Chapter 23 : Cyclic Di-GMP: Using the Past To Peer into the Future

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Cyclic Di-GMP: Using the Past To Peer into the Future, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555816667/9781555814991_Chap23-2.gif


Just over 20 years have elapsed since cyclic di-GMP (c-di-GMP) was discovered as an allosteric effector of cellulose biosynthesis. This chapter dispels myths concerning current paradigms and highlight key questions currently under investigation. Bioinformatics, and the prevalence of this molecule, provided the necessary boost to lift the study of c-di-GMP from a single laboratory to a community of researchers. Most often, these dual-domain proteins possess one highly conserved domain and one poorly conserved domain and exhibit a single activity: the one from the more well conserved domain. In some cases, enzymatically inactive domains can bind the substrate: GTP by the inactive GGDEF domain for phosphodiesterases (PDEs) and c-di-GMP by the inactive EAL domain for diguanylate cyclases (DGCs). To regulate cellular processes, c-di-GMP must be sensed. Thus, effectors must exist that bind c-di-GMP and, in response, impact some downstream target. It is widely accepted that biofilm formation is a major virulence factor for many pathogenic bacteria. Importantly, biofilm cells exhibit significantly increased resistance to antibiotics and other stresses. Beyond controlling bacterial infections, c-di-GMP may also be useful for stimulating the immune system. In most cases, the REC domain within the response regulator is linked to an effector domain. In the majority of these cases, this effector domain functions in the binding of the response regulator to DNA.

Citation: Visick K, Wolfe A. 2010. Cyclic Di-GMP: Using the Past To Peer into the Future, p 323-332. In Wolfe A, Visick K (ed), The Second Messenger Cyclic Di-GMP. ASM Press, Washington, DC. doi: 10.1128/9781555816667.ch23

Key Concept Ranking

Klebsiella pneumoniae
Signal Transduction
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Amikam, D., and, M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:36.
2. Barends, T. R.,, E. Hartmann,, J. J. Griese,, T. Beitlich,, N. V. Kirienko,, D. A. Ryjenkov,, J. Reinstein,, R. L. Shoeman,, M. Gomelsky, and, I. Schlichting. 2009. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459:10151018.
3. Benach, J.,, S. S. Swaminathan,, R. Tamayo,, S. K. Handelman,, E. Folta-Stogniew,, J. E. Ramos,, F. Forouhar,, H. Neely,, J. Seetharaman,, A. Camilli, and, J. F. Hunt. 2007. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J. 26:51535166.
4. Bender, A. T., and, J. A. Beavo. 2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488520.
5. Beyhan, S.,, L. S. Odell, and, F. H. Yildiz. 2008. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J. Bacteriol. 190:73927405.
6. Bourret, R. B.,, J. F. Hess,, K. A. Borkovich,, A. A. Pakula, and, M. I. Simon. 1989. Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. J. Biol. Chem. 264:70857088.
7. Brouillette, E.,, M. Hyodo,, Y. Hayakawa,, D. K. Karaolis, and, F. Malouin. 2005. 3′,5′-Cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob. Agents Chemother. 49:31093113.
8. Brunton, L. L. 2003. PDE4: arrested at the border. Sci. STKE 2003:PE44.
9. Bryers, J. D. 2008. Medical biofilms. Biotechnol. Bioeng. 100:118.
10. Chan, C.,, R. Paul,, D. Samoray,, N. C. Amiot,, B. Giese,, U. Jenal, and, T. Schirmer. 2004. Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101:1708417089.
11. Christen, B.,, M. Christen,, R. Paul,, F. Schmid,, M. Folcher,, P. Jenoe,, M. Meuwly, and, U. Jenal. 2006. Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281:3201532024.
12. Christen, M.,, B. Christen,, M. G. Allan,, M. Folcher,, P. Jeno,, S. Grzesiek, and, U. Jenal. 2007. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 104:41124117.
13. Christen, M.,, B. Christen,, M. Folcher,, A. Schauerte, and, U. Jenal. 2005. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280:3082930837.
14. Costerton, J. W.,, P. S. Stewart, and, E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
15. De, N.,, M. Pirruccello,, P. V. Krasteva,, N. Bae,, R. V. Raghavan, and, H. Sondermann. 2008. Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoSBiol. 6:e67.
16. Delgado-Nixon,, V. M.,, G. Gonzalez, and, M. A. Gilles-Gonzalez. 2000. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39:26852691.
17. Duerig, A.,, S. Abel,, M. Folcher,, M. Nicollier,, T. Schwede,, N. Amiot,, B. Giese, and, U. Jenal. 2009. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev. 23:93104.
18. Dunny, G. M., and, S. C. Winans (ed.). 1999. Cell-Cell Signaling in Bacteria. American Society for Microbiology Press, Washington, DC.
19. Gao, R.,, T. R. Mack, and, A. M. Stock. 2007. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci. 32:225234.
20. Gjermansen, M.,, P. Ragas, and, T. Tolker-Nielsen. 2006. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol. Lett. 265:215224.
21. Hazelbauer, G. L.,, J. J. Falke, and, J. S. Parkinson. 2008. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem. Sci. 33:919.
22. Hecht, G., and, A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177:62236229.
23. Hengge, R. 2009. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7:263273.
24. Hoch, J. A., and, T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. ASM Press, Washington, DC.
25. Igo, M. M.,, J. M. Slauch, and, T. J. Silhavy. 1990. Signal transduction in bacteria: kinases that control gene expression. New Biol. 2:59.
26. Jenal, U., and, J. Malone. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40:385407.
27. Karaolis, D. K.,, M. H. Rashid,, R. Chythanya,, W. Luo,, M. Hyodo, and, Y. Hayakawa. 2005. c-di-GMP (3′-5′-cyclic di-guanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob. Agents Chemother. 49:10291038.
28. Karatan, E.,, T. R. Duncan, and, P. I. Watnick. 2005. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J. Bacteriol. 187:74347443.
29. Karatan, E., and, P. Watnick. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73:310347.
30. Kulasakara, H.,, V. Lee,, A. Brencic,, N. Liberati,, J. Urbach,, S. Miyata,, D. G. Lee,, A. N. Neely,, M. Hyodo,, Y. Hayakawa,, F. M. Ausubel, and, S. Lory. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc. Natl. Acad.Sci. USA 103:28392844.
31. Kumar, M., and, D. Chatterji. 2008. Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology 154:29422955.
32. Lai, T. H.,, Y. Kumagai,, M. Hyodo,, Y. Hayakawa, and, Y. Rikihisa. 2009. The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic di-GMP in host cell infection. J. Bacteriol. 191:693700.
33. Lee, V. T.,, J. M. Matewish,, J. L. Kessler,, M. Hyodo,, Y. Hayakawa, and, S. Lory. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:14741484.
34. Li, T. N.,, K. H. Chin,, J. H. Liu,, A. H. Wang, and, S. H. Chou. 2009. XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch. Proteins 75:282288.
35. Magasanik, B. 1989. Regulation of transcription of the glnALG operon of Escherichia coli by protein phosphorylation. Biochimie 71:10051012.
36. McCarthy, Y.,, R. P. Ryan,, K. O’Donovan,, Y. Q. He,, B. L. Jiang,, J. X. Feng,, J. L. Tang, and, J. M. Dow. 2008. The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol. Plant Pathol. 9:819824.
37. Merighi, M.,, V. T. Lee,, M. Hyodo,, Y. Hayakawa, and, S. Lory. 2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65:876895.
38. Minasov, G.,, S. Padavattan,, L. Shuvalova,, J. S. Brunzelle,, D. J. Miller,, A. Basle,, C. Massa,, F. R. Collart,, T. Schirmer, and, W. F. Anderson. 2009. Crystal structures of YkuI and its complex with second messenger cyclic di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. J. Biol. Chem. 284:1317413184.
39. Mizuno, T., and, S. Mizushima. 1990. Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol. Microbiol. 4:10771082.
40. Neunuebel, M. R., and, J. W. Golden. 2008. The Anabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions. J. Bacteriol. 190:68296836.
41. Newell, P. D.,, R. D. Monds, and, G. A. O’Toole. 2009. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc. Natl. Acad. Sci. USA 106:34613466.
42. Ninfa, A. J. 1991. Protein phosphorylation and the regulation of cellular processes by the homologous two-component regulatory systems of bacteria. Genet. Eng. (New York) 13:3972.
43. Ninfa, A. J., and, B. Magasanik. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:59095913.
44. Palmer, R. J., Jr., and, P. Stoodley. 2007. Biofilms 2007: broadened horizons and new emphases. J. Bacteriol. 189:79487960.
45. Parsek, M. R., and, C. Fuqua. 2004. Biofilms 2003: emerging themes and challenges in studies of surface-associated micro-bial life. J. Bacteriol. 186:44274440.
46. Pratt, J. T.,, R. Tamayo,, A. D. Tischler, and, A. Camilli. 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem. 282:1286012870.
47. Ramelot, T. A.,, A. Yee,, J. R. Cort,, A. Semesi,, C. H. Arrowsmith, and, M. A. Kennedy. 2007. NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins 66:266271.
48. Rogers, E. A.,, D. Terekhova,, H. M. Zhang,, K. M. Hovis,, I. Schwartz, and, R. T. Marconi. 2009. Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol. Microbiol. 71:15511573.
49. Ronson, C. W.,, B. T. Nixon, and, F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579581.
50. Ross, P.,, H. Weinhouse,, Y. Aloni,, D. Michaeli,, P. Weinberger-Ohana,, R. Mayer,, S. Braun,, E. de Vroom,, G. A. van der Marel,, J. H. van Boom, and, M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279281.
51. Ryan, R. P.,, J. Lucey,, K. O’Donovan,, Y. McCarthy,, L. Yang,, T. Tolker-Nielsen, and, J. M. Dow. 2009. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ. Microbiol. 11:11261136.
52. Ryjenkov, D. A.,, R. Simm,, U. Römling, and, M. Gomelsky. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP. The PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:3031030314.
53. Solano, C.,, B. Garcia,, C. Latasa,, A. Toledo-Arana,, V. Zorraquino,, J. Valle,, J. Casals,, E. Pedroso, and, I. Lasa. 2009. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc. Natl. Acad. Sci. USA 106:79978002.
54. Stewart, P. S., and, J. W. Costerton. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358:135138.
55. Stock, J. B.,, A. J. Ninfa, and, A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
56. Takahashi, H., and, T. Shimizu. 2006. Phosphodiesterase activity of Ec DOS, a heme-regulated enzyme from Escherichia coli, toward 3′,5′-cyclic diguanylic acid is obviously enhanced by O2 and CO binding. Chem. Lett. 35:970971.
57. Tal, R.,, H. C. Wong,, R. Calhoon,, D. Gelfand,, A. L. Fear,, G., Volman,, R. Mayer,, P. Ross,, D. Amikam,, H. Weinhouse,, A. Cohen,, S. Sapir,, P. Ohana, and, M. Benziman. 1998. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180:44164425.
58. Tamayo, R.,, J. T. Pratt, and, A. Camilli. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61:131148.
59. Tamayo, R.,, S. Schild,, J. T. Pratt, and, A. Camilli. 2008. Role of cyclic di-GMP during El Tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic di-GMP phosphodiesterase CdpA. Infect. Immun. 76:16171627.
60. Tarutina, M.,, D. A. Ryjenkov, and, M. Gomelsky. 2006. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J. Biol. Chem. 281:3475134758.
61. Thormann, K. M.,, S. Duttler,, R. M. Saville,, M. Hyodo,, S. Shukla,, Y. Hayakawa, and, A. M. Spormann. 2006. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. 188:26812691.
62. Tischler, A. D., and, A. Camilli. 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun. 73:58735882.
63. Tomita, T.,, G. Gonzalez,, A. L. Chang,, M. Ikeda-Saito, and, M. A. Gilles-Gonzalez. 2002. A comparative resonance Raman analysis of heme-binding PAS domains: heme iron coordination structures of the BjFixL, AxPDEA1, EcDos, and MtDos proteins. Biochemistry 41:48194826.
64. Uroz, S.,, Y. Dessaux, and, P. Oger. 2009. Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205216.
65. Vandecasteele, G.,, F. Rochais,, A. AbiGerges, and, R. Fischmeister. 2006. Functional localization of cAMP signalling in cardiac myocytes. Biochem. Soc. Trans. 34:484488.
66. von Bodman,, S. B.,, J. M. Willey, and, S. P. Diggle. 2008. Cell-cell communication in bacteria: united we stand. J. Bacteriol. 190:43774391.
67. Wan, X.,, J. R. Tuckerman,, J. A. Saito,, T. A. Freitas,, J. S. Newhouse,, J. R. Denery,, M. Y. Galperin,, G. Gonzalez,, M. A. Gilles-Gonzalez, and, M. Alam. 2009. Globins synthesize the second messenger bis-(3′-5′)-cyclic diguanosine monophos-phate in bacteria. J. Mol. Biol. 388:262270.
68. Wang, Y. J.,, J. J. Huang, and, J. R. Leadbetter. 2007. Acyl-HSL signal decay: intrinsic to bacterial cell-cell communications. Adv. Appl. Microbiol. 61:2758.
69. Wassmann, P.,, C. Chan,, R. Paul,, A. Beck,, H. Heerklotz,, U. Jenal, and, T. Schirmer. 2007. Structure of BeF(3)(-)-modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15:915927.
70. Willoughby, D., and, D. M. Cooper. 2007. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol. Rev. 87:9651010.
71. Winans, S. C., and, B. L. Bassler. 2008. Chemical Communication among Bacteria. ASM Press, Washington, DC.
72. Wolfe, A. J., and, K. L. Visick. 2008. Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J. Bacteriol. 190:463475.
73. Wu, Q., and, K. Gardner. 3 February 2009. Structure and insight into blue light-induced changes in the BlrP1 BLUF domain. Biochemistry [Epub ahead of print.]
74. Wu, Q.,, W. H. Ko, and, K. H. Gardner. 2008. Structural requirements for key residues and auxiliary portions of a BLUF domain. Biochemistry 47:1027110280.
75. Yan, W.,, T. Qu,, H. Zhao,, L. Su,, Q. Yu,, J. Gao, and, B. Wu. 30 January 2009. The effect of c-di-GMP (3′-5′-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans. Microbiol. Res. [Epub ahead of print.]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error