Chapter 22 : Bis-(3′,5′)-Cyclic Di-GMP: Promising Adjuvant for Vaccine Design

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Bis-(3′,5′)-Cyclic Di-GMP: Promising Adjuvant for Vaccine Design, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap22-2.gif


Vaccines represent the most cost-efficient intervention against infections, and their therapeutic use against infections, cancer, and chronic inflammatory diseases raised considerable interest. Traditional vaccines were based on the use of killed or attenuated microorganisms or relatively crude antigenic extracts. Adjuvants can exert their biological activity through different mechanisms, such as (i) affecting the intrinsic properties of a given antigen, (ii) creating a depot which results in slow antigen release, and (iii) direct targeting and activation of key components of the innate immune system. Thus, adjuvants not only promote the induction of strong immune responses, thereby reducing the amount of antigen needed (i.e., antigen sparing), but also enable us to fine-tune the elicited responses through their immune modulatory properties. In this regard, it would be particularly appealing to identify nonprotein compounds exhibiting activity as mucosal adjuvants, which are poorly immunogenic and amenable for incorporation in different vaccine formulations. Immunization with model antigens coadministered with cyclic di-GMP (c-di-GMP) by the i.n. route resulted in a significantly improved stimulation of antigen-specific immune responses at both the systemic and mucosal levels in comparison to mice immunized by the parenteral route. In the particular case of c-di-GMP, pretreatment or coadministration to animals receiving a bacterial challenge resulted in enhanced clearance.

Citation: Ebensen T, Libanova R, Guzmán C. 2010. Bis-(3′,5′)-Cyclic Di-GMP: Promising Adjuvant for Vaccine Design, p 311-319. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch22

Key Concept Ranking

Major Histocompatibility Complex
Macrophage Inflammatory Protein 1 alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Vaccination with an antigen stimulates the innate and adaptive immune responses which afford humoral and cellular immunity.

Citation: Ebensen T, Libanova R, Guzmán C. 2010. Bis-(3′,5′)-Cyclic Di-GMP: Promising Adjuvant for Vaccine Design, p 311-319. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Coadministration of c-di-GMP as a parenteral or mucosal adjuvant with model- or disease-related antigens resulted in efficient humoral and cellular immune responses in the host.

Citation: Ebensen T, Libanova R, Guzmán C. 2010. Bis-(3′,5′)-Cyclic Di-GMP: Promising Adjuvant for Vaccine Design, p 311-319. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Coadministration of c-di-GMP stimulates a broad spectrum of antigen-specific immune responses irrespective of the administration route (8, 9, 18). Animals were immunized with phosphate-buffered saline alone (control), model antigens alone, such as ovalbumin (OVA) or β-galactosidase (β-Gal), or antigen coadministered with c-di-GMP on days 0, 14, and 28. Mice showed strong antigen-specific humoral and cellular immune responses in comparison to mice vaccinated with the antigen alone.

Citation: Ebensen T, Libanova R, Guzmán C. 2010. Bis-(3′,5′)-Cyclic Di-GMP: Promising Adjuvant for Vaccine Design, p 311-319. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bobrov, A. G.,, O. Kirillina, and, R. D. Perry. 2007. Regulation of biofilm formation in Yersinia pestis. Adv. Exp. Med. Biol. 603:201210.
2. Brouillette, E.,, M. Hyodo,, Y. Hayakawa,, D. K. Karaolis, and, F. Malouin. 2005. 3′,5′-Cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob. Agents Chemother. 49:31093113.
3. Burdin, N.,, B. Guy, and, P. Moingeon. 2004. Immunological foundations to the quest for new vaccine adjuvants. BioDrugs 18:7993.
4. Cavallo, F.,, A. Astolfi,, M. Iezzi,, F. Cordero,, P. L. Lollini,, G. Forni, and, R. Calogero. 2005. An integrated approach of im-munogenomics and bioinformatics to identify new tumor associated antigens (TAA) for mammary cancer immunological prevention. BMC Bioinformatics 6(Suppl. 4):S7.
5. Cotter, P. A., and, S. Stibitz. 2007. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10:1723.
6. Di Guilmi,, A. M., and, A. Dessen. 2002. New approaches towards the identification of antibiotic and vaccine targets in Streptococcus pneumoniae. EMBO Rep. 3:728734.
7. Douce, G.,, M. Fontana,, M. Pizza,, R. Rappuoli, and, G. Dougan. 1997. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect. Immun. 65:28212828.
8. Ebensen, T.,, K. Schulze,, P. Riese,, C. Link,, M. Morr, and, C. A. Guzmán. 2007. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine 25:14641469.
9. Ebensen, T.,, K. Schulze,, P. Riese,, M. Morr, and, C. A. Guzmán. 2007. The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant. Clin. Vaccine Immunol. 14:952958.
10. Guy, B., and, N. Burdin. 2005. New adjuvants for parenteral and mucosal vaccines. Therapie 60:235241.
11. Hammer, B. K., and, B. L. Bassler. 2009. Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J. Bacteriol. 191:169177.
12. Harwood, C. 2008. A microbiologist hopes to disrupt bacterial ‘decisions’. Nature 455:5.
13. Hermans, I. F.,, J. D. Silk,, J. Yang,, M. J. Palmowski,, U. Gileadi,, C. McCarthy,, M. Salio,, F. Ronchese, and, V. Cerundolo. 2004. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J. Immunol. Methods 285:2540.
14. Hickman, J. W.,, D. F. Tifrea, and, C. S. Harwood. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci.USA 102:1442214427.
15. Huang, S. H.,, S. Frydas,, D. Kempuraj,, R. C. Barbacane,, A. Grilli,, W. Boucher,, R. Letourneau,, B. Madhappan,, N. Papadopoulou,, N. Verna,, M. A. De Lutiis,, T. Iezzi,, G. Riccioni,, T. C. Theoharides, and, P. Conti. 2004. Interleukin-17 and the interleukin-17 family member network. Allergy Asthma Proc. 25:1721.
16. Jackson, D. W.,, J. W. Simecka, and, T. Romeo. 2002. Catabolite repression of Escherichia coli biofilm formation. J. Bacteriol. 184:34063410.
17. Karaolis, D. K.,, K. Cheng,, M. Lipsky,, A. Elnabawi,, J. Catalano,, M. Hyodo,, Y. Hayakawa, and, J. P. Raufman. 2005. 3′,5′-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem. Biophys. Res. Commun. 329:4045.
18. Karaolis, D. K.,, T. K. Means,, D. Yang,, M. Takahashi,, T., Yoshimura,, E. Muraille,, D. Philpott,, J. T. Schroeder,, M. Hyodo,, Y. Hayakawa,, B. G. Talbot,, E. Brouillette, and, F. Malouin. 2007. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol. 178:21712181.
19. Karaolis, D. K.,, M. W. Newstead,, X. Zeng,, M. Hyodo,, Y. Hayakawa,, U. Bhan,, H. Liang, and, T. J. Standiford. 2007. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect. Immun. 75:49424950.
20. Karaolis, D. K.,, M. H. Rashid,, R. Chythanya,, W. Luo,, M. Hyodo, and, Y. Hayakawa. 2005. c-di-GMP (3′-5′-cyclic di-guanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob. Agents Chemother. 49:10291038.
21. Kawaguchi, M.,, M. Adachi,, N. Oda,, F. Kokubu, and, S. K. Huang. 2004. IL-17 cytokine family. J. Allergy Clin. Immunol. 114:12651273.
22. Kawaguchi, M.,, F. Kokubu,, M. Odaka,, S. Watanabe,, S. Suzuki,, K. Ieki,, S. Matsukura,, M. Kurokawa,, M. Adachi, and, S. K. Huang. 2004. Induction of granulocyte-macrophage colony-stimulating factor by a new cytokine, ML-1 (IL-17F), via Raf I-MEK-ERK pathway. J. Allergy Clin. Immunol. 114:444450.
23. Kelly, M. N.,, J. K. Kolls,, K. Happel,, J. D. Schwartzman,, P. Schwarzenberger,, C. Combe,, M. Moretto, and, I. A. Khan. 2005. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorpho-nuclear response against Toxoplasma gondii infection. Infect. Immun. 73:617621.
24. Kolls, J. K., and, A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21:467476.
25. Lizotte-Waniewski,, M.,, W. Tawe,, D. B. Guiliano,, W. Lu,, J. Liu,, S. A. Williams, and, S. Lustigman. 2000. Identification of potential vaccine and drug target candidates by expressed sequence tag analysis and immunoscreening of Onchocerca volvulus larval cDNA libraries. Infect. Immun. 68:34913501.
26. Luther, S. A., and, J. G. Cyster. 2001. Chemokines as regulators of T cell differentiation. Nat. Immunol. 2:102107.
27. Notley-McRobb,, L.,, A. Death, and, T. Ferenci. 1997. The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143(Pt 6):19091918.
28. Ochoa de Alda,, J. A.,, G. Ajlani, and, J. Houmard. 2000. Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J. Bacteriol. 182:38393842.
29. Ochoa de Alda,, J. A., and, J. Houmard. 2000. Genomic survey of cAMP and cGMP signalling components in the cyanobacterium Synechocystis PCC 6803. Microbiology 146(Pt 12):31833194.
30. Ogunniyi, A. D.,, J. C. Paton,, A. C. Kirby,, J. A. McCullers,, J. Cook,, M. Hyodo,, Y. Hayakawa, and, D. K. Karaolis. 2008. c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine 26:46764685.
31. Rashid, M. H.,, C. Rajanna,, A. Ali, and, D. K. Karaolis. 2003. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol. Lett. 227:113119.
32. Romling, U. 2008. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal. 1:pe39.
33. Romling, U., and, D. Amikam. 2006. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9:218228.
34. Ross, P.,, R. Mayer, and, M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55:3558.
35. Schulze, K.,, E. Medina,, G. S. Chhatwal, and, C. A. Guzmán. 2003. Stimulation of long-lasting protection against Streptococcus pyogenes after intranasal vaccination with non adju-vanted fibronectin-binding domain of the Sfbl protein. Vaccine 21:19581964.
36. Simm, R.,, J. D. Fetherston,, A. Kader,, U. Romling, and, R. D. Perry. 2005. Phenotypic convergence mediated by GGDEF-domain-containing proteins. J. Bacteriol. 187:68166823.
37. Simm, R.,, M. Morr,, A. Kader,, M. Nimtz, and, U. Romling. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. 53:11231134.
38. Stanic, A. K.,, A. D. De Silva,, J. J. Park,, V. Sriram,, S. Ichikawa,, Y. Hirabyashi,, K. Hayakawa,, L. Van Kaer,, R. R. Brutkiewicz, and, S. Joyce. 2003. Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by beta-D-glucosylceramide synthase deficiency. Proc. Natl. Acad. Sci. USA 100:18491854.
39. Stevceva, L., and, M. G. Ferrari. 2005. Mucosal adjuvants. Curr. Pharm. Des. 11:801811.
40. Tagliabue, A., and, R. Rappuoli. 2008. Vaccine adjuvants: the dream becomes real. Hum. Vaccin. 4:347349.
41. Tamayo, R.,, J. T. Pratt, and, A. Camilli. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61:131148.
42. Teicher, B. A. 2000. Molecular targets and cancer therapeutics: discovery, development and clinical validation. Drug Resist. Updat. 3:6773.
43. Tischler, A. D., and, A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53:857869.
44. Tischler, A. D., and, A. Camilli. 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun. 73:58735882.
45. van Ginkel,, F. W.,, R. J. Jackson,, Y. Yuki, and, J. R. McGhee. 2000. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165:47784782.
46. Witowski, J.,, K. Ksiazek, and, A. Jorres. 2004. Interleukin-17: a mediator of inflammatory responses. Cell. Mol. Life Sci. 61:567579.
47. Witte, G.,, S. Hartung,, K. Buttner, and, K. P. Hopfner. 2008. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30:167178.
48. Zareba, G. 2006. A new combination vaccine for measles, mumps, rubella and varicella. Drugs Today (Barcelona) 42:321329.
49. Zou, G. M., and, Y. K. Tam. 2002. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur. Cytokine Netw. 13:186199.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error