1887

Chapter 17 : Cyclic Di-GMP Signaling in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cyclic Di-GMP Signaling in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap17-2.gif

Abstract:

The physiological role of cyclic di-GMP (c-di-GMP) in has emerged from the analysis of phenotypes of mutants unable to produce GGDEF/EAL/HD-GYP proteins as well as from phenotypes of strains overproducing GGDEF/EAL/HD-GYP proteins. In , c-di-GMP is involved in the regulation of multiple cellular processes including biofilm formation, motility, and virulence. This chapter first introduces the processes regulated by c-di-GMP signaling, discusses what is currently known about the involvement of specific GGDEF/EAL/HD-GYP proteins in these processes, and then summarizes our current understanding of regulation of GGDEF/EAL/HD-GYP genes. In , similar to other organisms, c-di-GMP controls a motile-to-sessile lifestyle switch and negatively regulates motility. The importance of c-di-GMP in biology has been conclusively shown in studies involving VieA (VC1652). The VieA response regulator harbors an EAL domain and has phosphodiesterase (PDE) activity. A set of GGDEF/EAL/HD-GYP proteins produce a phenotype only when they are overproduced. Studies in other organisms have indicated that c-di- GMP can regulate motility at least at three different levels: transcriptional, posttranscriptional, and functional. overexpression also affected biofilm formation. Cells with increased c-di-GMP levels exhibited enhanced , , and expression and, consequently, formed thicker and more developed biofilms than those with wild-type levels of c-di-GMP. The role of Plz proteins in intestinal colonization was analyzed using an infant mouse colonization assay. Strains harboring a deletion or a mutated version of the PilZ domain exhibited a decrease in colonization.

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Proteins harboring GGDEF/EAL/HD-GYP domains in There are 31 proteins with GGDEF domains, 10 proteins with GGDEF and EAL domains, 12 proteins with EAL domains, and 9 proteins with HD-GYP domains. Domain information and organization were obtained from The Institute of Genomic Research (TIGR) Comprehensive Microbial Resource. Locations and numbers of transmembrane helices (shown as black rectangles) were determined using the TMHMM 2.0 program. HTH, helix-turn-helix.

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phenotypic characterization of smooth and rugose variants of the O1 El Tor strain A1552. (A) Photos of colony morphologies of smooth and rugose variants were taken after strains were grown at 30°C for 2 days on LB agar plates. (B) 3-D biofilm structures of smooth and rugose variants that are formed 24 h postinoculation in flow cell chambers. Images were acquired with confocal scanning laser microscopy. Top-down (large panels) and orthogonal (side panels) views of biofilms are shown. Bars, 30 μm.

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Model of transcriptional regulation by c-di-GMP in (A) An increase in c-di-GMP level, either by increasing the transcription or activity of a key DGC (CdgA, VpvC, or CdgH) or by decreasing the transcription or activity of a key PDE (MbaA, RocS, VieA, CdgC, or CdpA), enhances biofilm formation. High c-di-GMP levels could decrease expression and/or increase and expression, leading to an increase in biofilm formation. (B) Increased levels of c-di-GMP, either by overproduction of a DGC (CdgF) or deletions of PDEs (VieA or CdgC), repress the transcription of class III and class IV flagellar genes. Although the mechanism by which class III gene expression is repressed is not known, a decrease in the expression of class IV genes can in part be explained by a decrease in transcription of encoding σ, necessary for class IV gene expression. (C) In the classical biotype, the PDE VieA enhances virulence gene expression by decreasing the intracellular c-di-GMP level, which in turn activates and expression. In El Tor strains, the PDE CdgC modulates in vitro virulence factor production. CdgC positively regulates expression; hence, expression of and is increased in the mutant, leading to increased expression of and tcp. In El Tor strains producing low levels of c-di-GMP, mutation of does not affect expression but causes a slight decrease in gene expression.

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816667.ch17
1. Beyhan, S.,, K. Bilecen,, S. R. Salama,, C. Casper-Lindley, and, F. H. Yildiz. 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J. Bacteriol. 189:388402.
2. Beyhan, S.,, L. S. Odell, and, F. H. Yildiz. 2008. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J. Bacteriol. 190:73927405.
3. Beyhan, S.,, A. D. Tischler,, A. Camilli, and, F. H. Yildiz. 2006. Differences in gene expression between the classical and El Tor biotypes of Vibrio cholerae O1. Infect. Immun. 74:36333642.
4. Beyhan, S.,, A. D. Tischler,, A. Camilli, and, F. H. Yildiz. 2006. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J. Bacteriol. 188:36003613.
5. Beyhan, S., and, F. H. Yildiz. 2007. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol. Microbiol. 63:9951007.
6. Bomchil, N.,, P. Watnick, and, R. Kolter. 2003. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185:13841390.
7. Breaker, R. R. 2008. Complex riboswitches. Science 319:17951797.
8. Camilli, A., and, J. J. Mekalanos. 1995. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18:671683.
9. Casper-Lindley,, C., and, F. H. Yildiz. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186:15741578.
10. Fong, J. C.,, K. Karplus,, G. K. Schoolnik, and, F. H. Yildiz. 2006. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J. Bacteriol. 188:10491059.
11. Fong, J. C., and, F. H. Yildiz. 2008. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 190:66466659.
12. Fong, J. C., and, F. H. Yildiz. 2007. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J. Bacteriol. 189:23192330.
13. Freeman, J. A., and, B. L. Bassler. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol. Microbiol. 31:665677.
14. Galperin, M. Y.,, A. N. Nikolskaya, and, E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:1121.
15. Gosink, K. K., and, C. C. Hase. 2000. Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. J. Bacteriol. 182:42344240.
16. Hammer, B. K., and, B. L. Bassler. 2009. Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J. Bacteriol. 191:169177.
17. Hammer, B. K., and, B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50:101104.
18. Hammer, B. K., and, B. L. Bassler. 2007. Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. USA 104:1114511149.
19. Hickman, J. W., and, C. S. Harwood. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376389.
20. Islam, M. S.,, M. I. Jahid,, M. M. Rahman,, M. Z. Rahman,, M. S. Islam,, M. S. Kabir,, D. A. Sack, and, G. K. Schoolnik. 2007. Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh. Microbiol. Immunol. 51:369379.
21. Iwanaga, M.,, K. Yamamoto,, N. Higa,, Y. Ichinose,, N. Nakasone, and, M. Tanabe. 1986. Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol. Immunol. 30:10751083.
22. Kaper, J. B.,, J. G. Morris, Jr., and, M. M. Levine. 1995. Cholera. Clin. Microbiol. Rev. 8:4886.
23. Karatan, E.,, T. R. Duncan, and, P. I. Watnick. 2005. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J. Bacteriol. 187:74347443.
24. Kojima, S.,, K. Yamamoto,, I. Kawagishi, and, M. Homma. 1999. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J. Bacteriol. 181:19271930.
25. Kovacikova, G.,, W. Lin, and, K. Skorupski. 2005. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol. 57:420433.
26. Kovacikova, G., and, K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46:11351147.
27. Kovacikova, G., and, K. Skorupski. 1999. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J. Bacteriol. 181:42504256.
28. Lee, V. T.,, J. M. Matewish,, J. L. Kessler,, M. Hyodo,, Y. Hayakawa, and, S. Lory. 2007. A cyclic-di-GMP eceptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:14741484.
29. Liang, W.,, A. J. Silva, and, J. A. Benitez. 2007. The cyclic AMP-receptor protein modulates colonial morphology in Vibrio cholerae. Appl. Environ. Microbiol. 73:74827487.
30. Lim, B.,, S. Beyhan,, J. Meir, and, F. H. Yildiz. 2006. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol. Microbiol. 60:331348.
31. Lim, B.,, S. Beyhan, and, F. H. Yildiz. 2007. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J. Bacteriol. 189:717729.
32. Martinez-Wilson,, H. F.,, R. Tamayo,, A. D. Tischler,, D. W. Lazinski, and, A. Camilli. 2008. The Vibrio cholerae hybrid sensor kinase VieS contributes to motility and biofilm regulation by altering the cyclic diguanylate level. J. Bacteriol. 190:64396447.
33. Matson, J. S.,, J. H. Withey, and, V. J. DiRita. 2007. Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect. Immun. 75:55425549.
34. McCarter, L. L. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445462.
35. Morris, J. G., Jr.,, M. B. Sztein,, E. W. Rice,, J. P. Nataro,, G. A. Losonsky,, P. Panigrahi,, C. O. Tacket, and, J. A. Johnson. 1996. Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J. Infect. Dis. 174:13641368.
36. Nielsen, A. T.,, N. A. Dolganov,, G. Otto,, M. C. Miller,, C. Y. Wu, and, G. K. Schoolnik. 2006. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog. 2:e109.
37. Pasmore, M., and, J. W. Costerton. 2003. Biofilms, bacterial signaling, and their ties to marine biology. J. Ind. Microbiol. Biotechnol. 30:407413.
38. Pratt, J. T.,, R. Tamayo,, A. D. Tischler, and, A. Camilli. 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem. 282:1286012870.
39. Prouty, M. G.,, N. E. Correa, and, K. E. Klose. 2001. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39:15951609.
40. Rashid, M. H.,, C. Rajanna,, A. Ali, and, D. K. Karaolis. 2003. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol. Lett. 227:113119.
41. Rice, E. W.,, C. J. Johnson,, R. M. Clark,, K. R. Fox,, D. J. Reasoner,, M. E. Dunnigan,, P. Panigrahi,, J. A. Johnson, and J. G. Morris, Jr. 1992. Chlorine and survival of “rugose” Vibrio cholerae. Lancet 340:740.
42. Ryan, R. P.,, Y. Fouhy,, J. F. Lucey,, L. C. Crossman,, S. Spiro,, Y. W. He,, L. H. Zhang,, S. Heeb,, M. Camara,, P. Williams, and, J. M. Dow. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions incyclic di-GMP turnover. Proc. Natl. Acad. Sci. USA 103:67126717.
43. Ryjenkov, D. A.,, R. Simm,, U. Romling, and, M. Gomelsky. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:3031030314.
44. Ryjenkov, D. A.,, M. Tarutina,, O. V. Moskvin, and M. Go-melsky. 2005. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187:17921798.
45. Schild, S.,, R. Tamayo,, E. J. Nelson,, F. Qadri,, S. B. Calder-wood, and, A. Camilli. 2007. Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2:264277.
46. Schmidt, A. J.,, D. A. Ryjenkov, and, M. Gomelsky. 2005. Theubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187:47744781.
47. Skorupski, K., and, R. K. Taylor. 1999. A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol. Microbiol. 31:763771.
48. Sudarsan, N.,, E. R. Lee,, Z. Weinberg,, R. H. Moy,, J. N. Kim, K., H. Link, and, R. R. Breaker. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411413.
49. Tamayo, R.,, S. Schild,, J. T. Pratt, and, A. Camilli. 2008. Role of cyclic di-GMP during El Tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic di-GMP phosphodiesterase CdpA. Infect. Immun. 76:16171627.
50. Tamayo, R.,, A. D. Tischler, and, A. Camilli. 2005. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280:3332433330.
51. Tischler, A. D., and, A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53:857869.
52. Tischler, A. D., and, A. Camilli. 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun. 73:58735882.
53. Tischler, A. D.,, S. H. Lee, and, A. Camilli. 2002. The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production. J. Bacteriol. 184:41044113.
54. Vance, R. E.,, J. Zhu, and, J. J. Mekalanos. 2003. A constitutively active variant of the quorum-sensing regulator LuxO affects protease production and biofilm formation in Vibrio cholerae. Infect. Immun. 71:25712576.
55. Waters, C. M., and, B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319346.
56. Waters, C. M.,, W. Lu,, J. D. Rabinowitz, and, B. L. Bassler. 2008. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J. Bacteriol. 190:25272536.
57. Winkler, W. C., and, R. R. Breaker. 2005. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59:487517.
58. Wolfe, A. J., and, K. L. Visick. 2008. Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-basedmotility. J. Bacteriol. 190:463475.
59. Yildiz, F. H.,, N. A. Dolganov, and, G. K. Schoolnik. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPSETr-associated phenotypes in Vibrio cholerae O1 El Tor. J. Bacteriol. 183:17161726.
60. Yildiz, F. H., and, R. Kolter. 2008. Genetics and microbiology of biofilm formation by Vibrio cholerae, p. 123-139. In S. M. Faruque and, G. B. Nair (ed.), Vibrio cholerae: Genomics and Molecular Biology. Caister Academic Press, Norfolk, United Kingdom.
61. Yildiz, F. H.,, X. S. Liu,, A. Heydorn, and, G. K. Schoolnik. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 53:497515.
62. Yildiz, F. H., and, G. K. Schoolnik. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA 96:40284033.
63. Zhu, J., and, J. J. Mekalanos. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev.Cell 5:647656.

Tables

Generic image for table
Table 1

Genes encoding proteins with GGDEF and EAL domains in

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Generic image for table
Table 2

Genes encoding proteins with an EAL domain in

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Generic image for table
Table 3

Genes encoding proteins with a GGDEF domain in V.

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Generic image for table
Table 4.

Effect of overexpression of the genes encoding GGDEF/EAL/HD-GYP proteins and virulence phenotypes

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17
Generic image for table
Table 5

Regulation of GGDEF/EAL/HD-GYP genes in Gene identification

Citation: Beyhan S, Yildiz F. 2010. Cyclic Di-GMP Signaling in , p 253-269. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error