1887

Chapter 13 : Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap13-2.gif

Abstract:

This chapter first describes the biology of and the environmental influences that may dictate its need for large numbers of proteins dedicated to cyclic di-GMP (c-di-GMP) control and function. Then, it presents a bioinformatic analysis of these c-di-GMP-associated proteins. Next, the chapter provides a brief description of flagellar biogenesis and the roles played in controlling that process by both the magnesium cation (Mg) and specific c-di-GMP-associated enzymes. Then, it outlines the current knowledge concerning the role of c-di-GMP in cellulose biosynthesis and biofilm formation in . Finally, the chapter presents models for the roles of c-di-GMP in biofilm formation and flagellar biogenesis. is a marine bioluminescent microorganism that exists both as a free-living organism in seawater and in associations with animals, including fishes and squids. The sequenced vibrios each contain a larger chromosome that is relatively conserved among the different species and a smaller chromosome that is quite divergent. Less is known about proteins predicted to be involved in c-di-GMP binding in . Motile cells contain a tuft of flagella at one pole. This arrangement contrasts with that of enterics, which assemble flagella randomly across their surface, a distribution termed peritrichous. The work described in the chapter is one of the few studies, along with those investigating YcgR and PleD, where a detailed investigation of c-di-GMP in motility is being pursued.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13

Key Concept Ranking

Bacteria and Archaea
0.45735225
Transmission Electron Microscopy
0.40201458
0.45735225
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Lifestyle transitions during symbiosis. undergoes several switches between motile/planktonic and biofilm/sessile forms during symbiotic colonization of its host, A cartoon of the juvenile squid with its light organ is depicted on the left. A portion of the light organ is enlarged on the right, representing the path to colonization of one of six crypts found in the juvenile light organ. The numbers represent different stages as follows: 1, motile, planktonic cells are present in seawater; 2, cells aggregate in squid-secreted mucus near the pores of the light organ; 3, motile bacteria enter the light organ; 4, the bacteria establish colonization in the crypts, where they lose their flagella; 5, an expulsion event releases cells back into the seawater, where they can become motile again. CEA, ciliated epithelial appendages.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2a.
Figure 2a.

Bioinformatic analysis of the GGDEF, EAL, and HD-GYP domain proteins of Domain structures of the 28 putative GGDEF proteins (A), 9 putative EAL proteins (B), 11 putative GGDEF/EAL proteins (C), and 2 putative HD-GYP proteins (D) encoded by Each GGDEF domain is indicated by a black box, while each EAL domain is indicated by a gray box; poorly conserved GGDEF and EAL domains contain white hatch marks within the black and gray boxes. Other domains are as indicated. Broken boxes indicate a truncated domain. Possible transmembrane segments are indicated by small black rectangles. The MifA, MifB, and MifD proteins are encoded by VF0989, VFA0959, and VF0087, respectively.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2b.
Figure 2b.

Bioinformatic analysis of the GGDEF, EAL, and HD-GYP domain proteins of Domain structures of the 28 putative GGDEF proteins (A), 9 putative EAL proteins (B), 11 putative GGDEF/EAL proteins (C), and 2 putative HD-GYP proteins (D) encoded by Each GGDEF domain is indicated by a black box, while each EAL domain is indicated by a gray box; poorly conserved GGDEF and EAL domains contain white hatch marks within the black and gray boxes. Other domains are as indicated. Broken boxes indicate a truncated domain. Possible transmembrane segments are indicated by small black rectangles. The MifA, MifB, and MifD proteins are encoded by VF0989, VFA0959, and VF0087, respectively.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

PilZ domain proteins of (A) VFA0884 (), a member of the cellulose biosynthesis operon (), encodes a glycosyltransferase that includes a PilZ domain (cross-hatching). (B) VF1838, embedded in the part of the large flagellar cluster devoted to flagellar protein secretion, is predicted to encode a PilZ domain protein whose function remains unknown. (C) VF0556, whose function also remains unknown, is flanked by genes predicted to encode a putative transglycosylase-associated protein (VF0555), a predicted ABC transporter (VF0557), a putative soluble lytic murein transglycosylase (VF0558), and a predicted transcription factor (VF0559). (D) VF0527, annotated as an ATP-dependent serine protease with two PilZ domains, is part of the locus predicted to encode a two-component response regulator (VF0526) and two two-component sensor kinases (VF0525 and VF0524).

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Mg-dependent flagellation is controlled posttranscriptionally. In the presence (+) of Mg (right), cells tend to migrate well in semisolid agar, forming dense bands of cells characteristic of chemotaxis (A), display a tuft of polar flagella (B), express large amounts of flagellins (C), and transcribe flagellin genes (D). In contrast, in the absence (–) of Mg (left), cells tend to migrate poorly in semisolid agar (A), display no flagella (B), express small amounts of flagellins (C), but yet transcribe flagellin genes about as well as cells exposed to Mg (D).

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

c-di-GMP-dependent flagellation is controlled postranscriptionally. (A) Relative to the wild type (WT), in the absence of Mg, loss of or increases motility. (B) Loss of or both increases flagellin protein levels relative to WT, as observed by Western immunoblot analysis. (C) Overexpression of or inhibits motility, even in the presence of Mg. (D) The levels of transcript of the major flagellin gene, are unaltered by either Mg addition or overexpression. +, present; —, absent.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Model for c-di-GMP and cellulose. The genes in (VFA0885 to 0881) encode the enzymes necessary for cellulose biosynthesis. The production of cellulose is enhanced by overexpression of either of the two-component regulators SypF and VpsR. It is also increased by overexpression of the DGC MifA. For MifA, it is likely that a rise in c-di-GMP levels increases the cellulose synthetic activity of the PilZ domain protein, BcsA. For SypF and VpsR, the level at which these proteins impact cellulose production is unknown, as indicated by the question marks. Increased production of cellulose results in enhanced biofilm formation.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Model for c-di-GMP and motility. The DGCs MifA and MifB (in concert with MifC) ( ) and the PDE MifD ( ) set the steady-state levels of c-di-GMP, which binds to an unknown c-di-GMP-binding protein, X ( ). This complex interferes with the translation, export, and/or assembly of very early flagellar components ( ). Several possibilities exist for the role of Mg in promoting motility. It could block this process upstream of c-di-GMP, either by inhibiting the DGCs MifA and MifB or by activating the PDE MifD ( ). It could act downstream of c-di-GMP either by inhibiting the binding of c-di-GMP to its binding protein(s) X or by inhibiting the action of the c-di-GMP/X complex ( ). Finally, Mg could override the inhibitory action of c-di-GMP via an independent pathway ( ). Combinations of these alternatives could operate. IM, inner membrane; l-di-GMP, linear di-GMP.

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816667.ch13
1. Aizawa, S.-I., and, T. Kubori. 1998. Bacterial flagellation and cell division. Genes Cells 3:110.
2. Allen, R. D., and, P. Baumann. 1971. Structure and arrangement of flagella in species of the genus Beneckea and Photo-bacterium fischeri. J. Bacteriol. 107:295302.
3. Amikam, D., and, M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:36.
4. Anantharaman, V., and, L. Aravind. 2000. Cache—a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25:535537.
5. Aravind, L., and, C. P. Ponting. 1999. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol. Lett. 176:111116.
6. Arora, S. K.,, B. W. Ritchings,, E. C. Almira,, S. Lory, and, R. Ramphal. 1997. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J. Bacteriol. 179:55745581.
7. Darnell, C. L.,, E. A. Hussa, and, K. L. Visick. 2008. The putative hybrid sensor kinase SypF coordinates biofilm formation in Vibrio fischeri by acting upstream of two response regulators, SypG and VpsR. J. Bacteriol. 190:49414950.
8. DeLoney-Marino,, C. R.,, A. J. Wolfe, and, K. L. Visick. 2003. Chemoattraction of Vibrio fischeri to serine, nucleosides and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69:75277530.
9. Dryselius, R.,, K. Kurokawa, and, T. Iida. 2007. Vibrionaceae, a versatile bacterial family with evolutionarily conserved variability. Res. Microbiol. 158:479486.
10. Fuqua, C.,, S. C. Winans, and, E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727751.
11. Galperin, M. Y.,, A. N. Nikolskaya, and, E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:1121.
12. Graf, J.,, P. V. Dunlap, and, E. G. Ruby. 1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176:69866991.
13. Graf, J., and, E. G. Ruby. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:18181822.
14. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:18351842.
15. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. A. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477483.
16. Hickman, J. W., and, C. S. Harwood. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376389.
17. Hussa, E. A.,, T. M. O’Shea,, C. L. Darnell,, E. G. Ruby, and, K. L. Visick. 2007. Two-component response regulators of Vibrio fischeri: their identification, mutagenesis and characterization. J. Bacteriol. 189:58255838.
18. Jones, B. W., and, M. K. Nishiguchi. 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144:11511155.
19. Kehres, D. G., and, M. E. Maguire. 2002. Structure, properties and regulation of magnesium transport proteins. Biometals 15:261270.
20. Lee, K.-H., and, E. G. Ruby. 1994. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60:15651571.
21. Lee, V. T.,, J. M. Matewish,, J. L. Kessler,, M. Hyodo,, Y. Hayakawa, and, S. Lory. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:14741484.
22. Maguire, M. E., and, J. A. Cowan. 2002. Magnesium chemistry and biochemistry. Biometals 15:203210.
23. Marchler-Bauer,, A.,, J. B. Anderson,, M. K. Derbyshire,, C. DeWeese-Scott,, N. R. Gonzales,, M. Gwadz,, L. Hao,, S. He,, D. I. Hurwitz,, J. D. Jackson,, Z. Ke,, D. Krylov,, C. J. Lanczycki,, C. A. Liebert,, C. Liu,, F. Lu,, S. Lu,, G. H. Marchler,, M. Mullokandov,, J. S. Song,, N. Thanki,, R. A. Yamashita,, J. J. Yin,, D. Zhang, and, S. H. Bryant. 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35:D237D240.
24. McFall-Ngai,, M. J., and, E. G. Ruby. 1998. Sepiolids and vibrios: when first they meet. Reciprocal interactions between host and symbiont lead to the creation of a complex light-emitting organ. BioScience 48:257265.
25. Millikan, D. S., and, E. G. Ruby. 2002. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl. Environ. Microbiol. 68:25192528.
26. Millikan, D. S., and, E. G. Ruby. 2003. FlrA, a σ54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185:35473557.
27. Millikan, D. S., and, E. G. Ruby. 2004. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186:43154325.
28. Moncrief, M. B. C., and, M. E. Maguire. 1999. Magnesium transport in prokaryotes. J. Biol. Inorg. Chem. 4:523527.
29. Morris, J. G., Jr. 2003. Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin. Infect. Dis. 37:272280.
30. Nealson, K. H. 1978. Isolation, identification, and manipulation of luminous bacteria. Methods Enzymol. 57:153166.
31. Nyholm, S. V., and, M. J. McFall-Ngai. 2003. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69:39323937.
32. Nyholm, S. V., and, M. J. McFall-Ngai. 1998. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195:8997.
33. Nyholm, S. V., and, M. J. McFall-Ngai. 2004. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2:632642.
34. Nyholm, S. V.,, E. V. Stabb,, E. G. Ruby, and M. J. McFall-Ngai. 2000. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 97:1023110235.
35. O’Shea,, T. M.,, C. R. DeLoney-Marino,, S. Shibata,, S.-I. Aizawa,, A. J. Wolfe, and, K. L. Visick. 2005. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187:20582065.
36. O’Shea,, T. M.,, A. H. Klein,, K. Geszvain,, A. J. Wolfe, and, K. L. Visick. 2006. Diguanylate cyclases control magnesium-dependent motility of Vibrio fischeri. J. Bacteriol. 188:81968205.
37. Papp-Wallace,, K. M., and, M. E. Maguire. 25 September 2008, posting date. Chapter 5.4.4.2, Magnesium transport and magnesium homeostasis. In A. Bock,, R. Curtiss III,, J. B. Kaper,, F. C. Neidhardt,, T. Nystrom,, K. E. Rudd, and, C. L. Squires (ed.), EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC. http://www.ecosal.org.
38. Prouty, M. G.,, N. E. Correa, and, K. E. Klose. 2001. The novel cr54- and cr28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39:15951609.
39. Prüp, B. M.,, D.-J. Kim,, S. Forst,, R. T. Fleming,, K. L. Visick, and, A. J. Wolfe. 2005. Genomics of flagella, p. 1-12. In B. M. Prüp (ed.), Global Regulatory Networks in Enteric Bacteria. Research Signpost, Kerala, India.
40. Robertson, J. D. 1965. Studies on the chemical composition of muscle tissue. III. The mantle muscle of cephalopod molluscs. J. Exp. Biol. 42:153175.
41. Römling, U.,, M. Gomelsky, and, M. Y. Galperin. 2005. C-di-GMP: the dawning of a novel bacterial signaling system. Mol. Microbiol. 57:629639.
42. Ross, P.,, Y. Aloni,, H. Weinhouse,, D. Michaeli,, P. Ohana,, R. Mayer, and, M. Benziman. 1986. Control of cellulose synthesis in A. xylinum. A unique guanyl oligonucleotide is the immediate activator of cellulose synthase. Carbohydr. Res. 149:101117.
43. Ross, P.,, Y. Aloni,, H. Weinhouse,, D. Michaeli,, P. Ohana,, R. Mayer, and, M. Benziman. 1985. The unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett. 186:191196.
44. Ross, P.,, R. Mayer, and, M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55:3558.
45. Ross, P.,, H. Weinhouse,, Y. Aloni,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer,, S. Braun,, E. de Vroom,, G. A. van der Marel,, J. H. van Boom, and, M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279281.
46. Ruby, E. G. 2008. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6:752762.
47. Ruby, E. G., and, L. M. Asato. 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:160167.
48. Ruby, E. G., and, K. H. Nealson. 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biol. Bull. 151:574586.
49. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102:30043009.
50. Stabb, E. V. 2006. The Vibrio fischeri-Euprymna scolopes light organ symbiosis, p. 204-218. In F. L. Thompson et al. (ed.), The Biology of Vibrios. ASM Press, Washington, DC.
51. Stabb, E. V.,, M. S. Butler, and, D. M. Adin. 2004. Correlation between osmolarity and luminescence of symbiotic Vibrio fischeri strain ES114. J. Bacteriol. 186:29062908.
52. Taylor, B. L., and, I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479506.
53. Visick, K. L., and, M. J. McFall-Ngai. 2000. An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J. Bacteriol. 182:17791787.
54. Visick, K. L., and, E. G. Ruby. 2006. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol. 9:632638.
55. Wei, S. L., and, R. E. Young. 1989. Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euprymna scolopes. Mar. Biol. 103:541546.
56. Wolfe, A. J.,, D. S. Millikan,, J. M. Campbell, and, K. L. Visick. 2004. Vibrio fischeri σ54 controls motility, biofilm formation, luminescence and colonization. Appl. Environ. Microbiol. 70:25202524.
57. Wolfe, A. J., and, K. L. Visick. 2008. Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J. Bacteriol. 190:463475.
58. Yildiz, F. H., and, K. L. Visick. 2009. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 17:109118.
59. Yip, E. S.,, K. Geszvain,, C. R. DeLoney-Marino, and, K. L. Visick. 2006. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62:15861600.
60. Yip, E. S.,, B. T. Grublesky,, E. A. Hussa, and, K. L. Visick. 2005. A novel, conserved cluster of genes promotes symbiotic colonization and c54-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57:14851498.
61. Zhulin, I. B.,, A. N. Nikolskaya, and, M. Y. Galperin. 2003. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in Bacteria and Archaea. J. Bacteriol 185:285294.

Tables

Generic image for table
Table 1

Genes predicted to control c-di-GMP levels in

Citation: Wolfe A, Visick K. 2010. Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in , p 186-200. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error