1887

Chapter 3 : The Making of a Picornavirus Genome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Making of a Picornavirus Genome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap03-2.gif

Abstract:

Picornavirus genomes have a unique structure, and they developed mechanisms of gene expression different from those of their prokaryotic counterparts. Genetic analyses have played a crucial role in deciphering the genome function of picornaviruses. One of the hallmarks in RNA virus research was the discovery of genetic recombination, an accomplishment received with great skepticism for several years. Cell-free synthesis, which duplicates essential steps of viral proliferation in the living cell, opened new strategies for studying individual steps of picornavirus replication in the absence of cell membrane barriers. In poliovirus (PV), the cloverleaf (CL) is followed by a short spacer of 24 nt that does not appear to engage in any base-pairing with adjacent nucleotides, as deduced from a detailed study with coxsackievirus B3 (CVB3). In cardioviruses and aphthoviruses, the genome segment preceding the internal ribosome entry site (IRES) differs completely from that of the enteroviruses. There is no CL; instead, a succession of elaborate RNA structures is followed by a long stretch of poly(C) that in encephalomyocarditis virus (EMCV) can exceed 600 nt (and plays a role in mouse pathogenesis). The most interesting trait of the poly proteins is that they contain the information for -cleavages, either as self-processing oligopeptide sequences (in aphtho- and cardioviruses) and/or as proteinases that are able to clip the polypeptide chain at their own N termini. Genetic complementation has been firmly established in picornavirus replication.

Citation: Wimmer E, Paul A. 2010. The Making of a Picornavirus Genome, p 33-55. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1a.
Figure 1a.

(A) Genome structure of PV and processing of the polyprotein. The genome contains a long 5′ NTR that is covalently linked to VPg (a small open circle), a single ORF, and a short 3′ NTR with a poly(A) tail. The 5′ NTR contains four functional domains: the CL, spacer I, IRES, and spacer II. The polyprotein consists of one structural and two nonstructural domains. The processing of the polyprotein into precursor and mature proteins is illustrated. (B) Genome structure of a dicistronic PV. This dicistronic virus contains the PV IRES in the 5′ NTR and the EMCV IRES between domains P1 and P2 of the polyprotein. (C) Genome structure of a dicistronic PV containing a foreign protein. This dicistronic virus contains the PV IRES in the 5′ NTR followed by the coding sequence of a foreign gene (X), then the EMCV IRES, and finally the PV ORF, 3′ NTR, and poly(A) tail.

Citation: Wimmer E, Paul A. 2010. The Making of a Picornavirus Genome, p 33-55. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1b.
Figure 1b.

(A) Genome structure of PV and processing of the polyprotein. The genome contains a long 5′ NTR that is covalently linked to VPg (a small open circle), a single ORF, and a short 3′ NTR with a poly(A) tail. The 5′ NTR contains four functional domains: the CL, spacer I, IRES, and spacer II. The polyprotein consists of one structural and two nonstructural domains. The processing of the polyprotein into precursor and mature proteins is illustrated. (B) Genome structure of a dicistronic PV. This dicistronic virus contains the PV IRES in the 5′ NTR and the EMCV IRES between domains P1 and P2 of the polyprotein. (C) Genome structure of a dicistronic PV containing a foreign protein. This dicistronic virus contains the PV IRES in the 5′ NTR followed by the coding sequence of a foreign gene (X), then the EMCV IRES, and finally the PV ORF, 3′ NTR, and poly(A) tail.

Citation: Wimmer E, Paul A. 2010. The Making of a Picornavirus Genome, p 33-55. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Comparison of amino acid (aa) sequences of some picornaviral VPgs. The fully conserved amino acids are shown by a vertical box. The essential amino acids of PV are indicated with boxes (see text).

Citation: Wimmer E, Paul A. 2010. The Making of a Picornavirus Genome, p 33-55. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The Yn-Xm-AUG motif and spacer II. The Yn-Xm-AUG motif is located partly in stem-loop VI of the PV IRES, as illustrated. Spacer II is between stem-loop VI and the initiating AUG of the polyprotein. The approximate location of the HRV initiation codon is also shown. Conserved sequences are boxed. , cryptic; , active; , codon within the ORF.

Citation: Wimmer E, Paul A. 2010. The Making of a Picornavirus Genome, p 33-55. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816698.ch03
1. Adler, S. P.,, D. Purich, and, E. R. Stadtman. 1975. Cascade control of Escherichia coli glutamine synthesis. Properties of the P11 regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J. Biol. Chem. 250:62646272.
2. Agol, V. I.,, E. V. Pilipenko, and, O. R. Slobodskaya. 1996. Modification of translational control elements as a new approach to design of attenuated picornavirus strains. J. Biotechnol. 44:119128.
3. Agol, V. I.,, A. V. Paul, and, E. Wimmer. 1999. Paradoxes of the replication of picornaviral genomes. Virus Res. 62:129147.
4. Agut, H.,, K. M., Kean,, O. Fichot,, J. Morascho,, J. B. Flanegan, and, M. Girard. 1989. A point mutation in the poliovirus polymerase gene determines a complementable temperature-sensitive defect of RNA replication. Virology 168:302311.
5. Alexander, L.,, H. H. Lu, and, E. Wimmer. 1994. Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc. Natl. Acad. Sci. USA 91:14061410.
6. Ambros, V., and, D. Baltimore. 1978. Protein is linked to the 5′ end of poliovirus RNA by a phosphodiester linkage to tyrosine. J. Biol. Chem. 253:52635266.
7. Ambros, V.,, R. F. Pettersen, and, D. Baltimore. 1978. An enzymatic activity in uninfected cells that cleaves the linkage between polioviron RNA and the 5′-terminal protein. Cell 15:14391446.
8. Andino, R.,, G. E. Rieckhof, and, D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63:369380.
9. Andino, R.,, G. E. Rieckhof,, P. L. Achacoso, and, D. Baltimore. 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′ end of viral RNA. EMBO J. 12:35873598.
10. Back, S. H.,, Y. K. Kim,, W. J. Kim,, S. Cho,, H. R. Oh,, J. E. Kim, and, S. K. Jang. 2002. Translation of poliovirus mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3Cpro. J. Virol. 76:25292542.
11. Bailey, J. M., and, W. E. Tappich. 2007. Structure of the 5′ non-translated region of the coxsackievirus B3 genome: chemical modification and comparative sequence analysis. J. Virol. 81:650668.
12. Barton, D. J.,, E. P. Black, and, J. B. Flanegan. 1995. Complete replication of poliovirus in vitro: preinitiation RNA replication complexes require soluble cellular factors for the synthesis of VPg-linked RNA. J. Virol. 69:55165527.
13. Barton, D. J.,, B. J. Morasco, and, J. B. Flanegan. 1996. Assays for poliovirus polymerase, 3Dpol, and authentic RNA replication in HeLa S10 extracts. Methods Enzymol. 275:3557.
14. Barton, D. J.,, B. J. O’Donnell, and, J. B. Flanegan. 2001. 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand RNA synthesis. EMBO J. 20:14391448.
15. Beck, E.,, S. Forss,, K. Strebel,, R. Cattaneo, and, G. Feil. 1983. Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res. 11:78737885.
16. Becker, M. M.,, R. L. Graham,, E. F. Donaldson,, B. Rockx,, A. C. Sims,, T. Sheahan,, R. J. Pickles,, D. Corti,, R. E. Johnston,, R. S. Baric, and, M. R. Denison. 2008. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad. Sci. USA 105:1994419949.
17. Benzer, S. 1957. The Elementary Units of Heredity. John Hopkins University Press, Baltimore, MD.
18. Bernstein, H. D.,, P. Sarnow, and, D. Baltimore. 1986. Genetic complementation among poliovirus mutants derived from an infectious cDNA clone. J. Virol. 60:10401049.
19. Brown, B. A., and, E. Ehrenfeld. 1979. Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97:396405.
20. Burns, C. C.,, J. Shaw,, R. Campagnoli,, J. Jorba,, A. Vincent,, J. Quay, and, O. Kew. 2006. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 80:32593272.
21. Burns, C. C.,, R. Campagnoli,, J. Shaw,, A. Vincent,, J. Jorba, and, O. Kew. 2009. Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J. Virol. 83:99579969.
22. Cao, X.,, R. J. Kuhn, and, E. Wimmer. 1993. Replication of poliovirus RNA containing two VPg coding sequences leads to a specific deletion event. J. Virol. 67:55725578.
23. Cao, X., and, E. Wimmer. 1995. Intragenomic complementation of a 3AB mutant in dicistronic polioviruses. Virology 209:315326.
24. Cao, X., and, E. Wimmer. 1996. Genetic variation of the poliovirus genome with two VPg-coding units. EMBO J. 15:2333.
25. Carette, J. E.,, J. van Lent,, S. A. MacFarlane,, J. Wellink, and, A. van Kammen. 2002. Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J. Virol. 76:62936301.
26. Cello, J.,, A. V. Paul, and, E. Wimmer. 2002. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:10161018.
27. Chard, L. S.,, M. E. Bordeleau,, J. Pelletier,, J. Tanaka, and, G. J. Belsham. 2006. Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. J. Gen. Virol. 87:927936.
28. Chard, L. S.,, Y. Kaku,, B. Jones,, A. Nayak, and, G. J. Belsham. 2006. Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J. Virol. 80:12711279.
29. Charini, W. A.,, C. C. Burns,, E. Ehrenfeld, and, B. L. Semler. 1991. trans rescue of mutant poliovirus RNA polymerase function. J. Virol. 65:26552665.
30. Chen, C. Y., and, P. Sarnow. 1995. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415417.
31. Chen, H. H.,, W. P. Kong,, L. Zhang,, P. L. Ward, and, R. P. Roos. 1995. A picornaviral protein synthesized out of frame with the polyprotein plays a key role in a virus-induced immune-mediated demyelinating disease. Nat. Med. 1:927931.
32. Cheney, I. W.,, S. Naim,, J. H. Shim,, M. Reinhardt,, B. Pai,, J. Z. Wu,, Z. Hong, and, W. Zhong. 2003. Viability of poliovirus/rhinovirus chimeric viruses and identification of an amino acid residue in the VPg gene critical for viral RNA replication. J. Virol. 77:74347443.
33. Cole, C. N.,, D. Smoler,, E. Wimmer, and, D. Baltimore. 1971. Defective interfering particles of poliovirus. I. Isolation and physical properties. J. Virol. 7:478485.
34. Cole, C. N., and, D. Baltimore. 1973. Defective interfering particles of poliovirus. J. Mol. Biol. 76:345361.
35. Coleman, J. R.,, D. Papamichail,, S. Skiena,, B. Futcher,, E. Wimmer, and, S. Mueller. Virus attenuation by genome-scale changes in codon pair bias. Science 320:17841787.
36. Cords, C. E., and, J. J. Holland. 1964. Replication of poliovirus RNA induced by heterologous virus. Proc. Natl. Acad. Sci. USA 51:10801082.
37. Cornell, C. T.,, J. E. Brunner, and, B. L. Semler. 2004. Differential rescue of poliovirus RNA replication functions by genetically modified RNA polymerase precursors. J. Virol. 78:1300713018.
38. Crowder, S., and, K. Kikegaard. 2005. trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat. Genet. 37:701709.
39. De Jesus, N.,, D. Franco,, A. Paul,, E. Wimmer, and, J. Cello. 2005. Mutation of a single conserved nucleotide between the cloverleaf and the internal ribosomal entry site attenuates poliovirus neurovirulence. J. Virol. 79:1423514243.
40. Detjen, B. M., and, E. Wimmer. 1978. Poliovirus single-stranded RNA and double-stranded RNA: differential infectivity in enucleate cells. J. Virol. 27:582586.
41. Dewannieux, M.,, F. Harper,, A. Richaud,, C. Letzelter,, D. Ribet,, G. Pierron, and, T. Heidemann. 2006. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16:15481556.
42. Dorner, A. J.,, P. G. Rothberg, and, E. Wimmer. 1981. The fate of VPg during in vitro translation of poliovirus RNA. FEBS Lett. 132:219223.
43. Dorner A. J.,, B. L. Semler,, R. J. Jackson,, R. Hanecak,, E. Duprey, and, E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50:507514.
44. Eckerle, L. D.,, S. M., Sperry,, L. Choi, and, M. R. Denison. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J. Virol. 81:1213512144.
45. Flanegan, J.,, R. Petterson,, V. Ambros,, N. J. Hewlett, and, D. Baltimore. 1977. Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc. Natl. Acad. Sci. USA 74:961965.
46. Fogg, M. H.,, N. L. Teterina, and, E. Ehrenfeld. 2003. Membrane requirements for uridylylation of the poliovirus VPg protein and viral RNA synthesis in vitro. J. Virol. 77:1140811416.
47. Forss, S., and, H. Schaller. 1982. A tandem repeat gene in picornavirus. Nucleic Acids Res. 10:64416450.
48. Forss, S.,, K. Strebel,, E. Beck, and, H. Schaller. 1984. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 12:65876601.
49. Franco, D.,, H. B. Pathak,, C. E. Cameron,, B. Rombaut,, E. Wimmer, and, A. V. Paul. 2005. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro. Virol. J. 2:86.
50. Gamarnik, A. V., and, R. Andino. 1996. Replication of polio-virus in Xenopus oocytes requires two human factors. EMBO J. 15:59885998.
51. Gamarnik, A. V., and, R. Andino. 1997. Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3:882892.
52. Gamarnik, A. V., and, R. Andino. 1998. Switch from translation to replication in a positive stranded RNA virus. Genes Dev. 12:22932304.
53. Gamarnik, A. V., and, R. Andino. 2000. Interactions of viral protein 3CD and poly(rC) binding protein with the 5′ untranslated region of poliovirus genome. J. Virol. 74:22192226.
54. Gamarnik, A. V.,, N. Boddeker, and, R. Andino. 2000. Translation and replication of human rhinovirus type 14 and mengo-virus in Xenopus oocytes. J. Virol. 74:1198311987.
55. Gamarnik, A. V., and, R. Andino. 2006. Exploring RNA virus replication in Xenopus oocytes. Methods Mol. Biol. 322:367378.
56. Geller, R.,, M. Vignuzzi,, R. Andino, and, J. Frydman. 2007. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 21:195205.
57. Gibson, D. G.,, J. I. Glass,, C. Lartigue,, V. N. Noskov,, R. Y. Chuang,, M. A. Algire,, G. A. Benders,, M. G. Montague,, L. Ma,, M. M. Moodie,, C. Merryman,, S. Vashee,, R. Krishnakumar,, N. Assad-Garcia,, C. Andrews-Pfannkoch,, E. A. Denisova,, L. Young,, Z. Q. Qi,, T. H. Segall-Shapiro,, C. H. Calvey,, P. P. Parmar,, C. A. Hutchison III,, H. O. Smith, and, J. C. Venter. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:5256.
58. Gmyl, A. P.,, E. V. Pilipenko,, E. V. Maslova,, G. A. Belov, and, V. I. Agol. 1993. Functional and genetic plasticities of the poliovirus genome: quasi-infectious RNAs modified in the 5′-untranslated region yield a variety of pseudorevertants. J. Virol. 67:63096316.
59. Golini, F.,, B. L. Semler,, A. J. Dorner, and, E. Wimmer. 1980. Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro. Nature 287:600603.
60. Gritzun, T. S.,, K. Venugopal,, P. M. Zanotto,, M. V. Mikhailov., A. A. Sall,, E. C. Holmes,, I. Polkinghoerne,, T. V. Frolova,, V. V. Pogodina,, V. A. Lashkevich, and, E. A. Gould. 1997. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5′ and 3′-UTRs. Virus Res. 49:2739.
61. Gromeier, M.,, E. Wimmer, and, A. E. Gorbalenya. 1999. Genetics, pathogenesis, and evolution of picornaviruses, p. 287–343. In E. Domingo,, R. G. Webster, and, J. J. Holland (ed.), Origin and Evolution of Viruses. Academic Press, San Diego, CA.
62. Gromeier, M.,, L. Alexander, and, E. Wimmer. 1996. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 93:23702375.
63. Gromeier, M.,, S. Lachman,, M. R. Rosenfeld,, P. H. Gutin, and, E. Wimmer. 2000. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA 97:68036808.
64. Gulevich, A. Y.,, R. A. Yusupova, and, Y. F. Drigin. 2002. VPgunlinkase, the phosphodiesterase that hydrolyzes the bond between VPg and picornavirus RNA: a minimal nucleic moiety of the substrate. Biochemistry (Moscow) 67:615621.
65. Hagino-Yamasgishi, K., and, A. Nomoto. 1989. In vitro construction of poliovirus defective interfering particles. J. Virol. 63:53865392.
66. Haller, A. A., and, B. L. Semler. 1992. Linker scanning mutagenesis of the internal ribosomal entry site of poliovirus RNA. J. Virol. 66:50755086.
67. Harmon, S. A.,, O. C. Richards,, D. F. Summers, and, E. Ehrenfeld. 1991. The 5′-terminal nucleotides of hepatitis A virus RNA, but not poliovirus RNA, are required for infectivity. J. Virol. 65:27572760.
68. Hellen, C. U.,, G. W. Witherell,, M. Schmid,, S. H. Shin,, T. V. Pestova,, A. Gil, and, E. Wimmer. 1993. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 90:76427646.
69. Hellen, C. U.,, T. V. Pestova, and, E. Wimmer. 1994. Effect of mutations downstream of the internal ribosome entry site on initiation of poliovirus protein synthesis. J. Virol. 68:63126322.
70. Herold, J., and, R. Andino. 2000. Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J. Virol. 74:63946400.
71. Herold, J., and, R. Andino. 2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 7:581591.
72. Hewlett, M. J.,, J. K. Rose, and, D. Baltimore. 1976. 5′-terminal structure of poliovirus polyribosomal RNA is pUp. Proc. Natl. Acad. Sci. USA 73:327330.
73. Holland, J. J., and, E. D. Kiehn. 1968. Specific cleavage of viral proteins as steps in the synthesis and maturation of enteroviruses. Proc. Natl. Acad. Sci. USA 60:10151022.
74. Holland, J. J.,, E. Domingo,, J. C. de La Torre, and, D. A. Steinhauer. 1990. Mutation frequencies at defined single codon sites in vesicular somatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64:39603962.
75. Hunt, T., and, R. J. Jackson. 1974. The rabbit reticulocyte lysate as a system for studying mRNA. Hematol. Bluttransfus. 14:300307.
76. Ilzuka, N.,, M. Kohara,, K. Hagino-Yamagishi,, S. Abe,, T. Komatsu,, K. Tago,, M. Arita, and, A. Nomoto. 1989. Construction of less neurovirulent polioviruses by introducing deletions into the 5′ noncoding sequence of the genome. J. Virol. 63:53545363.
77. Jacobson, M. F., and, D. Baltimore. 1968. Polypeptide cleavages in the formation of poliovirus proteins. Proc. Natl. Acad. Sci. USA 61:7784.
78. Jang, S. K.,, H. G. Krausslich,, M. J. Nicklin,, G. M. Duke,, A. C. Palmenberg, and, E. Wimmer. 1988. A segment of the 5′ non-translated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:26362643.
79. Jang, S. K.,, M. V. Davies,, R. J. Kaufman, and, E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63:16511660.
80. Jang, S. K.,, T. Pestova,, C. U. T. Hellen,, G. W. Witherell, and, E. Wimmer. 1990. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44:292309.
81. Jang, S. K., and, E. Wimmer. 1990. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 4:15601572.
82. Jang, S. K. 2006. Internal initiation: IRES elements of picornaviruses and hepatitis C virus. Virus Res. 119:215.
83. Jiang, P.,, J. A. J. Fasse,, H. Toyoda,, A. Paul,, E. Wimmer, and, A. E. Gorbalenya. 2007. Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proc. Natl. Acad. Sci. USA 104:94579462.
84. Johnson, V. H., and, B. L. Semler. 1988. Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5′-noncoding region of viral RNAs. Virology 162:4757.
85. Jurgens, C., and, J. B. Flanegan. 2003. Initiation of poliovirus negative-strand RNA synthesis requires precursor forms of P2 proteins. J. Virol. 77:10751083.
86. Kajigaya, S.,, H. Arakawa,, S. Kuge,, T. Koi,, N. Imura, and, A. Nomoto. 1985. Isolation and characterization of defective-interfering particles of poliovirus Sabin 1 strain. Virology 142:307316.
87. Kaminski, A.,, G. J. Belsham, and, R. J. Jackson. 1994. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J. 13:16731681.
88. Kandolf, R., and, P. H. Hofschneider. 1985. Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc. Natl. Acad. Sci. USA 82:48184822.
89. Kiehn, E. D., and, J. J. Holland. 1970. Synthesis and cleavage of enterovirus polypeptides in mammalian cells. J. Virol. 5:358367.
90. King, A. M.,, D. V. Sangar,, T. J. Harris, and, F. Brown. 1980. Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J. Virol. 34:627634.
91. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson, and, E. Wimmer. 1981. Primary structure, genome organization, polypeptide expression of poliovirus RNA. Nature 291:547553.
92. Kuge, S.,, I. Saito, and, A. Nomoto. 1986. Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanisms of the particles. J. Mol. Biol. 192:473487.
93. Kuge, S.,, N. Kawamura, and, A. Nomoto. 1989. Genetic variation occurring on the genome of an in vitro insertion mutant of poliovirus type 1. J. Virol. 63:10691075.
94. Kuhn, R. J.,, H. Tada,, M. F. Ypma-Wong,, J. J. Dunn,, B. L. Semler, and, E. Wimmer. 1988. Construction of a “mutagenesis cartridge” for poliovirus genome-linked protein viral protein: isolation and characterization of viable and nonviable mutants. Proc. Natl. Acd. Sci. USA 85:519523.
95. Kuhn, R. J.,, H. Tada,, M. F. Ypma-Wong,, B. L. Semler, and, E. Wimmer. 1988. Mutational analysis of the genome linked protein VPg of poliovirus. J. Virol. 62:42074215.
96. Lama, J.,, M. A. Sanz, and, P. L. Rodriguez. 1995. A role for 3AB protein in poliovirus genome replication. J. Biol. Chem. 270:1443014438.
97. Le, S. Y., and, J. V. Maizel. 1998. Evolution of common structural core in the internal ribosome entry sites of picornavirus. Virus Genes 16:2538.
98. Lee, C. K., and, E. Wimmer. 1988. Proteolytic processing of poliovirus polyprotein: elimination of 2Apro-mediated, alternative cleavage of polyprotein 3CD by in vitro mutagenesis. Virology 166:405414.
99. Lee, Y. F.,, A. Nomoto,, B. M. Detjen, and, E. Wimmer. 1977. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. USA 74:5963.
100. Lee, Y. N., and, P. D. Bieniasz. 2007. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 3:e10.
101. Liu, Y.,, D. Franco,, A. V. Paul, and, E. Wimmer. 2007. Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in the context of its precursor protein 3AB. J. Virol. 81:56695684.
102. Liu, Y.,, C. Wang,, S. Mueller,, A. V. Paul,, E. Wimmer, and, P. Jiang. Direct interaction between two viral proteins, the non-structural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathogens, in press.
103. Lohmann, V.,, F. Korner,, J. Koch,, U. Herian,, L. Theilmann, and, R. Bartenschlager. 1999. Replication of subgenomic hepatitis C virus RNA in a hepatoma cell line. Science 285:110113.
104. Lu, H. H., and, E. Wimmer. 1996. Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc. Natl. Acad. Sci. USA 93:14121417.
105. Lukavski, P. J. 2009. Structure and function of HCV IRES domains. Virus Res. 139:166171.
106. Lundquist, R. E.,, M. Sullivan, and, J. V. Maizel. 1979. Characterization of a new isolate of poliovirus defective interfering particles. Cell 18:759769.
107. Lyle, J. M.,, A. Clewell,, K. Richmond,, O. C. Richards,, D. A. Hope,, S. C. Schultz, and, K. Kirkegaard. 2002. Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. J. Biol. Chem. 277:1632416331.
108. Maizel, J. V., and, D. F. Summers. 1968. Evidence for differences in size and composition of poliovirus-specific polypep-tides in infected HeLa cells. Virology 36:489454.
109. Marcotte, L. L.,, A. B. Wass,, D. W. Gohara,, H. B. Pathak,, J. J. Arnold,, D. J. Filman,, C. E. Cameron, and, J. M. Hogle. 2007. Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J. Virol. 81:35833596.
110. Martinez-Salas, E.,, A. Pacheco,, P. Serrano, and, N. Fernandez. 2008. New insights into internal ribosome entry site elements relevant for viral gene expression. J. Gen. Virol. 89:611626.
111. Mason, P. W.,, S. V. Bezborodova, and, T. M. Henry. 2002. Identification and characterization of a cis-acting replication element (cre) adjacent to the internal ribosomal entry site of foot-and-mouth disease virus. J. Virol. 76:96869694.
112. Matthews, D. A.,, W. W. Smith,, R. A. Ferre,, B. Condon,, G. Budahazi,, W. Sisson,, J. E. Villafranca,, C. A. Janson,, H. E. McElroy,, C. L. Gribskov, et al. 1994. Structure of human rhinovirus C protease reveals a trypsin-like polypeptide fold, RNA binding site, and means for cleaving precursor polyprotein. Cell 77:761771.
113. Medina, M.,, E. Domingo,, J. K. Brangwyn, and, G. J. Belsham. 1993. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194:355359.
114. Meerovitch, K.,, Y. V. Svitkin,, H. S. Lee,, F. Lejbkowicz,, D. J. Kenan,, E. K. Chan,, V. I. Agol,, J. D. Keene, and, N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocytye lysate. J. Virol. 67:37983807.
115. Mizutani, S., and, R. J. Colonno. 1985. In vitro synthesis of an infectious RNA from cDNA clones of human rhinovirus type 14. J. Virol. 56:628632.
116. Molla, A.,, A. V. Paul, and, E. Wimmer. 1991. Cell-free de novo synthesis of poliovirus. Science 254:16471651.
117. Molla, A.,, S. K. Jang,, A. V. Paul,, Q. Reuer, and, E. Wimmer. 1992. Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature 356:255257.
118. Molla, A.,, A. V. Paul,, M. Schmid,, S. K. Jang, and, E. Wimmer. 1993. Studies on dicistronic polioviruses implicate viral proteinase 2Apro in RNA replication. Virology 196:739747.
119. Molla, A.,, A. V. Paul, and, E. Wimmer. 1993. Effects of temperature and lipophilic agents on formation and RNA synthesis in a cell-free system. J. Virol. 67:59325938.
120. Mueller, S.,, E. Wimmer, and, J. Cello. 2005. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res. 111:175193.
121. Mueller, S.,, D. Papamichael,, J. R. Coleman,, S. Skiena, and, E. Wimmer. 2006. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol. 80:96879696.
122. Murray, K. E., and, D. J. Barton. 2003. Poliovirus cre-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J. Virol. 77:47394750.
123. Nakashima, N., and, T. Uchiumi. 2009. Functional analysis of structural motifs in dicistroviruses. Virus Res. 139:137147.
124. Nayak, A.,, I. G. Goodfellow, and, G. J. Belsham. 2005. Factors required for the uridylylation of the foot-and-mouth disease virus 3B1, 3B2, 3B3 peptides by the RNA-dependent RNA polymerase in vitro. J. Virol. 79:79687706.
125. Nicklin, M. J. H.,, H. Toyoda,, M. G. Murray, and, E. Wimmer. 1986. Proteolytic processing in the replication of polio and related viruses. Biotechnology 4:3642.
126. Niepmann, M. 2009. Internal translation initiation of picornaviruses and hepatitis C virus. Biochim. Biophys. Acta 1789:529541.
127. Nomoto, A.,, Y. F. Lee, and, E. Wimmer. 1976. The 5′ end of poliovirus mRNA is not capped with m7G(5′)ppp(5′)Np. Proc. Natl. Acad. Sci. USA 73:375380.
128. Nomoto, A.,, B. Detjen,, R. Pozzatti, and, E. Wimmer. 1977. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268:208213.
129. Nomoto, A.,, N. Kitamura,, F. Golini, and, E. Wimmer. 1977. The 5′-terminal structures of poliovirion RNA and polio-virus mRNA differ only in the genome-linked protein VPg. Proc. Natl. Acad. Sci. USA 74:53455349.
130. Nomoto, A.,, A. Jacobson,, Y. F. Lee,, J. Dunn, and, E. Wimmer. 1979. Defective interfering particles of poliovirus: mapping of the deletion and evidence that the deletions in the genome of DI(1), (2), (3) are located in the same region. J. Mol. Biol. 128:179196.
131. Novak, J. E., and, K. Kirkegaard. 1994. Coupling between genome translation and replication in an RNA virus. Genes Dev. 8:17261737.
132. Nugent, C. I.,, K. L. Johnson,, P. Sarnow, and, K. Kirkegaard. 1999. Functional coupling between replication and packaging of poliovirus replicon RNA. J. Virol. 73:427435.
133. Oh, H. S.,, H. B. Pathak,, I. G. Goodfellow,, J. J. Arnold, and, C. E. Cameron. 2009. Insights into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J. Virol. 83:93709387.
134. Pallai, P. V.,, F. Burkhardt,, M. Skoog,, K. Schreiner,, P. Bax,, K. A. Cohen,, G. Hansen,, D. E. Palladino,, K. S. Harris,, M. J. Nicklin, et al. 1989. Cleavage of synthetic peptides by purified poliovirus 3C proteinase. J. Biol. Chem. 264:97389741.
135. Parsley, T. B.,, J. S. Towner,, L. B. Blyn,, E. Ehrenfeld, and, B. L. Semler. 1997. Poly(rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3:11241134.
136. Paul, A. V.,, A. Molla, and, E. Wimmer. 1994. Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. Virology 199:188199.
137. Paul, A.V.,, J. H. van Boom,, D. Filippov, and, E. Wimmer. 1998. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393:280284.
138. Paul, A. V.,, J. Mugavero,, A. Molla, and, E. Wimmer. 1998. Internal ribosomal entry site scanning of the poliovirus polyprotein: implications for proteolytic processing. Virology 250:241253.
139. Paul, A. V.,, J. Peters,, J. Mugavero,, J. Yin,, J. H. van Boom, and, E. Wimmer. 2003. Biochemical and genetic studies of the VPg-uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J. Virol. 77:891904.
140. Pelletier, J., and, N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320325.
141. Pelletier, J., and, N. Sonnenberg. 1989. Internal binding of eukaryotic ribosomes on poliovirus RNA: translation in HeLa cell extracts. J. Virol. 63:441444.
142. Perera, R.,, S. Daijogo,, B. L. Walter,, J. H. Nguyen, and, B. L. Semler. 2007. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J. Virol. 81:89198932.
143. Pestova, T. V.,, C. U. T. Hellen, and, E. Wimmer. 1994. A conserved AUG triplet in the 5′ nontranslated region of poliovirus can function as an initiation codon in vitro and in vivo. Virology 204:729737.
144. Pilipenko, E. V.,, V. M. Blinov,, B. K. Chernov,, T. M. Dmitrieva, and, V. I. Agol. 1989. Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 17:57015711.
145. Pilipenko, E. V.,, V. M. Blinov,, L. I. Romanova,, A. N. Sinyakov,, S. V. Maslova, and, V. I. Agol. 1989. Conserved structural domains in the 5′-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neuro-virulence. Virology 168:201209.
146. Pilipenko E. V.,, V. M. Blinov, and, V. I. Agol. 1990. Gross rearrangements within the 5′-untranslated region of picornaviral genomes. Nucleic Acids Res. 18:33713375.
147. Pilipenko, E. V.,, A. P. Gmyl,, S. V. Maslova,, Y. V. Svitkin,, A. N. Sinyakov, and, V. I. Agol. 1992. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68:119131.
148. Pipkin, P. A.,, D. J. Wood,, V. R. Racaniello, and, P. D. Minor. 1993. Characterization of L cells expressing the human poliovirus receptor for the specific detection of polioviruses in vitro. J. Virol. Methods 41:333340.
149. Pisarev, A. V.,, L. S. Chard,, Y. Kaku,, H. L. Johns,, I. N. Schatsky, and, G. J. Belsham. 2004. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and the porcine teschovirus, a picornavirus. J. Virol. 78:44874497.
150. Poyry, T. A.,, M. W. Hentze, and, R. J. Jackson. 2001. Construction of regulatable picornavirus IRESes as a test of current models of the mechanism of internal initiation. RNA 7:647660.
151. Racaniello, V. R., and, D. Baltimore. 1981. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916919.
152. Racaniello, V. R., and, D. Baltimore. 1981. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc. Natl. Acad. Sci. USA 78:48874891.
153. Reuer, Q.,, R. J. Kuhn, and, E. Wimmer. 1990. Characterization of poliovirus clones containing lethal and nonlethal mutations in the genome-linked protein VPg. J. Virol. 64:29672975.
154. Reuter, G.,, A. Boldizsar, and, P. Pankovich. 2009. Complete nucleotide and amino acid sequences and genetic organization of porcine kobuvirus, a member of a new species in the genus Kobuvirus, family Picornaviridae. Arch. Virol. 154:101108.
155. Rothberg, P. G.,, T. J. Harris,, A. Nomoto, and, E. Wimmer. 1978. O4-(5′-uridylyl)tyrosine is the bond between the genome linked protein and the RNA of poliovirus. Proc. Natl. Acad. Sci. USA 75:48684872.
156. Sangar, D. V.,, J. Bryant,, T. J. Harris,, F. Brown and, D. J. Rowlands. 1981. Removal of the genome-linked protein of foot-and-mouth disease virus by rabbit reticulocyte lysate. J. Virol. 39:6774.
157. Sawicki, S. G.,, D. L. Sawicki, and, S. G. Siddell. 2007. A contemporary view of coronavirus transcription. J. Virol. 81:2029.
158. Schein, C. H.,, N. Oezgen,, D. E. Volk,, R. Garimella,, A. Paul, and, W. Braun. 2006. NMR structure of the viral peptide linked to the genome (VPg) of poliovirus. Peptides 27:16761684.
159. Schein, C. H.,, D. E. Volk,, N. Oezguen, and, A. Paul. 2006. Novel, structure-based mechanism for uridylylation of the genome-linked peptide (VPg) of poliovirus. Proteins 63:719726.
160. Schlesinger, M. J., and, C. Levinthal. 1963. Hybrid protein formation of E. coli alkaline phosphatase leading to in vitro complementation. J. Mol. Biol. 7:112.
161. Semler, B. L.,, C. W. Anderson,, N. Kitamura,, P. G. Rothberg,, W. L. Wishart, and, E. Wimmer. 1981. Poliovirus replication proteins: RNA sequence encoding 1B and the sites of proteolytic processing. Proc. Natl. Acad. Sci. USA 78:34643468.
162. Semler, B. L.,, R. Hanecak,, C. W. Anderson, and, E. Wimmer. 1981. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X. Virology 114:589594.
163. Semler, B. L.,, A. J. Dorner, and, E. Wimmer. 1984. Production of infectious poliovirus from cloned cDNA is dramatically increased by SV40 transcription and replication signals. Nucleic Acids Res. 12:51235141.
164. Semler, B. L. 2005. Resistance is futile. Nat. Genet. 37:665666.
165. Silvera, D.,, A. V. Gamarnik, and, R. Andino. 1999. The N-terminal K homology domain of the poly(rC) binding protein is a major determinant for binding to the poliovirus 5′-untranslated region and acts as an inhibitor of viral translation. J. Biol. Chem. 274:3816338170.
166. Skinner, M. A.,, V. R. Racaniello,, G. Dunn,, J. Cooper,, P. D. Minor, and, J. W. Almond. 1989. New model for the secondary structure of the 5′-noncoding RNA of poliovirus is supported by biochemical and genetic data that also shows that RNA structure is important in neurovirulence. J. Mol. Biol. 207:379392.
167. Slobodskaya, O. R.,, A. P. Gmyl,, S. V. Maslova,, E. A. Tolskaya,, E. G. Viktorova, and, V. I. Agol. 1996. Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator codon. Virology 221:141150.
168. Smith, H. O.,, C. A. Hutchinson,, C. Pfannkoch, and, J. C. Venter. 2003. Generating a synthetic genome by whole genome assembly: фX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 100:1544015445.
169. Strauss, J. H., and, E. G. Strauss. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58:491562.
170. Strauss, D. M., and, D. S. Wuttke. 2007. Characterization of protein-protein interactions critical for poliovirus replication: analysis of 3AB and VPg binding to the RNA-dependent RNA polymerase. J. Virol. 81:63696378.
171. Summers, D. F.,, J. V. Maizel, and, J. E. Darnell. 1965. Evidence for virus-specific noncapsid proteins in poliovirus-infected HeLa cells. Proc. Natl. Acad. Sci. USA 54:505513.
172. Summers, D. F., and, J. V. Maizel. 1968. Evidence for large precursor proteins in poliovirus synthesis. Proc. Natl. Acad. Sci. USA 59:966971.
173. Svitkin, Y. V., and, N. Sonenberg. 2004. An efficient system for cap-and poly(A)-dependent translation in vitro. Methods Mol. Biol. 257:155170.
174. Taber, R.,, D. Rekosh, and, D. Baltimore. 1971. Effect of pactamycin on synthesis of poliovirus proteins: a method for genetic mapping. J. Virol. 8:395401.
175. Takehisa, J.,, M. H. Kraus,, J. M. Decker,, Y. Li,, B. F. Keele,, F. Bibollet-Ruche,, K. P. Zammit,, Z. Weng,, M. L. Santiago,, S. Kamenya,, M. L. Wilson,, A. E. Pusey,, E. Bailes,, P. M. Sharp,, G. M. Shaw, and, B. H. Hahn. 2007. Generation of infectious molecular clones of simian immunodeficiency virus from fecal consensus sequences of wild chimpanzees. J. Virol. 81:74637475.
176. Taniguchi, T.,, M. Palmieri, and, C. Weissmann. 1978. A Qβ-containing hybrid plasmid giving rise to Qβ phage formation in the bacterial host. Nature 274:223228.
177. Teterina, N.,, W. D. Zhou,, M. W. Cho, and, E. Ehrenfeld. 1995. Inefficient complementation activity of poliovirus 2C and 3D proteins for rescue of lethal mutations. J. Virol. 69:42454254.
178. Tian, J.,, H. Gong,, N. Sheng,, X. Zhou,, E. Gulari,, X. Gao, and, G. Church. 2004. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432:10501054.
179. Todd, S.,, J. S. Towner, and, B. L. Semler. 1997. Translation and replication properties of the human rhinovirus genome in vivo and in vitro. Virology 229:9097.
180. Towner, J. S.,, M. M. Mazanet, and, B. L. Semler. 1998. Rescue of defective poliovirus RNA replication by 3AB-containing precursor polyproteins. J. Virol. 72:71917200.
181. Toyoda, H.,, D. Franco,, K. Fujita,, A. V. Paul, and, E. Wimmer. 2007. Replication of poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as well as to the adjacent C-rich spacer sequence between the cloverleaf and the internal ribosomal entry site. J. Virol. 81:1001710028.
182. Toyoda, H.,, J. Yin,, S. Mueller,, E. Wimmer, and, J. Cello. 2007. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 67:28572864.
183. Tumpey, T. M.,, C. F. Basler,, P. V. Aguilar,, H. Zeng,, A. Solorzano,, D. E. Swayne,, N. J. Cox,, J. M. Katz,, J. K. Taubenberger,, P. Palese, and, A. Garcia-Sastre. 2005. Characterization of the reconstituted 1918 Spanish influenza pandemic virus. Science 310:7780.
184. van der Werf, S.,, J. Bradley,, E. Wimmer,, F. W. Studier, and, J. Dunn. 1986. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 78:23302334.
185. van Wezenbeek, P.,, J. Verver,, J. Harmsen,, P. Vos, and, A. van Kammen. 1983. Primary structure and gene organization of the middle-component RNA of cowpea mosaic virus. EMBO J. 2:941946.
186. Venter, P. A.,, N. K. Krishna, and, A. Schneemann. 2005. Capsid protein synthesis from a replicating RNA directs specific packaging of the genome of a multipartite, positive strand RNA virus. J. Virol. 79:62396248.
187. Walter, B. L.,, T. B. Parsley,, E. Ehrenfeld, and, B. L. Semler. 2002. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J. Virol. 76:1200812022.
188. Weissmann, C.,, H. Weber,, T. Taniguchi,, W. Muller, and, F. Meyer. 1979. Reversed genetics: a new approach to the elucidation of structure-function relationship. Ciba Found. Symp. 29:4761.
189. Wimmer, E.,, C. U. T. Hellen, and, X. Cao. 1993. Genetics of poliovirus. Annu. Rev. Genet. 27:353436.
190. Wimmer, E. 2006. The test-tube synthesis of a chemical called poliovirus. The simple synthesis of a virus has far-reaching societal implications. EMBO Rep. 7:S3S9.
191. Wimmer, E.,, S. Mueller,, T. M. Tumpey, and, J. K. Taubenberger. 2009. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat. Biotechnol. 27:11631172.
192. Yogo, T., and, E. Wimmer. 1972. Polyadenylic acid at the 3′-terminus of poliovirus RNA. Proc. Natl. Acad. Sci. USA 69:18771882.
193. Ypma-Wong, M. F.,, D. J. Filman,, J. M. Hogle, and, B. L. Semler. 1988. Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at Gln-Gly pairs. J. Biol. Chem. 263:1784617856.
194. Zell, R.,, Y. Ihle,, M. Effenberger,, S. Steitz,, P. Wutzler, and, M. Gorlach. 2008. Interaction of poly(rC) binding protein 2 domains KH1 and KH3 with coxsackievirus RNA. Biochem. Biophys. Res. Commun. 377:500503.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error