Chapter 4 : Virion Structure

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Virion Structure, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap04-2.gif


Picornaviruses were the first animal viruses whose structure was determined in atomic detail and, as of October 2009, the Protein Data Bank (PDB) registered 53 structure depositions for picornaviruses. These data have contributed significantly to the understanding of picornavirus evolution, assembly, host-cell interaction, host adaptation, and antigenic variation and are providing the basis for novel therapeutic strategies. Subsequently classified as a picornavirus, the general morphology of FMDV could not be visualized until the advent of the electron microscope, when negative-stained images to a resolution of 4 to 5 nm revealed rather smooth round particles of ~30 nm diameter. The current classification of picornaviruses is based on genome and protein sequence properties which are derived from the interplay of the error-prone replication mechanism of the virus with the process of natural selection. Differences in physical properties, such as buoyant density in cesium chloride and pH stability, underpinned the early classification of picornaviruses. Virus capsids recognize susceptible cells by attachment to specific receptors on the host cell membrane, thereby determining the host range and tropism of infection. The majority of antibodies are weak neutralizers that appear to operate by using the two arms of the antibody to cross-link different virus particles, causing aggregation.

Citation: Fry E, Stuart D. 2010. Virion Structure, p 59-71. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abrescia, N. G.,, J. M. Grimes,, E. E. Fry,, J. J. Ravantti,, D. Bam-ford, and, D. I. Stuart. 2010. What does it take to make a virus: the concept of the viral ‘self,’ p. 35–58. In P. G. Stockley and, R. Twarock (ed.), Emerging Topics in Physical Virology. Imperial College Press, London, United Kingdom.
2. Acharya, R.,, E. Fry,, D. Stuart,, G. Fox,, D. Rowlands, and, F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature (London) 337:709716.
3. Argos, P.,, T. Tsukihara, and, M. G. Rossmann. 1980. A structural comparison of concanavalin A and tomato bushy stunt virus protein. J. Mol. Evol. 15:169179.
4. Arnold, E., and, M. G. Rossmann. 1990. Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 Å. J. Mol. Biol. 211:763801.
5. Bamford, D.,, J. M. Grimes, and, D. I. Stuart. 2005. What does a structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15:655663.
6. Basavappa, R.,, R. Syed,, O. Flore,, J. P. Icenogle,, D. J. Filman, and, J. M. Hogle. 1994. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 Å resolution. Protein Sci. 3:16511669.
7. Baxt, B., and, H. L. Bachrach. 1980. Early interactions of foot-and-mouth disease virus with cultured cells. Virology 104:4255.
8. Belnap, D. M.,, B. M. McDermott, Jr.,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle, and, A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:7378.
9. Berman, H. M.,, J. Westbrook,, Z. Feng,, G. Gilliland,, T. N. Bhat,, H. Weissig,, I. N. Shindyalov, and, P. E. Bourne. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235242.
10. Bittle, J. L.,, R. A. Houghten,, H. Alexander,, T. M. Shinnick,, J. G. Sutcliffe,, R. A. Lerner,, D. J. Rowlands, and, F. Brown. 1982. Protection against foot-and-mouth disease by immunisation with a chemically synthesised peptide predicted from the viral nucleotide sequence. Nature (London) 298:3033.
11. Bostina, M.,, D. Bubeck,, C. Scwartz,, D. Nicastro,, D. J. Filman, and, J. M. Hogle. 2007. Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus-receptor-membrane complex at 30 Å resolution. J. Struct. Biol. 160:200210.
12. Brabec, M.,, G. Baravalle,, D. Blaas, and, R. Fuchs. 2003. Conformational changes, plasma membrane penetration and infection by human rhinovirus type 2: role of receptors and low pH. J. Virol. 77:53705377.
13. Bubeck, D.,, D. J. Filman,, C. Naiqian,, A. C. Steven,, J. M. Hogle, and, D. M. Belnap. 2005. The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J. Virol. 79:77457755.
14. Carrillo-Tripp, M.,, C. M. Shepherd,, I. A. Borelli,, V. Sangita,, G. Lander,, P. Natarajan,, J. E. Johnson,, C. L. Brooks, and, V. S. Reddy. 2009. VIPERdb2: an enhanced and Web API enabled relational database for structural virology. Nucleic Acids Res. 37:D436D442.
15. Chandrasekar, V., and, J. E. Johnson. 1998. The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 15:157171.
16. Chow, M.,, J. Newman,, D. Filman,, J. M. Hogle,, D. J. Rowlands, and, F. Brown. 1987. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature (London) 327:482486.
17. Crick, F. H. C., and, J. D. Watson. 1956. Structure of small viruses. Nature (London) 177:473475.
18. Curry, S.,, E. Fry,, W. Blakemore,, R. Abu-Ghazaleh,, T. Jackson,, A. King,, S. Lea,, J. Newman, and, D. Stuart. 1997. Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J. Virol. 71:97439752.
19. Ding, J.,, A. D. Smith,, S. C. Geisler,, X. Ma,, G. F. Arnold, and, E. Arnold. 2002. Crystal structure of a human rhinovirus that displays part of the HIV-1 VP3 loop and induces neutralizing antibodies against HIV-1. Structure 10:9991011.
20. Felsenstein, J. 1989. PHYLIP: Phylogeny Inference Package (version 3.2). Cladistics 5:164166.
21. Fernandez-Thomas, C., and, D. Baltimore. 1973. Morphogenesis of polio-virus. II. Demonstration of a new intermediate, the provirion. J. Virol. 12:11221130.
22. Filman, D. J.,, R. Syed,, M. Chow,, A. J. Macadam,, P. D. Minor, and, J. M. Hogle. 1989. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8:15671579.
23. Finch, J. T., and, A. Klug. 1959. Structure of poliomyelitis virus. Nature (London) 183:17091714.
24. Fry, E.,, N. J. Knowles,, J. W. I. Newman,, G. Wilsden,, Z. Rao,, A. M. Q. King, and, D. I. Stuart. 2003. Crystal structure of swine vesicular disease virus and implications for host adaptation. J. Virol. 77:54755486.
25. Fry, E.,, S. M. Lea,, T. Jackson,, J. W. I. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. Q. King, and, D. I. Stuart. 1999. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 18:543554.
26. Fry, E.,, D. Logan,, R. Abu-Ghazaleh,, W. Blakemore,, S. Curry,, T. Jackson,, S. Lea,, R. Lewis,, J. Newman,, N. Parry,, D. Rowlands,, A. King, and, D. Stuart. 1991. Molecular studies on the structure of foot and mouth disease virus, p. 71–80. In P. Goode-nough (ed.), Protein Engineering. CPL Press, Berkshire, United Kingdom.
27. Fry, E.,, D. Logan,, R. Acharya,, G. Fox,, D. Rowlands,, F. Brown, and, D. Stuart. 1990. Architecture and topography of an aphthovirus. Semin. Virol. 1:439451.
28. Fry, E. E.,, J. W. Newman, and, S. Curry. 2005. Structure of foot-and-mouth disease virus serotype A1061 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. J. Gen. Virol. 86:19091920.
29. He, Y.,, V. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn, and, M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97:7984.
30. He, Y.,, P. R. Chipman,, J. Howitt,, C. M. Bator,, M. A. Whitt,, T. S. Baker,, R. J. Kuhn,, C. W. Anderson,, P. Freimuth, and, M. G. Rossmann. 2001. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 8:874878.
31. He, Y.,, F. Lin,, P. R. Chipman,, C. M. Bator,, T. S. Baker,, M. Shoham,, R. J. Kuhn,, M. E. Medof, and, M. G. Rossmann. 2002. Structure of decay-accelerating factor bound to echovirus 7: a virus-receptor complex. Proc. Natl. Acad. Sci. USA 99:1032510329.
32. He, Y.,, S. Mueller,, P. R. Chipman,, C. M. Bator,, X. Peng,, V. Bowman,, S. Mukhopadhyay,, E. Wimmer,, R. J. Kuhn, and, M. G. Rossmann. 2003. Complexes of poliovirus serotypes with their common cellular receptor, CD155. J. Virol. 77:48274835.
33. Hendry, E.,, H. Hatanaka,, E. Fry,, M. Smyth,, J. Tate,, G. Stan-way,, J. Santti,, M. Maaronen,, T. Hyypia, and, D. Stuart. 1999. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7:15271538.
34. Hewat, E. A., and, D. Blaas. 2004. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J. Virol. 78:29352942.
35. Hewat, E. A., and, D. Blaas. 1996. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J. 15:15151523.
36. Hewat, E. A.,, E. Neumann, and, D. Blaas. 2002. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell 10:317326.
37. Hewat, E. A.,, E. Neumann,, J. F. Conway,, R. Moser,, B. Ronacher,, T. C. Marlovits, and, D. Blaas. 2000. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J. 19:63176325.
38. Hindiyeh, M.,, Q.-H. Li,, R. Basavappa,, J. M. Hogle, and, M. Chow. 1999. Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J. Virol. 73:90729079.
39. Hogle, J. M. 2002. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56:677702.
40. Hogle, J. M.,, M. Chow, and, D. J. Filman. 1985. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:13581365.
41. Icenogle, J.,, H. Shiwen,, G. Duke,, S. Gilbert,, R. Rueckert, and, J. Anderegg. 1983. Neutralization of poliovirus by a monoclonal antibody: kinetics and stoichiometry. Virology 127:412425.
42. Kalko, S. G.,, R. E. Cachau, and, A. M. Silva. 1992. Ion channels in icosahedral virus: a comparative analysis of the structures and binding sites at their fivefold axes. Biophys. J. 63:11331145.
43. Kim, S.,, U. Boege,, S. Krishnaswamy,, I. Minor, and, T. J. Smith. 1990. Conformational variability of a picornavirus capsid: pH-dependent structural changes of Mengo virus related to its host receptor attachment site and disassembly. Virology 175:176190.
44. Kim, S.,, T. J. Smith,, M. S. Chapman,, M. G. Rossmann,, D. C. Pevear,, F. J. Dutko,, P. J. Felock,, G. D. Diana, and, M. A. McKinlay. 1989. Crystal structure of human rhinovirus sero-type 1A (HRV1A). J. Mol. Biol. 210:91111.
45. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker, and, M. G. Rossmann. 1999. Structural studies of two rhino-virus serotypes complexed with fragments of their cellular receptor. EMBO J. 18:62496259.
46. Krupovic, M., and, D. Bamford. 2009. Does the evolution of viral polymerases reflect the origin and evolution of viruses? Nat. Rev. Microbiol. 7:250.
47. Kruse, J.,, K. M. Kruse,, J. Witz,, C. Chauvin,, B. Jacrot, and, A. Tardieu. 1982. Divalent ion-dependent reversible swelling of tomato bushy stunt virus and organization of the expanded version. J. Mol. Biol. 162:393417.
48. Lea, S.,, J. Hernandez,, W. Blakemore,, E. Brocchi,, S. Curry,, E. Domingo,, E. Fry,, R. Abu-Ghazaleh,, A. King,, J. Newman,, D. Stuart, and, M. G. Mateu. 1994. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2:123139.
49. Lentz, K. N.,, A. D. Smith,, S. C. Geisler,, S. Cox,, P. Buontempo,, A. Skelton,, J. DeMartino,, E. Rozhon,, J. Schwartz,, V. Girijavallabhan,, J. O’Connell, and, E. Arnold. 1997. Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the structural and biological properties of three poliovirus serotypes. Structure 5:961978.
50. Li, Q.,, A. Gomez Yafal,, Y. M.-H. Lee,, J. Hogle, and, M. Chow. 1994. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J. Virol. 68:39653970.
51. Logan, D.,, R. Abu-Ghazaleh,, W. Blakemore,, S. Curry,, T. Jackson,, A. King,, S. Lea,, R. Lewis,, J. Newman,, N. Parry,, D. Rowlands,, D. Stuart, and, E. Fry. 1993. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature (London) 362:566568.
52. Luo, M.,, G. Vriend,, G. Kamer,, I. Minor,, E. Arnold,, M. G. Rossmann,, U. Boegé,, D. G. Scraba,, G. M. Duke, and, A. C. Palmenberg. 1987. The atomic structure of mengo virus at 3.0 Å resolution. Science 235:182191.
53. Mason, P. W.,, E. Rieder, and, B. Baxt. 1994. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc. Natl. Acad. Sci. USA 91:19321936.
54. Mateu, M. G. 1995. Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res. 38:124.
55. Mateu, M. G.,, J. Hernandez,, M. A. Martinez,, D. Feigelstock,, S. Lea,, J. J. Perez,, E. Giralt,, D. Stuart,, E. L. Palma, and, E. Domingo. 1994. Antigenic heterogeneity of a foot-and-mouth disease virus in the field is mediated by very limited sequence variation at several antigenic sites. J. Gen. Virol. 68:14071417.
56. Maurer, U. E.,, B. Sodeik, and, K. Grunewald. 2008. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc. Natl. Acad. Sci. USA 105:1055910564.
57. Muckelbauer, J. K.,, M. Kremer,, I. Minor,, G. Diana,, F. J. Dutko,, J. Groarke,, D. C. Pevear, and, M. G. Rossmann. 1995. The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3:653667.
58. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. A. Baker, and, M. G. Rossmann. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90:507511.
59. Palmenberg, A. C. 1989. Sequence alignments of picornaviral capsid proteins, p. 211–241. In B. L. Semler and, E. Ehrenfeld (ed.), Molecular Aspects of Picornavirus Infection and Detection. American Society for Microbiology, Washington, DC.
60. Parry, N.,, G. Fox,, D. Rowlands,, F. Brown,, E. Fry,, R. Acharya, and, D. Stuart. 1990. Structural and serological evidence for a novel mechanism of immune evasion in foot-and-mouth disease virus. Nature (London) 347:569572.
61. Pevear, D. C.,, T. M. Tull,, M. E. Seipel, and, J. M. Groarke. 1999. Activity of Pleconaril against enteroviruses. Antimicrob. Agents Chemother. 43:21092115.
62. Pfaff, E.,, M. Mussgay,, H. O. Bohm,, G. E. Schulz, and, Schaller. 1982. Antibodies against a preselected peptide recognise and neutralise foot-and-mouth disease virus. EMBO J. 1:869874.
63. Querol-Audi, J.,, T. Konecsni,, J. Pous,, O. Carugo,, I. Fita,, N. Verdaguer, and, D. Blaas. 2009. Minor group human rhinovirus-receptor interactions: geometry of multimodular attachment and basis of recognition. FEBS Lett. 583:235240.
64. Riffel, N.,, K. Harlos,, O. Iourin,, Z. Rao,, A. Kingsman,, D. Stuart, and, E. Fry. 2002. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure 10:16271636.
65. Rossmann, M. G. 1994. Viral cell recognition and entry. Protein Sci. 3:17121725.
66. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenburger,, J. P. Griffith,, H. J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. C. Mosser,, R. R. Rueckert,, B. Sherry, and, G. Vriend. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London) 317:145153.
67. Rossmann, M. G., and, J. E. Johnson. 1989. Icosahedral RNA virus structure. Annu. Rev. Biochem. 58:533573.
68. Rowlands, D. J.,, D. V. Sangar, and, F. Brown. 1975. A comparative chemical and serological study of the full and empty particles of foot-and-mouth disease virus. J. Gen. Virol. 26:227238.
69. Schaffer, F. L., and, C. E. Schwerdt. 1955. Crystallization of purified MEF-1 poliomyelitis virus particles. Proc. Natl. Acad. Sci. USA 41:10201023.
70. Shepard, D. A.,, B. A. Heinz, and, R. R. Rueckert. 1993. WIN 52035-2 inhibits both attachment and eclipse of human rhino-virus 14. J. Virol. 67:22452254.
71. Smith, T. J.,, E. S. Chase,, T. J. Schmidt,, N. H. Olson, and, T. S. Baker. 1996. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature (London) 383:350354.
72. Smith, T. J.,, M. J. Kramer,, M. Luo,, G. Vriend,, E. Arnold,, G. Kamer,, M. G. Rossmann,, M. A. McKinlay,, G. D. Diana, and, M. J. Otto. 1986. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:12861293.
73. Smith, T. J.,, N. Olson,, R. H. Cheng,, H. Liu,, E. S. Chase,, W. M. Lee,, D. M. Leippe,, A. G. Mosser,, R. R. Rueckert, and, T. Baker. 1993. Structure of human rhinovirus complexed with FAb fragments from a neutralizing antibody. J. Virol. 67:11481158.
74. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, E. S. Chase, and, T. S. Baker. 1993. Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility. Proc. Natl. Acad. Sci. USA 90:70157018.
75. Strohmaier, K.,, R. Franze, and, K.-H. Adam. 1982. Location and characterisation of the antigenic portion of the FMDV immunising protein. J. Gen. Virol. 59:295306.
76. Tormo, J.,, D. Blaas,, N. R. Parry,, D. J. Rowlands,, D. Stuart, and, I. Fita. 1994. Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO J. 15:22472256.
77. Tuthill, T. J.,, D. Bubeck,, D. J. Rowlands, and, J. M. Hogle. 2006. Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J. Virol. 80:172180.
78. Tuthill, T. J.,, K. Harlos,, T. S. Walter,, N. J. Knowles,, E. Groppelli,, D. J. Rowlands,, D. I. Stuart, and, E. E. Fry. 2009. Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog. 5:e1000620.
79. Venkataraman, S.,, S. P. Reddy,, J. Loo,, N. Idamakanti,, P. L. Hallenbeck, and, V. S. Reddy. 2008. Structure of Seneca Valley virus-001: an oncolytic picornavirus representing a new genus. Structure 16:15551561.
80. Verdaguer, N.,, M. G. Mateu,, D. Andreu,, E. Giralt,, E. Domingo, and, I. Fita. 1995. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 14:16901696.
81. Verdaguer, N.,, M. G. Mateu,, J. Bravo,, E. Domingo, and, I. Fita. 1996. Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth-disease virus. J. Mol. Biol. 256:364376.
82. Wien, M. W.,, D. J. Filman,, E. A. Stura,, S. Guillot,, F. Delpeyroux,, R. Crainic, and, J. M. Hogle. 1995. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat. Struct. Biol. 2:232243.
83. Xing, L.,, K. Tjarnlund,, B. Lindqvist,, G. Kaplan,, D. Feigelstock,, R. Cheng, and, J. Casasnovas. 2000. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19:12071216.
84. Zhang, P.,, S. Mueller,, M. C. Morais,, C. M. Bator,, V. Bowman,, S. Hafenstein,, E. Wimmer, and, M. G. Rossmann. 2008. Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc. Natl. Acad. Sci. USA 105:1828418289.
85. Zhao, R.,, A. T. Hadfield,, M. J. Kremer, and, M. G. Rossmann. 1997. Cations in human rhinoviruses. Virology 227:1323.
86. Zhao, R.,, D. C. Pevear,, M. J. Kremer,, V. L. Giranda,, J. A. Kofron,, R. J. Kuhn, and, M. G. Rossmann. 1996. Human rhinovirus 3 at 3.0 Å resolution. Structure 4:12051220.
87. Zhou, L.,, Y. Luo,, Y. Wu,, J. Tsao, and, M. Luo. 2000. Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler’s virus. J. Virol. 74:14771485.


Generic image for table
Table 1.

Picornavirus capsid-related structures visualized by cryo-EM or X-ray crystallography

Citation: Fry E, Stuart D. 2010. Virion Structure, p 59-71. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error