1887

Chapter 21 : Cyclic Di-GMP Signaling and Host Immunity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cyclic Di-GMP Signaling and Host Immunity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap21-2.gif

Abstract:

Testing the hypothesis that cyclic Di-GMP (c-di-GMP) can be used clinically to inhibit infection, synthetic exogenous c-di-GMP was found not to be bactericidal or bacteriostatic but could significantly inhibit biofilm formation in vitro. Subsequent studies have clearly shown that c-di-GMP exerts important immunomodulatory effects on host immune cells that participate in antibacterial immunity. The generation of acquired immunity is necessary for effective cellular and humoral responses to invading pathogens. Dendritic cells (DC) are the most potent antigen-presenting cells and are integrated within mucosal surfaces, where they are well positioned to survey antigens. The higher antibody titer produced suggests that c-di-GMP (and its analogs) can be used instead of alum as an immune modulator or vaccine adjuvant. These findings demonstrate that local or systemic c-di-GMP administration stimulates innate and adaptive immunity against invasive and systemic disease and that c-di-GMP can be used as an effective broad-spectrum immunomodulator and vaccine adjuvant to prevent infectious diseases. The mechanism of internalization is uncertain, but passive diffusion, rather than active transport, is thought to be the most likely route. While the functional significance of naturally bacterium-derived c-di-GMP in regulating immunological response is largely untested, based on data from numerous in vivo and in vitro models, it is clear that c-di-GMP has drug-like properties and can affect host immunity.

Citation: Karaolis D, Standiford T. 2010. Cyclic Di-GMP Signaling and Host Immunity, p 304-310. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch21

Key Concept Ranking

Immune Systems
0.5246992
Major Histocompatibility Complex Class II
0.45764077
Major Histocompatibility Complex
0.42580622
0.5246992
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Molecular structure of c-di-GMP. Gua, guanine.

Citation: Karaolis D, Standiford T. 2010. Cyclic Di-GMP Signaling and Host Immunity, p 304-310. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic depicting effects of c-di-GMP on type 1 cytokine production and antibody class switching. c-di-GMP promotes DC IL-12 production and antigen presentation, resulting in enhanced production of type 1 cytokines (e.g., IFN by T cells and NK cells. In the presence of IFN B cells switch from predominantly IgM production to IgG2a production. TCR, T-cell receptor; MHC, major histocompatibility complex class II.

Citation: Karaolis D, Standiford T. 2010. Cyclic Di-GMP Signaling and Host Immunity, p 304-310. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic summarizing immunomodulatory effects of c-di-GMP on myeloid and structural cells (e.g., dendritic cells, PMN, macrophages, NK cells, T and B cells, and cancer cells). APC, antigen-presenting cell.

Citation: Karaolis D, Standiford T. 2010. Cyclic Di-GMP Signaling and Host Immunity, p 304-310. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816667.ch21
1. Amikam, D., and, M. Benziman. 1989. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 171:66496655.
2. Amikam, D.,, O. Steinberger,, T. Shkolnik, and, Z. Ben-Ishai. 1995. The novel cyclic dinucleotide 3′-5′ cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem. J. 311(Pt 3):921927.
3. Banchereau, J., and, R. M. Steinman. 1998. Dendritic cells and control of immunity. Nature 392:245252.
4. Brouillette, E.,, M. Hyodo,, Y. Hayakawa,, D. K. R. Karaolis, and, F. Malouin. 2005. 3′,5′-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob. Agents Chemother. 49:31093113.
5. Coffman, R. L.,, H. F. Savelkoul, and, D. A. Lebman. 1989. Cytokine regulation of immunoglobulin isotype switching and expression. Semin. Immunol. 1:5563.
6. D’Argenio,, D. A.,, M. W. Calfee,, P. B. Rainey, and, E. C. Pesci. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184:64816489.
7. D’Argenio,, D. A., and, S. I. Miller. 2004. Cyclic di-GMP as a bacterial second messenger. Microbiology 150:24972502.
8. Ferlazzo, G.,, B. Morandi,, A. D’Agostino,, R. Meazza,, G. Melioli,, A. Moretta, and, L. Moretta. 2003. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Euro. J. Immunol. 33:306313.
9. Galperin, M. Y.,, A. N. Nikolskaya, and, E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:1121.
10. Hajjar, A. M.,, H. Harowicz,, H. D. Liggitt,, P. J. Fink,, C. B. Wilson, and, S. J. Skerrett. 2005. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia. Am. J. Respir. Cell Mol. Biol. 33:470475.
11. Hayakawa, Y.,, R. Nagata,, A. Hirata,, M. Hyodo, and, R. Kawai. 2003. A facile synthesis of cyclic bis(3′-5′) diguanylic acid. Tetrahedron 59:64656471.
12. Hecht, G. B., and, A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177:62236229.
13. Hyodo, M., and, Y. Hayakawa. 2004. An improved method for synthesizing cyclic bis(3′-5′)diguanylic acid (c-di-GMP). Bull. Chem. Soc. Jpn. 77:20892093.
14. Hyodo, M.,, Y. Hayakawa, and, D. K. R. Karaolis. 2006. Organic synthesis, chemical properties, and biological activities of cyclic bis(3′-5′)diguanylic acid (c-di-GMP) and its analogs. J. Synth. Org. Chem. Jpn. 64:359370.
15. Jahnsen, F. L.,, D. H. Strickland,, J. A. Thomas,, I. T. Tobagus,, S. Napoli,, G. R. Zosky,, D. J. Turner,, P. D. Sly,, P. A. Stumbles, and, P. G. Holt. 2006. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177:58615867.
16. Jones, H. A.,, J. W. Lillard, Jr., and, R. D. Perry. 1999. HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145(Pt 8):21172128.
17. Karaolis, D. K. R.,, K. Cheng,, M. Lipsky,, A. Elnabawi,, J. Catalano,, M. Hyodo,, Y. Hayakawa, and, J.-P. Raufman. 2005. 3′,5′-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem. Biophys. Res. Commun. 329:4045.
18. Karaolis, D. K. R.,, T. K. Means,, D. Yang,, M. Takahashi,, T., Yoshimura,, E. Muraille,, D. Philpott,, J. T. Schroeder,, M. Hyodo,, Y. Hayakawa,, B. G. Talbot,, E. Brouillette, and, F. Malouin. 2007. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol. 178:21712181.
19. Karaolis, D. K. R.,, M. W. Newstead,, X. Zeng,, M. Hyodo,, Y., Hayakawa,, U. Bhan,, H. Liang, and, T. J. Standiford. 2007. c-di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect. Immun. 75:49424950.
20. Karaolis, D. K. R.,, M. H. Rashid,, C. Rajanna,, W. Luo,, M. Hyodo, and, Y. Hayakawa. 2005. c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob. Agents Chemother. 49:10291038.
21. Karaolis, D. K. R.,, T. K. Means,, E. Brouillette,, B. G. Talbot,, D. Yang,, E. Muraille,, M. Hyodo,, Y. Hayakawa, and, F. Malouin. 2006. c-di-GMP is an immunostimulatory molecule with prophylactic and adjuvant activity, abstr. E-060, p. 235. Abstr. 106th Gen. Meet. Am. Soc. Microbiol., Orlando, FL, 21 to 25 May 2006.
22. Ogunniyi, A. D.,, J. C. Paton,, A. C. Kirby,, J. A. McCullers,, J. Cook,, M. Hyodo,, Y. Hayakawa, and, D. K. Karaolis. 2008. c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine 26:46764685.
23. Rashid, M. H.,, C. Rajanna,, A. Ali, and, D. K. R. Karaolis. 2003. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol. Lett. 227:113119.
24. Romagnani, P.,, F. Annunziato,, E. Lazzeri,, L. Cosmi,, C. Beltrame,, L. Lasagni,, G. Galli,, M. Francalanci,, R. Manetti,, F. Marra,, V. Vanini,, E. Maggi, and, S. Romagnani. 2001. Interferon-inducible protein 10, monokine induced by interferon gamma, and interferon-inducible T-cell alpha chemoat-tractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) alphabeta+ CD8 + single-positive T cells, TCRgammadelta+ T cells, and natural killer-type cells in human thymus. Blood 97:601607.
25. Römling, U., and, D. Amikam. 2006. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 2:218228.
26. Römling, U.,, M. Gomelsky, and, M. Y. Galperin. 2005. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57:629639.
27. Römling, U.,, M. Rohde,, A. Olsen,, S. Normark, and, J. Reinkoster. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36:1023.
28. Ross, P.,, Y. Aloni,, C. Weinhouse,, D. Michaeli,, P. Weinberger-Ohana,, R. Meyer, and, M. Benziman. 1985. An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett. 186:191196.
29. Ross, P.,, Y. Aloni,, H. Weinhouse,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer, and, M. Benziman. 1986. Control of cellulose synthesis in Acetobacter xylinum: a unique guanyl oli-gonucleotide is the immediate activator of the cellulose synthase. Carbohydr. Res. 149:101117.
30. Ross, P.,, H. Weinhouse,, Y. Aloni,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer,, S. Braun,, E. de Vroom,, G. A. van der Marel,, J. H. van Boom, and, M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279281.
31. Steinberger, O.,, Z. Lapidot,, Z. Ben-Ishai, and, D. Amikam. 1999. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3′,5′-cyclic diguanylic acid. FEBS Lett. 444:125129.
32. Tsai, W. C.,, R. Strieter,, D. A. Zisman,, J. M. Wilkowski,, K. A. Bucknell,, G.-H. Chen, and, T. J. Standiford. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun. 65:18701875.
33. von Garnier,, C.,, L. Filgueira,, M. Wikstrom,, M. Smith,, J. A. Thomas,, D. H. Strickland,, P. G. Holt, and, P. A. Stumbles. 2005. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratorytract. J. Immunol. 175:16091618.
34. Zeng, X.,, T. A. Moore,, M. W. Newstead,, J. C. Deng,, S. L. Kunkel,, A. D. Luster, and, T. J. Standiford. 2005. Interferon-inducible protein 10, but not monokine induced by gamma interferon, promotes protective type 1 immunity in murine Klebsiella pneumoniae pneumonia. Infect. Immun. 73:82268236.

Tables

Generic image for table
Table 1

Potential clinical applications of cyclic dinucleotides

Citation: Karaolis D, Standiford T. 2010. Cyclic Di-GMP Signaling and Host Immunity, p 304-310. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error