Chapter 1 : Genome Organization and Encoded Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Genome Organization and Encoded Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap01-2.gif


Picornavirus proteins and their precursors take their names from sequential locations in the polyprotein open reading frame (ORF). Polyprotein processing occurs through a three tiered cascade of primary, secondary, and maturation cleavages. The first, or primary, cleavage is almost always cotranslational, as ribosomes traverse the middle (P2) region of the genome. For hepatoviruses, the first (2A/2B junction) and most subsequent cleavages within the polyprotein require downstream synthesis of viral protease 3C, the central enzyme in the overall cleavage cascade. The third (final) tier of polyprotein cleavage, maturation of the 1AB peptide (VP4/VP2), is normally observed in vivo only during the final stages of virion morphogenesis and is believed to occur concomitantly with RNA assembly into large capsid structures. Unlike negative-strand or double-strand RNA viruses, which require nucleoproteins or preattached polymerases for infectivity, picornavirus genomes are infectious as naked RNA. The most recently described additions to the picornavirus RNA structural library are -acting replication elements (CREs). Proteolytic cleavage of the P1 precursor generates the proteins VP0 (precursor of VP4 and VP2), VP1, and VP3. The leader proteins encoded by various picornaviruses can differ considerably in length and function, even for viruses within the same genus. Viruses with the smallest 2A apparently maintain only the minimum segment required for this activity and for subsequent upstream cleavage of P1/2A by 3C. The essential genome organization, especially with regard to the L-4-3-4 layout of the polyprotein, remains canonical and is a diagnostic identifier for any virus in this family.

Citation: Palmenberg A, Neubauer D, Skern T. 2010. Genome Organization and Encoded Proteins, p 3-17. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

RNA structural motifs. (A) Base pairing within the 5′-terminal stem and adjacent type 1 pseudoknots for ERAV. (B) 5′-terminal stem, adjacent pseudoknots, and location of the poly(C) tract for EMCV. (C) 5′-terminal stem for HAV. (D) 5′-terminal stem for SVV. (E) 5′-terminal cloverleaf and adjacent spacer region for HRV-A (derived from reference ). (F) ERAV ORF initiation stem, showing tandem AUG codons paired within the stem. The second of each AUG pair initiates synthesis of leader protease Lab (upstream) or Lb, respectively. (G) ORF initiation stem for HRV-A (from reference ). (H to J) CREs for HRV-A, EMCV, and FMDV (from reference ). The location of each element within the genome is indicated. (K) 3′ UTR tertiary structure (“kissing interaction”) for SVV (from reference ). (L) 3′ UTR tertiary structure interactions for HEV-B (from reference ). (M) 3′ UTR stem for HRV-A (from reference ). (N) Extended 3′ UTR stem from ERAV. Gen-Bank accession numbers for included sequences are as in Color Plate 1, except for enterovirus HRV-A (accession no. l02316) and enterovirus HEV-B (accession no. af231765).

Citation: Palmenberg A, Neubauer D, Skern T. 2010. Genome Organization and Encoded Proteins, p 3-17. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

IRES elements. Picornavirus genomes encode IRESs, which confer cap-independent translation properties. Examples of type I (A), type II (B), type III (C), and type IV (D) IRES structures are shown. The type I structure (illustration derived from reference ) also includes the linked 5′ cloverleaf (domain I) motif, which may function as part of this IRES. The type III IRES (illustration derived from reference ) is drawn in the context of a complete 5′ UTR. The type IV IRES has an internal tertiary pseudoknot structure at its base (illustration derived from reference ). These depicted IRES motif arrangements have been suggested or confirmed by RNA-protein mapping but do not necessarily represent the minimum energy configurations for any individual region ( ).

Citation: Palmenberg A, Neubauer D, Skern T. 2010. Genome Organization and Encoded Proteins, p 3-17. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, P.,, E. Kandiah,, G. Effantin,, A. C. Stern, and, E. Ehrenfeld. 2009. Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. J. Biol. Chem. 284:2201222021.
2. Allaire, M.,, M. M. Chernaia,, B. A. Malcolm, and, M. N. James. 1994. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:7276.
3. Aminev, A. G.,, S. P. Amineva, and, A. C. Palmenberg. 2003. Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Res. 95:4557.
4. Argos, P.,, G. Kamer,, M. J. H. Nicklin, and, E. Wimmer. 1984. Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Res. 12:72517267.
5. Bailey, J. M., and, W. E. Tapprich. 2007. Structure of the 5′ nontranslated region of the coxsackievirus B3 genome: chemical modification and comparative sequence analysis. J. Virol. 81:650668.
6. Baxter, N. J.,, A. Roetzer,, H. D. Liebig,, S. E. Sedelnikova,, A. M. Hounslow,, T. Skern, and, J. P. Waltho. 2006. Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. J. Virol. 80:14511462.
7. Bazan, J. F., and, R. J. Fletterick. 1988. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc. Natl. Acad. Sci. USA 85:78727876.
8. Belsham, G. J. 2009. Divergent picornavirus IRES elements. Virus Res. 139:183192.
9. Bergmann, E. M.,, S. C. Mosimann,, M. M. Chernaia,, B. A. Malcolm, and, M. N. G. James. 1997. The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J. Virol. 71:24362448.
10. Birtley, J. R.,, S. R. Knox,, A. M. Jaulent,, P. Brick,, R. J. Leatherbarrow, and, S. Curry. 2005. Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. J. Biol. Chem. 25:1152011527.
11. Bochkov, Y., and, A. C. Palmenberg. 2006. Translational efficiency of an EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. BioTechniques 41:238290.
12. Brown, E. A.,, S. P. Day,, R. W. Jansen, and, S. M. Lemon. 1991. The 5′ nontranslated region of hepatitis A virus RNA: secondary structure elements required for translation in vitro. J. Virol. 65:58285838.
13. Campagnola, G.,, M. Weygandt,, K. Scoggin, and, O. Peersen. 2008. Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue 5 in picornavirus polymerases. J. Virol. 82:94589464.
14. Cao, X.,, I. E. Bergmann,, R. Fullkrug, and, E. Beck. 1995. Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J. Virol. 69:560563.
15. Cencic, R.,, C. Mayer,, M. A. Juliano,, L. Juliano,, R. Konrat,, G. Kontaxis, and, T. Skern. 2007. Investigating the substrate specificity and oligomerization of the leader protease of foot and mouth disease virus using NMR. J. Mol. Biol. 373:10711087.
16. Cho, M. W.,, N. Teterina,, D. Egger,, K. Bienz, and, E. Ehrenfeld. 1994. Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129145.
17. Cornilescu, C. C.,, F. W. Porter,, Q. Zhao,, A. C. Palmenberg, and, J. L. Markley. 2008. NMR structure of the mengovirus leader protein zinc-finger domain. FEBS Lett. 582:896900.
18. Cristina, J., and, M. Costa-Mattioli. 2007. Genetic variability and molecular evolution of hepatitis A virus. Virus Res. 127:151157.
19. de Jong, A. S.,, F. de Mattia,, M. M. Van Dommelen,, K. Lanke,, W. J. G. Melchers,, P. H. G. M. Willems, and, F. J. M. van Kuppeveld. 2008. Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking. J. Virol. 82:37823790.
20. de Jong, A. S.,, H. J. Visch,, F. de Mattia,, M. M. van Dommelen,, H. G. Swarts,, T. Luyten,, G. Callewaert,, W. J. Melchers,, P. H. Willems, and, F. J. van Kuppeveld. 2006. The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J. Biol. Chem. 281:1414414150.
21. de los Santos, T.,, F. Diaz-San Segundo, and, M. J. Grubman. 2007. Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J. Virol. 81:1280312815.
22. de los Santos, T.,, F. D. Segundo,, J. Zhu,, M. Koster,, C. C. Dias, and, M. J. Grubman. 2009. A conserved domain in the leader proteinase of foot-and-mouth disease virus is required for proper subcellular localization and function. J. Virol. 83:18001810.
23. Devaney, M. A.,, V. N. Vakharia,, R. E. Lloyd,, E. Ehrenfeld, and, M. J. Grubman. 1988. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol. 62:44074409.
24. Doherty, M.,, D. Todd,, N. McFerran, and, E. M. Hoey. 1999. Sequence analysis of a porcine enterovirus serotype 1 isolate: relationships with other picornaviruses. J. Gen. Virol. 80:19291941.
25. Donnelly, M. L.,, G. Luke,, A. Mehrotra,, X. Li,, L. E. Hughes,, D. Gani, and, M. D. Ryan. 2001. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip.’ J. Gen. Virol. 82:10131025.
26. Duke, G. M.,, J. E. Osorio, and, A. C. Palmenberg. 1990. Attenuation of mengo virus through genetic engineering of the 5′ noncoding poly(C) tract. Nature 343:474476.
27. Duque, H., and, A. C. Palmenberg. 2001. Phenotypic characterization of three phylogenetically conserved stem-loop motifs in the mengovirus 3′ untranslated region. J. Virol. 73:31113120.
28. Dvorak, C. M. T.,, D. J. Hall,, M. Hill,, M. Riddle,, A. Pranter,, J. Dillman,, M. Deibel, and, A. C. Palmenberg. 2001. Leader protein of encephalomyocarditis virus binds zinc, is phosphory-lated during viral infection and affects the efficiency of genome translation. Virology 290:261271.
29. Fernandez-Miragall, O.,, S. Lopez de Quinto, and, E. Martinez-Salas. 2009. Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res. 139:172182.
30. Ferrer-Orta, C.,, A. Arias,, R. Agudo,, R. Perez-Luque,, C. Escarmis,, E. Domingo, and, N. Verdaguer. 2006. The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J. 25:880888.
31. Ferrer-Orta, C.,, A. Arias,, R. Perez-Luque,, C. Escarmis,, E. Domingo, and, N. Verdaguer. 2004 Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J. Biol. Chem. 279:4721247221.
32. Gerber, K.,, E. Wimmer, and, A. V. Paul. 2001. Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis-replicating element in the coding sequence of 2Apro. J. Virol. 75:1097910990.
33. Gorbalenya, A. E.,, E. V. Koonin, and, M. M. Lai. 1991. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 288:201205.
34. Groppo, R., and, A. Palmenberg. 2007. Cardiovirus 2A protein associates with 40S but not 80S ribosome subunits during infection. J. Virol. 81:1306713074.
35. Guarné, A.,, J. Tormo,, R. Kirchweger,, D. Pfistermueller,, A. Fita, and, T. Skern. 1998. Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J. 17:74697479.
36. Hales, L.,, N. Knowles,, P. Reddy,, L. Xu,, C. Hay, and, P. Hallenbeck. 2008. Complete genome sequence analysis of Seneca Valley virus 001, a novel oncolytic picornavirus. J. Gen. Virol. 89:12651275.
37. Hansen, J. L.,, A. M. Long, and, S. C. Schultz. 1997. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:11091122.
38. Hato, S. V.,, C. Ricour,, B. M. Schulte,, K. H. Lanke,, M. de Bruijni,, J. Zoll,, W. J. Melchers,, T. Michiels, and, F. J. van Kuppeveld. 2007. The mengovirus leader protein blocks inter-feron-alpha/beta gene transcription and inhibits activation of interferon regulatory factor 3. Cell. Microbiol. 9:29212930.
39. Hellen, C. U. T., and, S. de Breyne. 2007. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J. Virol. 81:58505863.
40. Hellen, C. U. Y., and, E. Wimmer. 1995. Enterovirus structure and assembly, p. 155–170. In H. A. Rotbart (ed.), Human Enterovirus Infections. ASM Press, Washington, DC.
41. Hindiyeh, M.,, Q. H. Li,, R. Basavappa,, J. M. Hogle, and, M. Chow. 1999. Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J. Virol. 73:90729079.
42. Hinton, T. M.,, N. Ross-Smith,, S. Warner,, G. J. Belsham, and, B. S. Crabb. 2002. Conservation of L and 3C proteinase activities across distantly related aphthoviruses. J. Gen. Virol. 83:31113121.
43. Hughes, P. J., and, G. Stanway. 2000. The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J. Gen. Virol. 81:201207.
44. Jacobson, M. F., and, D. Baltimore. 1968. Morphogenesis of poliovirus. I. Association of the viral RNA with the coat protein. J. Mol. Biol. 33:369378.
45. Johansson, S.,, B. Niklasson,, J. Maizel,, A. Gorbalenya, and, A. Lindberg. 2002. Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage of Picornaviridae with a cluster of two unrelated 2A proteins. J. Virol. 76:89208930.
46. Kirchweger, R.,, E. Ziegler,, B. J. Lamphear,, D. Waters,, H. D. Liebig,, W. Sommergruber,, F. Sobrino,, C. Hohenadl,, D. Blaas, and, R. E. Rhoads. 1994. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4-γ. J. Virol. 68:56775684.
47. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson, and, E. Wimmer. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547553.
48. Krumbholz, A.,, M. Dauber,, A. Henke,, E. Birch-Hirschfeld,, N. Knowles,, A. Stelzner, and, R. Zell. 2002. Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J. Virol. 76:58135821.
49. Lama, J.,, A. K. Paul,, K. S. Harris, and, E. Wimmer. 1994. Properties of purified recombinant poliovirus protein 3AB as substrate for viral proteinases and as co-factor for RNA polymerase 3D. J. Biol. Chem. 269:6670.
50. Lyle, J. M.,, E. Bullitt,, K. Bienz, and, K. Kirkegaard. 2002. Visualization and functional analysis of RNA-dependent RNA polymerase lattices. Science 296:22182222.
51. Marcotte, L. L.,, A. B. Wass,, D. W. Gohara,, H. B. Pathak,, J. J. Arnold,, D. J. Filman,, C. E. Cameron, and, J. M. Hogle. 2007. Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J. Virol. 81:35833596.
52. Martin, L. R.,, G. M. Duke,, J. E. Osorio,, D. J. Hall, and, A. C. Palmenberg. 1996. Mutational analysis of the mengovirus poly(C) tract and surrounding heteropolymeric sequences. J. Virol. 70:20272031.
53. Martin, L. R., and, A. C. Palmenberg. 1996. Tandem mengo-virus 5′ pseudoknots are linked to viral RNA synthesis, not poly(C)-mediated virulence. J. Virol. 70:81828186.
54. Matthews, D. A.,, W. W. Smith,, R. A. Ferre,, B. Condon,, G. Budahazi,, W. Sisson,, J. E. Villafranca,, C. A. Janson,, H. E. McElroy,, C. L. Gribskov, and, S. Worland. 1994. Structure of human rhinovirus 3C protease reveals a trypsin-like polypep-tide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761771.
55. McKnight, K. L., and, S. M. Lemon. 1996. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J. Virol. 70:19411952.
56. McKnight, K. L., and, S. M. Lemon. 1998. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4:15691584.
57. Mirzayan, C., and, E. Wimmer. 1994. Biochemical studies on poliovirus polypeptide 2C: evidence for ATPase activity. Virology 199:176187.
58. Molla, A.,, K. S. Harris,, A. K. Paul,, S. H. Shin,, J. Mugavero, and, E. Wimmer. 1994. Stimulation of poliovirus proteinase 3C-related proteolysis by the genome-linked protein VPg and its precursor 3AB. J. Biol. Chem. 269:2701527020.
59. Mosimann, S. C.,, M. M. Cherney,, S. Sia,, S. Plotch, and, M. N. G. James. 1997. Refined X-ray crystallographic structure of the poliovirus 3C gene product. J. Mol. Biol. 273:10321047.
60. Neubauer, D.,, J. Steinberger, and, T. Skern. 2009. Picornaviruses, p. 101–130. In U. Lendeckel and, N. M. Hooper (ed.), Viral Proteases and Antiviral Protease Inhibitor Therapy: Proteases in Biology and Disease 8. Springer Science Business Media B.V., New York, NY.
61. Nomoto, A.,, Y. F. Lee, and, E. Wimmer. 1976. The 5′-end of poliovirus mRNA is not capped with m7G(5′)pppG(5′)Np. Proc. Natl. Acad. Sci. USA 73:375380.
62. Oberste, M. S.,, K. Maher, and, M. A. Pallansch. 2003. Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae. Virology 314:283293.
63. Oh, H. S.,, H. B. Pathak,, I. G. Goodfellow,, J. J. Arnold, and, C. E. Cameron. 2009. Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J. Virol. 83:93709387.
64. Pacheco, J. M.,, T. M. Henry,, V. K. O’Donnell,, J. B. Gregory, and, P. W. Mason. 2003. Role of nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and- mouth disease virus. J. Virol. 77:1301713027.
65. Palmenberg, A.,, D. Spiro,, R. Kuzmickas,, S. Wang,, A. Djikeng,, J. A. Rathe,, C. M. Fraser-Liggett, and, S. B. Liggett. 2009. Sequencing and analysis of all known human rhinovirus genomes reveals structure and evolution. Science 324:5559.
66. Palmenberg, A. C. 1982. In vitro synthesis and assembly of picornaviral capsid intermediate structures. J. Virol. 44:900906.
67. Palmenberg, A. C., and, J.-Y. Sgro. 1997. Topological organization of picornaviral genomes: statistical prediction of RNA structural signals. Semin. Virol. 8:231241.
68. Parsley, T. B.,, C. T. Cornell, and, B. L. Semler. 1999. Modulation of the RNA binding and protein processing activities of poliovirus polypeptide 3CD by the viral RNA polymerase domain. J. Biol. Chem. 274:1286712876.
69. Pathak, H. B.,, H. S. Oh,, I. G. Goodfellow,, J. J. Arnold, and, C. E. Cameron. 2008. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylyation. J. Biol. Chem. 283:3067730688.
70. Paul, A. V.,, J. H. van Boom,, D. Filippov, and, E. Wimmer. 1998. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393:280284.
71. Petersen, J. F.,, M. M. Cherney,, H. D. Liebig,, T. Skern,, E. Kuechler, and, M. N. James. 1999. The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J. 18:54635475.
72. Porter, F. W.,, Y. A. Bochkov,, A. J. Albee,, C. Wiese, and, A. C. Palmenberg. 2006. A picornavirus protein interacts with Ran-GTPase and disrupts nucleocytoplasmic transport. Proc. Natl. Acad. Sci. USA 103:1241712422.
73. Porter, F. W., and, A. C. Palmenberg. 2009. Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition of cardioviruses. J. Virol. 83:19411951.
74. Proudfoot, N. J., and, G. G. Brownlee. 1976. 3′ non-coding region sequences in eucaryotic messenger RNA. Nature 263:211214.
75. Reuter, G.,, A. Boldizsar, and, P. Pankovics. 2008. Complete nucleotide and amino acid sequences and genetic organization of porcine kobuvirus, a member of a new species in the genus Kobuvirus, family Picornaviridae. Arch. Virol. 154:101108.
76. Rodriguez, P. L., and, L. Carrasco. 1995. Poliovirus protein 2C contains two regions involved in RNA binding activity. J. Biol. Chem. 270:1010510112.
77. Romanova, L.,, P. Lidsky,, M. Kolesnikova,, K. V. Fominykh,, A. P. Gmyl,, E. V. Sheval,, S. V. Hato,, F. J. van Kuppeveld, and, V. Agol. 2009. Antiapoptotic activity of the cardiovirus leader protein, a viral “security” protein. J. Virol. 83:72737284.
78. Rueckert, R. R.,, A. C. Palmenberg, and, M. A. Pallansch. 1980. Evidence for a self-cleaving precursor of virus-coded protease, RNA-replicase and VPg, p. 263–275. In G. Koch and, D. Richter (ed.), Biosynthesis, Modification and Processing of Cellular and Viral Polyproteins. Academic Press, New York, NY.
79. Rueckert, R. R., and, E. Wimmer. 1984. Systematic nomenclature of picornavirus proteins. J. Virol. 50:957959.
80. Samuilova, O.,, C. Krogerus,, T. Poyry, and, T. Hyypia. 2004. Specific interaction between human parechovirus nonstructural 2A protein and viral RNA. J. Biol. Chem. 279:3782237831.
81. Schein, C. H.,, N. Oezguen,, D. E. Volk,, R. Garimella,, A. Paul, and, W. Braun. 2006. NMR structure of the viral peptide linked to the genome (VPg) of poliovirus. Peptides 27:16761684.
82. Seipelt, J.,, A. Guarne,, E. Bergmann,, M. James,, W. Sommergruber,, I. Fita, and, T. Skern. 1999. The structures of picornaviral proteinases. Virus Res. 62:159168.
83. Silvestri, L. S.,, J. M. Parilla,, B. J. Morasco,, S. A. Ogram, and, J. B. Flanegan. 2006. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3′ poly(A) tail. Virology 345:509519.
84. Skern, S.,, B. Hampolz,, A. Guarne,, I. Fita,, E. Bergmann,, J. Petersen, and, M. N. G. James. 2002. Structure and function of picornavirus proteases, p. 199–212. In B. L. Semler and, E. Wimmer (ed.), Molecular Biology of Picornaviruses. ASM Press, Washington, DC.
85. Sommergruber, W.,, G. Casari,, F. Fessl,, J. Seipelt, and, T. Skern. 1994. The 2A proteinase of human rhinovirus is a zinc-containing enzyme. Virology 204:815818.
86. Steil, B. P., and, D. J. Barton. 2009. cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res. 139:240252.
87. Strauss, D. M.,, D. S. Glustrom, and, D. S. Wuttke. 2003. Towards an understanding of the poliovirus replication complex: the solution structure of the soluble domain of the poliovirus 3A protein. J. Mol. Biol. 330:225234.
88. Svitkin, Y. V.,, A. Gradi,, H. Imataka,, S. Morino, and, N. Sonenberg. 1999. Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J. Virol. 73:34673472.
89. Teterina, N. L.,, E. Levenson,, M. S. Rinaudo,, D. Egger,, K. Bienz,, A. E. Gorbalenya, and, E. Ehrenfeld. 2006. Evidence for functional protein interactions required for poliovirus RNA replication. J. Virol. 80:53275337.
90. Todd, S., and, B. L. Semler. 1996. Structure-infectivity analysis of the human rhinovirus genomic RNA 3′ noncoding region. Nucleic Acids Res. 24:21332142.
91. Todd, S.,, J. S. Towner,, D. M. Brown, and, B. L. Semler. 1997. Replication-competent picornaviruses with complete genomic RNA 3′ noncoding region deletions. J. Virol. 71:86688874.
92. Tolskaya, E. A.,, L. I. Romanova,, M. S. Kolesnikova,, A. P. Gmyl,, A. E. Gorbalenya, and, V. I. Agol. 1994. Genetic studies on the poliovirus 2C protein an NTPase: a plausible mechanism of guanidine effect on the 2C function and evidence for the importance of 2C oligomerization. J. Mol. Biol. 236:13101323.
93. Towner, J. S.,, T. V. Ho, and, B. L. Semler. 1996. Determinants of membrane association for poliovirus protein 3AB. J. Biol. Chem. 271:2681026818.
94. Toyoda, H.,, D. Franco,, K. Fujita,, A. V. Paul, and, E. Wimmer. 2007. Replication of poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as well as to the adjacent C-rich spacer sequence between the cloverleaf and the internal ribosomal entry site. J. Virol. 81:1001710028.
95. Tseng, C. H.,, N. Knowles, and, H. J. Tsai. 2007. Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new genus. Virus Res. 123:190203.
96. van Kuppeveld, F. J.,, A. S. de Jong,, W. J. Melchers, and, P. H. Willems. 2005. Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive? Trends Microbiol. 13:4144.
97. van Kuppeveld, F. J. M.,, J. G. J. Hoenderop,, R. L. L. Smeets,, P. H. G. M. Willems,, B. P. M. Dijkman,, J. M. D. Galama, and, W. J. G. Melchers. 1997. Coxsakievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J. 16:35193532.
98. Walter, B.,, T. Parsley,, E. Ehrenfeld, and, B. L. Semler. 2002. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J. Virol. 76:1200812022.
99. Wutz, G.,, H. Auer,, N. Nowotny,, B. Grosse,, T. Skern, and, E. Kuechler. 1996. Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. J. Gen. Virol. 77:17191730.
100. Yamashita, T.,, K. Sakae,, H. Tsuzuki,, Y. Suzuki,, N. Ishikawa,, N. Takeda,, T. Miyamura, and, S. Yamazaki. 1998. Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J. Virol. 72:84088412.
101. Yamashita, T.,, K. Sakae,, H. Tsuzuki,, Y. Suzuki,, N. Ishikawa,, N. Takeda,, T. Miyamura, and, S. Yamazaki. 1998. Isolation and characterization of a new species of kobuvirus associated with cattle. J. Gen. Virol. 84:30693077.
102. Zoll, J.,, H. A. Heus,, F. J. M. van Kupperveld, and, W. J. G. Melchers. 2009. The structure-function relationship of the enterovirus 3′-UTR. Virus Res. 139:209216.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error