Chapter 4 : The Core Pathway: Diguanylate Cyclases, Cyclic Di-GMP-Specific Phosphodiesterases, and Cyclic Di-GMP-Binding Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Core Pathway: Diguanylate Cyclases, Cyclic Di-GMP-Specific Phosphodiesterases, and Cyclic Di-GMP-Binding Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap04-2.gif


This chapter describes the studies that resulted in the experimental verification of the core signaling pathway. It discusses advances in enzymology of c-di-GMP synthesis and hydrolysis, identification and characterization of cyclic di-GMP (c-di-GMP) receptors, end targets, and molecular mechanisms, where these are known. The first line of experimental evidence that supported the prediction that DGC activity resides in the GGDEF domain came from genetic studies. If GGDEF domains were to function as diguanylate cyclase (DGC), the predicted activity of the EAL domains would have to be c-di-GMP hydrolysis. However, it was unclear whether or not EAL domains are sufficient for phosphodiesterase (PDE) activity, or whether GGDEF domains are needed as well. Spatiotemporal and stimulus-specific regulation proved to be crucial for maintaining specificity of responses and avoiding unwanted cross talk in the bacteria that possess vast networks of DGCs and PDEs. Since functional DGCs are present in representatives from various branches of the phylogenetic tree of the , including branches comprised mostly of thermophiles, one can predict that c-di-GMP originated early in bacterial evolution. In vitro studies characterizing c-di-GMP-specific PDE activity were performed on the EAL domain proteins from other sources, CC3396 and VieA, and very similar conclusions regarding the nature of enzymatic activity were reached.

Citation: Gomelsky M. 2010. The Core Pathway: Diguanylate Cyclases, Cyclic Di-GMP-Specific Phosphodiesterases, and Cyclic Di-GMP-Binding Proteins, p 37-56. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Core c-di-GMP signaling pathway and detours from the core. Shown are key protein domains and domain combinations involved in c-di-GMP signaling. Enzymatically active GGDEF, EAL, and HD-GYP domains are drawn on the white background; enzymatically inactive domains involved in substrate binding are shown as light grey, while domains that are no longer associated with c-di-GMP are shown as dark grey. G, guanine.

Citation: Gomelsky M. 2010. The Core Pathway: Diguanylate Cyclases, Cyclic Di-GMP-Specific Phosphodiesterases, and Cyclic Di-GMP-Binding Proteins, p 37-56. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

c-di-GMP-binding domains in exopolysaccharide biosynthetic and translocation machines. Bcs, bacterial cellulose synthase present in and enterobacteria; Alg, alginate synthase; Pel, glucose-based PEL polysaccharide. Both Alg and Pel are from pseudomonads. cytoplasm., cytoplasmic.

Citation: Gomelsky M. 2010. The Core Pathway: Diguanylate Cyclases, Cyclic Di-GMP-Specific Phosphodiesterases, and Cyclic Di-GMP-Binding Proteins, p 37-56. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

General principles of c-di-GMP regulation. Various DGCs, c-di-GMP PDEs, and c-di-GMP receptors are shown. A cloud of c-di-GMP generated by a DGC that is activated by an environmental signal is shown to affect a specific target, exopolysaccharide synthase.

Citation: Gomelsky M. 2010. The Core Pathway: Diguanylate Cyclases, Cyclic Di-GMP-Specific Phosphodiesterases, and Cyclic Di-GMP-Binding Proteins, p 37-56. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aldridge, P.,, R. Paul,, P. Goymer,, P. Rainey, and, U. Jenal. 2003. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol. Microbiol. 47:16951708.
2. Alm, R. A.,, A. J. Bodero,, P. D. Free, and, J. S. Mattick. 1996. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 178:4653.
3. Amikam, D., and, M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:36.
4. Aravind, L., and, E. V. Koonin. 1998. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23:469472.
5. Ausmees, N.,, R. Mayer,, H. Weinhouse,, G. Volman,, D. Amikam,, M. Benziman, and, M. Lindberg. 2001. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol. Lett. 204:163167.
6. Barends, T. R. M.,, E. Hartmann,, J. Griese,, T. Beitlich,, N. V. Kirienko,, D. A. Ryjenkov,, J. Reinstein,, R. L. Shoeman,, M. Gomelsky, and, I. Schlichting. 2009. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459:10151018.
7. Barrick, J. E., and, R. R. Breaker. 2007. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 8:R239.
8. Benach, J.,, S. S. Swaminathan,, R. Tamayo,, S. K. Handelman,, E. Folta-Stogniew,, J. E. Ramos,, F. Forouhar,, H. Neely,, J. Seetharaman,, A. Camilli, and, J. F. Hunt. 2007. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J. 26:51535166.
9. Bender, A. T., and, J. A. Beavo. 2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488520.
10. Berry, R. M., and, J. P. Armitage. 2008. Microbiology. How bacteria change gear. Science 320:15991600.
11. Beyhan, S.,, L. S. Odell, and, F. H. Yildiz. 2008. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J. Bacteriol. 190:73927405.
12. Blair, K. M.,, L. Turner,, J. T. Winkelman,, H. C. Berg, and, D. B. Kearns. 2008. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320:16361638.
13. Bobrov, A. G.,, O. Kirillina, and, R. D. Perry. 2005. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol. Lett. 247:123130.
14. Brunton, L. L. 2003. PDE4: arrested at the border. Sci. STKE 204:pe44.
15. Chan, C.,, R. Paul,, D. Samoray,, N. C. Amiot,, B. Giese,, U. Jenal, and, T. Schirmer. 2004. Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101:1708417089.
16. Chang, A. L.,, J. R. Tuckerman,, G. Gonzalez,, R. Mayer,, H. Weinhouse,, G. Volman,, D. Amikam,, M. Benziman, and, M. A. Gilles-Gonzalez. 2001. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40:34203426.
17. Christen, B.,, M. Christen,, R. Paul,, F. Schmid,, M. Folcher,, P. Jenoe,, M. Meuwly, and, U. Jenal. 2006. Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281:3201532024.
18. Christen, M.,, B. Christen,, M. Folcher,, A. Schauerte, and, U. Jenal. 2005. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280:3082930837.
19. Christen, M.,, B. Christen,, M. G. Allan,, M. Folcher,, P. Jenö,, S. Grzesiek, and, U. Jenal. 2007. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 104:41124117. (Erratum, 104: 7729.)
20. Claret, L.,, S. Miquel,, N. Vieille,, D. A. Ryjenkov,, M. Gomelsky, and, A. Darfeuille-Michaud. 2007. The flagellar sigma factor FliA regulates adhesion and invasion of Crohn disease-associated Escherichia coli via a cyclic dimeric GMP-dependent pathway. J. Biol. Chem. 282:3327533283.
21. D’Argenio D. A., and, S. I. Miller. 2004. Cyclic di-GMP as a bacterial second messenger. Microbiology 150:24972502.
22. Delgado-Nixon,, V. M.,, G. Gonzalez, and, M. A. Gilles-Gonzalez. 2000. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39:26852691.
23. Duerig, A.,, S. Abel,, M. Folcher,, M. Nicollier,, T. Schwede,, N. Amiot,, B. Giese, and, U. Jenal. 2009. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev. 23:93104.
24. Ferreira, R. B.,, L. C. Antunes,, E. P. Greenberg, and, L. L. McCarter. 2008. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J. Bacteriol. 190:851860.
25. Finn, R. D.,, J. Tate,, J. Mistry,, P. C. Coggill,, S. J. Sammut,, H. R. Hotz,, G. Ceric,, K. Forslund,, S. R. Eddy,, E. L. Sonn-hammer, and, A. Bateman. 2008. The Pfam protein families database. Nucleic Acids Res. 36:D281D288.
26. Galperin, M. Y.,, D. A. Natale,, L. Aravind, and, E. V. Koonin. 1999. A specialized version of the HD hydrolase domain implicated in signal transduction. J. Mol. Microbiol. Biotechnol. 1:303305.
27. Galperin, M. Y.,, A. N. Nikolskaya, and, E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:1121.
28. Galperin, M. Y. 2004. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol. 6:552567.
29. Garcia, B.,, C. Latasa,, C. Solano,, F. Garcladel Portillo,, C. Gamazo, and, I. Lasa. 2004. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol. Microbiol. 54:264277.
30. Girgis, H. S.,, Y. Liu,, W. S. Ryu, and, S. Tavazoie. 2007. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 3:16441660.
31. Gomelsky, M., and, G. Klug. 2002. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem. Sci. 27:497500.
32. Güvener, Z. T., and, C. S. Harwood. 2007. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol. Microbiol. 66:14591473.
33. Hickman, J. W., and, C. S. Harwood. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376389.
34. Hickman, J. W.,, D. F. Tifrea, and, C. S. Harwood. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102:1442214427.
35. Hisert, K. B.,, M. MacCoss,, M. U. Shiloh,, K. H. Darwin,, S. Singh,, R. A. Jones,, S. Ehrt,, Z. Zhang,, B. L. Gaffney,, S. Gandotra,, D. W. Holden,, D. Murray, and, C. Nathan. 2005. A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol. Microbiol. 56:12341245.
36. Hoffman, L. R.,, D. A. D’Argenio,, M. J. MacCoss,, Z. Zhang,, R. A. Jones, and, S. I. Miller. 2005. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:11711175.
37. Holland, L. M.,, S. T. O’Donnell,, D. A. Ryjenkov,, L. Gomelsky,, S. R. Slater,, P. D. Fey,, M. Gomelsky, and, J. P. O’Gara. 2008. A staphylococcal GGDEF domain protein regulates bio-film formation independently of c-di-GMP. J. Bacteriol. 190:51785189.
38. Huang, B.,, C. Whitchurch, and, J. S. Mattick. 2003. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J. Bacteriol. 185:70687076.
39. Huitema, E.,, S. Pritchard,, D. Matteson,, S. K. Radhakrishnan, and, P. H. Viollier. 2006. Bacterial birth scar proteins mark future flagellum assembly site. Cell 124:10251037.
40. Jenal, U. 2004. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr. Opin. Microbiol. 7:185191.
41. Jenal, U.,, J. White, and, L. Shapiro. 1994. Caulobacter flagellar function, but not assembly, requires FliL, a non-polarly localized membrane protein present in all cell types. J. Mol. Biol. 243:227244. (Erratum, 248:883, 1995.)
42. Kader, A.,, R. Simm,, U. Gerstel,, M. Morr, and, U. Römling. 2006. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 60:602616.
43. Karatan, E.,, T. R. Duncan, and, P. I. Watnick. 2005. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J. Bacteriol. 187:74347443.
44. Kazmierczak, B. I.,, M. B. Lebron, and, T. S. Murray. 2006. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 60:10261043.
45. Ko, M., and, C. Park. 2000. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J. Mol. Biol. 303:371382.
46. Kulasakara, H.,, V. Lee,, A. Brencic,, N. Liberati,, J. Urbach,, S. Miyata,, D. G. Lee,, A. N. Neely,, M. Hyodo,, Y. Hayakawa,, F. M. Ausubel, and, S. Lory. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3 ′-5′)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 103:28392844.
47. Kumar, M., and, D. Chatterji. 2008. Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology 154:29422955.
48. Lai, T. H.,, Y. Kumagai,, M. Hyodo,, Y. Hayakawa, and, Y. Rikihisa. 2009. The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic di-GMP in host cell infection. J. Bacteriol. 191:693700.
49. Lee, V. T.,, J. M. Matewish,, J. L. Kessler,, M. Hyodo,, Y. Hayakawa, and, S. Lory. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:14741484.
50. Li, T. N.,, K. H. Chin,, J. H. Liu,, A. H. Wang, and, S. H. Chou. 2008. XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch. Proteins 75:282288.
51. Lukat, G. S.,, W. R. McCleary,, A. M. Stock, and, J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phosphodonors. Proc. Natl. Acad. Sci. USA 89:718722.
52. Maharaj, R.,, T. B. May,, S. K. Wang, and, A. M. Chakrabarty. 1993. Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene 136:267269.
53. Mayer, R.,, P. Ross,, H. Weinhouse,, D. Amikam,, G. Volman,, P. Ohana,, R. D. Calhoon,, H. C. Wong,, A. W. Emerick, and, M. Benziman. 1991. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc. Natl. Acad. Sci. USA 88:54725476.
54. McCarthy, Y.,, R. P. Ryan,, K. O’Donovan,, Y. Q. He,, B. L. Jiang,, J. X. Feng,, J. L. Tang, and, J. M. Dow. 2008. The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol. Plant Pathol. 9:819824.
55. Merighi, M.,, V. T. Lee,, M. Hyodo,, Y. Hayakawa, and, S. Lory. 2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65:876895.
56. Minasov, G.,, S. Padavattan,, L. Shuvalova,, J. S. Brunzelle,, D. J. Miller,, A. Basle,, C. Massa,, F. R. Collart,, T. Schirmer, and, W. F. Anderson. 24 February 2009. Crystal structures of YkuI and its complex with second messenger c-di-GMP suggests catalytic mechanism of phosphodiester bond cleavage by EAL domains. J. Biol. Chem. 284:1317413184. [Epub ahead of print.]
57. Monteiro, C.,, I. Saxena,, X. Wang,, A. Kader,, W. Bokranz,, R. Simm,, D. Nobles,, M. Chromek,, A. Brauner,, R. M. Brown, Jr., and, U. Römling. 2009. Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ. Microbiol. 11:11051116.
58. Neunuebel, M. R., and, J. W. Golden. 2008. The Anabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions. J. Bacteriol. 190:68296836.
59. Newell, P. D.,, R. D. Monds, and, G. A. O’Toole. 2009. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc. Natl. Acad. Sci. USA 106:34613466.
60. Oglesby, L. L.,, S. Jain, and, D. E. Ohman. 2008. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154:16051615.
61. Paul, R.,, S. Weiser,, N. C. Amiot,, C. Chan,, T. Schirmer,, B. Giese, and, U. Jenal. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel diguanylate cyclase output domain. Genes Dev. 18:715727.
62. Paul, R.,, S. Abel,, P. Wassmann,, A. Beck,, H. Heerklotz, and, U. Jenal. 2007. Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J. Biol. Chem. 282:2917029177.
63. Pei, J., and, N. Grishin. 2001. GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210216.
64. Perego, M., and, J. A. Hoch. 1996. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet. 12:97101.
65. Pratt, J. T.,, R. Tamayo,, A. D. Tischler, and, A. Camilli. 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem. 282:1286012870.
66. Purcell, E. B., and, S. Crosson. 2008. Photoregulation in prokaryotes. Curr. Opin. Microbiol. 11:168178.
67. Quon, K. C.,, B. Yang,, I. J. Domian,, L. Shapiro, and, G. T. Marczynski. 1998. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. USA 95:120125.
68. Rajagopal, S.,, J. M. Key,, E. B. Purcell,, D. J. Boerema, and, K. Moffat. 2004. Purification and initial characterization of a putative blue light-regulated phosphodiesterase from Escherichia coli. Photochem. Photobiol. 80:542547.
69. Ramelot, T. A.,, A. Yee,, J. R. Cort,, A. Semesi,, C. H. Arrowsmith, and, M. A. Kennedy. 2007. NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins 66:266271.
70. Ramsey, D. M., and, D. J. Wozniak. 2005. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol. 56:309322.
71. Rao, F.,, Y. Yang,, Y. Qi, and, Z. X. Liang. 2008. Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J. Bacteriol. 190:36223631.
72. Rockwell, N. C.,, Y. S. Su, and, J. C. Lagarias. 2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837858.
73. Rogers, E. A.,, D. Terekhova,, H. M. Zhang,, K. M. Hovis,, I. Schwartz, and, R. T. Marconi. 2009. Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol. Microbiol. 71:15511573.
74. Römling, U.,, M. Gomelsky, and, M. Y. Galperin. 2005. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57:629639.
75. Römling, U.,, M. Rohde,, A. Olsen,, S. Normark, and, J. Reinköster. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36:1023.
76. Römling, U. 2008. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal. 1:pe39.
77. Ross, P.,, H. Weinhouse,, Y. Aloni,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer,, S. Braun,, E. de Vroom,, G. A. van der Marel,, J. H. van Boom, and, M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanilic acid. Nature 325:279281.
78. Ross, P.,, R. Mayer,, H. Weinhouse,, D. Amikam,, Y. Huggirat,, M. Benziman,, E. de Vroom,, A. Fidder,, P. de Paus,, L. A. Sliedregt,, G. A. van der Marel, and J. H. van Boom. 1990. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J. Biol. Chem. 265:1893318943.
79. Ross, P.,, Y. Aloni,, C. Weinhouse,, D. Michaeli,, P. Weinberger-Ohana,, R. Meyer, and, M. Benziman. 1985. An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett. 186:191196.
80. Ross, P.,, Y. Aloni,, H. Weinhouse,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer, and, M. Benziman. 1986. Control of cellulose synthesis in Acetobacter xylinum. A unique guanyl oli-gonucleotide is the immediate activator of the cellulose synthase. Carbohydr. Res. 149:101117.
81. Ryan, R. P.,, Y. Fouhy,, J. F. Lucey,, L. C. Crossman,, S. Spiro,, Y. W. He,, L. H. Zhang,, S. Heeb,, M. Camara,, P. Williams, and, J. M. Dow. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc. Natl. Acad. Sci. USA 103:67126717.
82. Ryan, R. P.,, Y. Fouhy,, J. F. Lucey, and, J. M. Dow. 2006. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J. Bacteriol. 188:83278334.
83. Ryder, C.,, M. Byrd, and, D. J. Wozniak. 2007. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 10:644648.
84. Ryjenkov, D. A.,, M. Tarutina,, O. M. Moskvin, and M. Gomelsky. 2005. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187:17921798.
85. Ryjenkov, D. A.,, R. Simm,, U. Römling, and, M. Gomelsky. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:3031030314.
86. Sasakura, Y.,, S. Hirata,, S. Sugiyama,, S. Suzuki,, S. Taguchi,, M. Watanabe,, T. Matsui,, I. Sagami, and, T. Shimizu. 2002. Characterization of a direct oxygen sensor heme protein from Escherichia coli. Effects of the heme redox states and mutations at the heme-binding site on catalysis and structure. J. Biol. Chem. 277:2382123827.
87. Saxena, I. M.,, K. Kudlicka,, K. Okuda, and, R. M. Brown, Jr. 1994. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176:57355752.
88. Saxena, I. M.,, R. M. Brown, Jr., and, T. Dandekar. 2001. Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:11351148.
89. Schmidt, A. J.,, D. A. Ryjenkov, and, M. Gomelsky. 2005. Ubiquitous protein domain EAL encodes cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187:47744781.
90. Simm, R.,, M. Morr,, A. Kader,, M. Nimtz, and, U. Römling. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. 53:11231134.
91. Simm, R.,, A. Lusch,, A. Kader,, M. Andersson, and, U. Römling. 2007. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. J. Bacteriol. 189:36133623.
92. Sudarsan, N.,, E. R. Lee,, Z. Weinberg,, R. H. Moy,, J. N. Kim,, K. H. Link, and, R. R. Breaker. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411413.
93. Suzuki, K.,, P. Babitzke,, S. R. Kushner, and, T. Romeo. 2006. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNaseE. Genes Dev. 20:26052617.
94. Tal, R.,, H. C. Wong,, R. Calhoon,, D. Gelfand,, A. L. Fear,, G. Volman,, R. Mayer,, P. Ross,, D. Amikam,, H. Weinhouse,, A. Cohen,, S. Sapir,, P. Ohana, and, M. Benziman. 1998. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180:44164425.
95. Tamayo, R.,, A. D. Tischler, and, A. Camilli. 2005. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280:3332433330.
96. Tanaka, A.,, H. Takahashi, and, T. Shimizu. 2007. Critical role of the heme axial ligand, Met95, in locking catalysis of the phosphodiesterase from Escherichia coli (Ec DOS) toward cyclic diGMP. J. Biol. Chem. 282:2130121307.
97. Tarutina, M.,, D. A. Ryjenkov, and, M. Gomelsky. 2006. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J. Biol. Chem. 281:3475134758.
98. Terashima, H.,, S. Kojima, and, M. Homma. 2008. Flagellar motility in bacteria structure and function of flagellar motor. Int. Rev. Cell. Mol. Biol. 270:3985.
99. Tischler, A. D., and, A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53:857869.
100. Tschowri, N.,, S. Busse, and, R. Hengge. 2009. The BLUFEAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev. 23:522534.
101. Vandecasteele, G.,, F. Rochais,, A. AbiGerges, and, R. Fischmeister. 2006. Functional localization of cAMP signalling in cardiac myocytes. Biochem. Soc. Trans. 34:484488.
102. Wan, X.,, J. R. Tuckerman,, J. A. Saito,, T. A. Freitas,, J. S. Newhouse,, J. R. Denery,, M. Y. Galperin,, G. Gonzalez,, M. A. Gilles-Gonzalez, and, M. Alam. 2009. Globins synthesize the second messenger bis-(3′-5′)-cyclic diguanosine monophosphate in bacteria. J. Mol. Biol. 388:262270.
103. Wassmann, P.,, C. Chan,, R. Paul,, A. Beck,, H. Heerklotz,, U. Jenal, and, T. Schirmer. 2007. Structure of BeF3-modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15:915927.
104. Weber, H.,, C. Pesavento,, A. Possling,, G. Tischendorf, and, R. Hengge. 2006. Cyclic-di-GMP-mediated signaling within the sigma network of Escherichia coli. Mol. Microbiol. 62:10141034.
105. Weinhouse, H.,, S. Sapir,, D. Amikam,, Y. Shilo,, G. Volman,, P. Ohana, and, M. Benziman. 1997. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett. 416:207211.
106. Wilde, A.,, B. Fiedler, and, T. Borner. 2002. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol. Microbiol. 44:981988.
107. Witte, G.,, S. Hartung,, K. Buóttner, and, K. P. Hopfner. 2008. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30:167178.
108. Wolfe, A. J., and, K. L. Visick. 2008. Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J. Bacteriol. 190:463475.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error