microbiol. Biotechnol. 1:303305.
34. Galperin, M. Y. 2001. Conserved ‘hypothetical’ proteins: new hints and new puzzles. Comp. Funct. Genomics 2:1418.
35. Galperin, M. Y.,, A. N. Nikolskaya, and, E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:1121.
36. Galperin, M. Y. 2004. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol. 6:552567.
37. Galperin, M. Y. 2005. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5:35.
38. Galperin, M. Y. 2006. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188:41694182.
39. Girard, V.,, M. Fevre,, R. Mayer, and, M. Benziman. 1991. Cyclic diguanylic acid stimulates 1,4-β-glucan synthase from Saprolegnia monoica. FEMS Microbiol. Lett. 82:293296.
40. Glaser, L. 1958. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232:627636.
41. Gromet-Elhanan,, Z., and, S. Hestrin. 1963. Synthesis of cellulose by Acetobacter xylinum. 6. Growth on citric acid-cycle intermediates. J. Bacteriol. 85:284292.
42. Hecht, G. B., and, A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177:62236229.
43. Hestrin, S.,, M. Aschner, and, J. Mager. 1947. Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature 159:6465.
44. Hestrin, S., and, M. Schramm. 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58:345352.
45. Hirakawa, T., and, H. E. Ruley. 1988. Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proc. Natl. Acad. Sci. USA 85:15191523.
46. Huala, E.,, P. W. Oeller,, E. Liscum,, I. S. Han,, E. Larsen, and, W. R. Briggs. 1997. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:21202123.
47. Jenal, U. 2004. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr. Opin. Microbiol. 7:185191.
48. Jenal, U., and, J. Malone. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40:385407.
49. Joshi, C. P., and, S. D. Mansfield. 2007. The cellulose paradox—simple molecule, complex biosynthesis. Curr. Opin. Plant Biol. 10:220226.
50. Kirillina, O.,, J. D. Fetherston,, A. G. Bobrov,, J. Abney, and, R. D. Perry. 2004. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol. 54:7588.
51. Letunic, I.,, T. Doerks, and, P. Bork. 2009. SMART 6: recent updates and new developments. Nucleic Acids Res. 37:D229D232.
52. Mayer, R.,, P. Ross,, H. Weinhouse,, D. Amikam,, G. Volman,, P. Ohana,, R. D. Calhoon,, H. C. Wong,, A. W. Emerick, and, M. Benziman. 1991. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc. Natl. Acad. Sci. USA 88:54725476.
53. Monson, E. K.,, M. Weinstein,, G. S. Ditta, and, D. R. Helinski. 1992. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl. Acad. Sci. USA 89:42804284.
54. Mougel, C., and, I. B. Zhulin. 2001. CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem. Sci. 26:582584.
55. Ohad, I.,, I. O. Danon, and, S. Hestrin. 1962. Synthesis of cellulose by Acetobacter xylinum. 5. Ultrastructure of polymer. J. Cell Biol. 12:3146.
56. Pastor, M. I.,, K. Reif, and, D. Cantrell. 1995. The regulation and function of p21ras during T-cell activation and growth. Immunol. Today 16:159164.
57. Paul, R.,, S. Weiser,, N. C. Amiot,, C. Chan,, T. Schirmer,, B. Giese, and, U. Jenal. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel diguanylate cyclase output domain. Genes Dev. 18:715727.
58. Pei, J., and, N. V. Grishin. 2001. GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210216.
59. Ridley, A. J.,, H. F. Paterson,, M. Noble, and, H. Land. 1988. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 7:16351645.
60. Römling, U. 2002. Molecular biology of cellulose production in bacteria. Res. Microbiol. 153:205212.
61. Römling, U.,, M. Gomelsky, and, M. Y. Galperin. 2005. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57:629639.
62. Römling, U., and, D. Amikam. 2006. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9:218228.
63. Ross, P.,, Y. Aloni,, C. Weinhouse,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer, and, M. Benziman. 1985. An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett. 186:191196
64. Ross, P.,, Y. Aloni,, H. Weinhouse,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer, and, M. Benziman. 1986. Control of cellulose synthesis in Acetobacter xylinum. A unique guanyl oli-gonucleotide is the immediate activator of the cellulose synthase. Carbohydr. Res. 149:101117.
65. Ross, P.,, H. Weinhouse,, Y. Aloni,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer,, S. Braun,, E. de Vroom,, G. A. van der Marel,, J. H. van Boom, and, M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279281.
66. Ross, P.,, R. Mayer,, H. Weinhouse,, D. Amikam,, Y. Huggirat,, M. Benziman,, E. de Vroom,, A. Fidder,, P. de Paus, and, L. A. Sliedregt. 1990. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J. Biol. Chem. 265:1893318943.
67. Ross, P.,, R. Mayer, and, M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55:3558.
68. Ryjenkov, D. A.,, M. Tarutina,, O. M. Moskvin, and, M. Gomelsky. 2005. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187:17921798.
69. Satoh, T.,, M. Nakafuku, and, Y. Kaziro. 1992. Function of Ras as a molecular switch in signal transduction. J. Biol. Chem. 267:2414924152.
70. Saxena, I. M., and, R. M. Brown, Jr. 2005. Cellulose biosynthesis: current views and evolving concepts. Ann. Bot. (London) 96:921.
71. Schmidt, A. J.,, D. A. Ryjenkov, and, M. Gomelsky. 2005. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187:47744781.
72. Schramm, M.,, Z. Grommet, and, S. Hestrin. 1957. Synthesis of cellulose by Acetobacter xylinum: 3. Substrates and inhibitors. Biochem. J. 67:669679.
73. Somerville, C. 2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:5378.
74. Stacey, D. W., and, H. F. Kung. 1984. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508511.
75. Steinberger, O.,, Z. Lapidot,, Z. Ben-Ishai, and, D. Amikam. 1999. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3′,5′-cyclic diguanylic acid. FEBS Lett. 444:125129.
76. Swat, W.,, Y. Shinkai,, H. L. Cheng,, L. Davidson, and, F. W. Alt. 1996. Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc. Natl. Acad. Sci. USA 93:46834687.
77. Swissa, M., and, M. Benziman. 1976. Factors affecting the activity of citrate synthase of Acetobacter xylinum and its possible regulatory role. Biochem. J. 153:173179.
78. Swissa, M.,, Y. Aloni,, H. Weinhouse, and, M. Benziman. 1980. Intermediary steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J. Bacteriol. 143:11421150.
79. Tal, R.,, H. C. Wong,, R. Calhoon,, D. Gelfand,, A. L. Fear,, G. Volman,, R. Mayer,, P. Ross,, D. Amikam,, H. Weinhouse,, A. Cohen,, S. Sapir,, P. Ohana, and, M. Benziman. 1998. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180:44164425.
80. Tamayo, R.,, A. D. Tischler, and, A. Camilli. 2005. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280:3332433330.
81. Tamayo, R.,, J. T. Pratt, and, A. Camilli. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61:131148.
82. Taylor, B. L., and, I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479506.
83. Taylor, N. G. 2008. Cellulose biosynthesis and deposition in higher plants. New Phytol. 178:239252.
84. Tischler, A. D., and, A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53:857869.
85. Tischler, A. D., and, A. Camilli. 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun. 73:58735882.
86. von Boehmer,, H. 1990. Developmental biology of T cells in T cell-receptor transgenic mice. Annu. Rev. Immunol. 8:531556.
87. Weinhouse, H., and, M. Benziman. 1974. Regulation of hexose phosphate metabolism in Acetobacter xylinum. Biochem. J. 138:537542.
88. Weinhouse, H. 1977. Regulation of Carbohydrate Metabolism in Acetobacter xylinum. Ph.D. thesis. The Hebrew University of Jerusalem, Jerusalem, Israel.
89. Weinhouse, H.,, S. Sapir,, D. Amikam,, Y. Shilo,, G. Volman,, P. Ohana, and, M. Benziman. 1997. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett. 416:207211.
90. Wootton, J. C., and, M. H. Drummond. 1989. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 2:535543.
91. Yamada, Y. 1983. Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. J. Gen. Appl. Microbiol. 29:417420.
92. Yamada, Y.,, K. Hoshino, and, T. Ishikawa. 1997. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci. Biotechnol. Biochem. 61:12441251.
93. Zhulin, I. B.,, A. N. Nikolskaya, and, M. Y. Galperin. 2003. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J. Bacteriol. 185:285294.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error