1887

Chapter 5 : Receptors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Receptors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap05-2.gif

Abstract:

Clathrin is critical for internalization of many viruses, yet no one would consider it a receptor; similarly, although encephalomyocarditis virus binds to glycophorin A on nonpermissive red blood cells, glycophorin is not expressed on most permissive cell lines and is unlikely to be the real receptor. The author suggests that a putative receptor molecule should fulfill two general criteria. First, the molecule must interact with virus at the cell surface. Second, interaction with the molecule must promote infection. The typical picornavirus capsid is an icosahedral structure constructed of 12 pentamers, with each pentamer composed of five copies of each of the four viral structural proteins, VP1 to -4. The first and simplest function of a receptor is to permit virus attachment and to concentrate the virus at the cell surface so that subsequent events in infection can occur. Unlike most enteroviruses, which have evolved to resist gastric acidity as they move through the enteric tract, foot-and-mouth disease virus (FMDV) and some rhinoviruses are destabilized by acid. Virus receptors may also transmit intracellular signals that are important for infection. The same surface loop that displays the RGD motif is also a major site recognized by neutralizing antibodies. Coxsackievirus and adenovirus receptor (CAR) functions in cell-cell adhesion, mediating both homotypic and heterotypic interactions. The murine CAR homolog is a functional coxsackie B viruses (CVB) receptor and is most likely responsible for the susceptibility of mice to CVB infection.

Citation: Bergelson J. 2010. Receptors, p 73-86. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Diverse structures of picornavirus receptor molecules. Important structural features of each receptor are indicated, with asterisks marking sites of virus attachment. PVR, ICAM-1, and CAR are members of the Ig superfamily. The hepatitis A virus receptor TIM-1 is composed of a single Ig domain atop a series of mucin-like repeats. DAF is linked to the membrane by a glycolipid (gpi) anchor; enterovirus 70 binds specifically to the N-terminal SCR domain, but other picornaviruses interact primarily with other SCRs. VLA-2 and αβ are integrins, which are heterodimers composed of α and β subunits: VLA-2 α includes an extra domain, the I-domain, which serves as the attachment site for EV1; αβ recognizes viral RGD peptides, which are bound at the interface between the two subunits. Members of the LDLR family are characterized by cysteine-rich N-terminal repeats, which are recognized by minor group HRVs. PSGL-1 is a disulfide-linked heterodimer composed largely of mucin-like repeats; the projecting N-terminal peptide, which is characterized by sulfated tyrosine residues, is the attachment site for enterovirus 71. SCARB2 is a type III glycoprotein with two transmembrane segments; the structure of the virus-binding extracellular domain has not been determined.

Citation: Bergelson J. 2010. Receptors, p 73-86. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Picornavirus interaction with receptors. (A to E) Viruses that bind receptors within the canyon. (F to I) Viruses that bind receptors outside the canyon. (A) Structure of PV1 as determined by X-ray crystallography. The canyon surrounds a star-shaped prominence at the five-fold axis. (B) PV1 bound to soluble PVR, as determined by cryo-electron microscopy and image reconstruction; the PVR N terminus is inserted in the canyon. (C) HRV16 bound to soluble ICAM-1. (D) CVB3 bound to CAR. (E) Model of receptor interaction with the canyon. ICAM-1 binds first to the south wall of the canyon ( ). Subsequent interaction with the north wall of the canyon leads to a conformational change in VP1, with displacement of the pocket factor ( ). Formation of a channel at the five-fold axis may permit exit of VP4, the VP1 N terminus, and RNA. (F) Structure of EV7 bound to DAF; DAF lies across the virus surface, near the two-fold axis of symmetry, but does not interact with the canyon. (G) HRV2 structure as determined by X-ray crystallography. (H) HRV2 bound to soluble fragments of the VLDLR. (I) Difference map showing VLDLR fragments forming a “crown” at the five-fold axis. (The model in panel A was provided by J.-Y. Sgro [http://virology.wisc.edu/virusworld]. Panels B and C are reprinted with permission from reference [copyright 2000, National Academy of Sciences, USA]. Panel D is reprinted with permission from reference [MacMillan Publishers Ltd., copyright 1999]. Panel E has been modified from a model reported in reference . Panel F is reprinted with permission from reference [copyright 2002, National Academy of Sciences, USA]. Panels G to I are reprinted with permission from reference [MacMillan Publishers Ltd., copyright 2000].)

Citation: Bergelson J. 2010. Receptors, p 73-86. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816698.ch05
1. Abraham, G., and, R. J. Colonno. 1984. Many rhinovirus serotypes share the same cellular receptor. J. Virol. 51:340345.
2. Acharya, R.,, E. Fry,, D. Stuart,, G. Fox,, D. Rowlands, and, F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 337:709716.
3. Alexander, D. A., and, K. Dimock. 2002. Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 76:1126511272.
4. Alexandersen, S.,, Z. Zhang,, A. I. Donaldson, and, A. J. Garland. 2003. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 129:136.
5. Allaway, G. P., and, A. T. Burness. 1986. Site of attachment of encephalomyocarditis virus on human erythrocytes. J. Virol. 59:768770.
6. Antar, A. A.,, J. L. Konopka,, J. A. Campbell,, R. A. Henry,, A. L. Perdigoto,, B. D. Carter,, A. Pozzi,, T. W. Abel, and, T. S. Dermody. 2009. Junctional adhesion molecule-A is required for hematogenous dissemination of reovirus. Cell Host Microbe 5:5971.
7. Asher, D. R.,, A. M. Cerny,, S. R. Weiler,, J. W. Horner,, M. L. Keeler,, M. A. Neptune,, S. N. Jones,, R. T. Bronson,, R. A. Depinho, and, R. W. Finberg. 2005. Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development. Genesis 42:7785.
8. Baranowski, E.,, C. M. Ruiz-Jarabo,, N. Sevilla,, D. Andreu,, E. Beck, and, E. Domingo. 2000. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J. Virol. 74:16411647.
9. Baxt, B., and, H. Bachrach. 1980. Early interactions of foot-and-mouth disease virus with cultured cells. Virology 104:4255.
10. Beck, E.,, G. Feil, and, K. Strohmaier. 1983. The molecular basis of the antigenic variation of foot-and-mouth disease virus. EMBO J. 2:555559.
11. Belnap, D. M.,, B. M. McDermott, Jr.,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle, and, A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:7378.
12. Bergelson, J. M.,, M. Chan,, K. Solomon,, N. F. St. John,, H. Lin, and, R. W. Finberg. 1994. Decay-accelerating factor, a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. USA 91:62456248.
13. Bergelson, J. M.,, J. A. Cunningham,, G. Droguett,, E. A. Kurt-Jones,, A. Krithivas,, J. S. Hong,, M. S. Horwitz,, R. L. Crowell, and, R. W. Finberg. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:13201323.
14. Bergelson, J. M.,, A. Krithivas,, L. Celi,, G. Droguett,, M. S. Horwitz,, T. Wickham,, R. L. Crowell, and, R. W. Finberg. 1998. The murine CAR homologue (mCAR) is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72:415419.
15. Bergelson, J. M.,, J. G. Mohanty,, R. L. Crowell,, N. F. St. John,, D. M. Lublin, and, R. W. Finberg. 1995. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J. Virol. 69:19031906.
16. Bergelson, J. M.,, M. P. Shepley,, B. M. C. Chan,, M. E. Hemler, and, R. W. Finberg. 1992. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:17181720.
17. Bergelson, J. M.,, N. St. John,, S. Kawaguchi,, M. Chan,, H. Stubdal,, J. Modlin, and, R. W. Finberg. 1993. Infection by echoviruses 1 and 8 depends on the α2 subunit of human VLA-2. J. Virol. 67:68476852.
18. Berinstein, A.,, M. Roivainen,, T. Hovi,, P. W. Mason, and, B. Baxt. 1995. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 69:26642666.
19. Berryman, S.,, S. Clark,, P. Monaghan, and, T. Jackson. 2005. Early events in integrin αvβ6-mediated cell entry of foot-and-mouth disease virus. J. Virol. 79:85198534.
20. Bottino, C.,, R. Castriconi,, D. Pende,, P. Rivera,, M. Nanni,, B. Carnemolla,, C. Cantoni,, J. Grassi,, S. Marcenaro,, N. Reymond,, M. Vitale,, L. Moretta,, M. Lopez, and, A. Moretta. 2003. Identification of PVR (CD155) and nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198:557567.
21. Brabec, M.,, G. Baravalle,, D. Blaas, and, R. Fuchs. 2003. Conformational changes, plasma membrane penetration, and infection by human rhinovirus type 2: role of receptors and low pH. J. Virol. 77:53705377.
22. Brown, F., and, B. Cartwright. 1961. Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature 192:11631164.
23. Burman, A.,, S. Clark,, N. G. Abrescia,, E. E. Fry,, D. I. Stuart, and, T. Jackson. 2006. Specificity of the VP1 GH loop of foot-and-mouth disease virus for αv integrins. J. Virol. 80:97989810.
24. Calvo, D.,, J. Dopazo, and, M. A. Vega. 1995. The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution. Genomics 25:100106.
25. Carrillo, C.,, E. R. Tulman,, G. Delhon,, Z. Lu,, A. Carreno,, A. Vagnozzi,, G. F. Kutish, and, D. L. Rock. 2005. Comparative genomics of foot-and-mouth disease virus. J. Virol. 79:64876504.
26. Carson, S. D.,, N. N. Chapman, and, S. M. Tracy. 1997. Purification of the putative coxsackievirus B receptor from HeLa cells. Biochem. Biophys. Res. Commun. 233:325328.
27. Chapman, M. S.,, I. Minor,, M. G. Rossmann,, G. D. Diana, and, K. Andries. 1991. Human rhinovirus 14 complexed with antiviral compound R 61837. J. Mol. Biol. 217:455463.
28. Chen, J. W.,, B. Zhou,, Q. C. Yu,, S. J. Shin,, K. Jiao,, M. D. Schneider,, H. S. Baldwin, and, J. M. Bergelson. 2006. Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves. Circ. Res. 98:923930.
29. Cohen, C. J.,, J. T.-C. Shieh,, R. J. Pickles,, T. Okegawa,, J.-T. Hsieh, and, J. M. Bergelson. 2001. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA 98:1519115196.
30. Colonno, R. J.,, P. L. Callahan, and, W. J. Long. 1986. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J. Virol. 57:712.
31. Coyne, C. B., and, J. M. Bergelson. 2006. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119131.
32. Coyne, C. B.,, K. S. Kim, and, J. M. Bergelson. 2007. Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J. 26:40164028.
33. Crowell, R. L.,, A. K. Field,, W. A. Schlief,, W. L. Long,, R. J. Colonno,, J. E. Mapoles, and, E. A. Emini. 1986. Monoclonal antibody that inhibits infection of HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade. J. Virol. 57:438445.
34. Crowell, R. L., and, M. A. Landau. 1983. Receptors in the initiation of picornavirus infections, p. 1–42. In H. Fraenkel-Conrat and R. R. Wagner (ed.), Comprehensive Virology, vol. 18.Plenum Publishing Corp., New York, NY.
35. Crowell, R. L., and, L. Philipson. 1971. Specific alterations of coxsackievirus B3 eluted from HeLa cells. J. Virol. 8:509515.
36. De Sena, J., and, B. Mandel. 1977. Studies on the in vitro un-coating of poliovirus. II. Characteristics of the membrane-modified particle. Virology 78:554566.
37. Dorner, A. A.,, F. Wegmann,, S. Butz,, K. Wolburg-Buchholz,, H. Wolburg,, A. Mack,, I. Nasdala,, B. August,, J. Westermann,, F. G. Rathjen, and, D. Vestweber. 2005. Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. J. Cell Sci. 118:35093521.
38. Duque, H., and, B. Baxt. 2003. Foot-and-mouth disease virus receptors: comparison of bovine αv integrin utilization by type A and O viruses. J. Virol. 77:25002511.
39. Dustin, M. L., and, T. A. Springer. 1991. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu. Rev. Immunol. 9:2766.
40. Fox, G.,, N. R. Parry,, P. V. Barnett,, B. McGin,, D. J. Rowlands, and, F. Brown. 1989. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J. Gen. Virol. 70:625637.
41. Fox, M. P.,, M. J. Otto, and, M. A. McKinlay. 1986. Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug. Antimicrob. Agents Chemother. 30:110116.
42. Freistadt, M. S.,, G. Kaplan, and, V. R. Racaniello. 1990. Heterogeneous expression of poliovirus receptor-related proteins in human cells and tissues. Mol. Cell. Biol. 10:57005706.
43. Fry, E. E.,, S. M. Lea,, T. Jackson,, J. W. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. King, and, D. I. Stuart. 1999. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 18:543554.
44. Fujito, T.,, W. Ikeda,, S. Kakunaga,, Y. Minami,, M. Kajita,, Y. Sakamoto,, M. Monden, and, Y. Takai. 2005. Inhibition of cell movement and proliferation by cell-cell contact-induced interaction of Necl-5 with nectin-3. J. Cell Biol. 171:165173.
45. Goodfellow, I. G.,, A. B. Sioofy,, R. M. Powell, and, D. J. Evans. 2001. Echoviruses bind heparan sulfate at the cell surface. J. Virol. 75:49184921.
46. Grant, R. A.,, C. N. Hiremath,, D. J. Filman,, R. Syed,, K. Andries, and, J. M. Hogle. 1994. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol. 4:784797.
47. Greve, J. M.,, G. Davis,, A. M. Meyer,, C. P. Forte,, S. C. Yost,, C. W. Marlor,, M. E. Kamarck, and, A. McClelland. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56:839847.
48. Hadfield, A. T.,, W. Lee,, R. Zhao,, M. A. Oliveira,, I. Minor,, R. R. Rueckert, and, M. G. Rossmann. 1997. The refined structure of human rhinovirus 16 at 2.15 Å resolution: implications for the viral life cycle. Structure 5:427441.
49. Hafenstein, S.,, V. D. Bowman,, P. R. Chipman,, C. M. Bator Kelly,, F. Lin,, M. E. Medof, and, M. G. Rossmann. 2007. Interaction of decay-accelerating factor with coxsackievirus B3. J. Virol. 81:1292712935.
50. He, Y.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn, and, M. G. Rossmann. 2000. Interaction of the poliovirus receptor with polio-virus. Proc. Natl. Acad. Sci. USA 97:7984.
51. He, Y.,, P. R. Chipman,, J. Howitt,, C. M. Bator,, M. A. Whitt,, T. S. Baker,, R. J. Kuhn,, C. W. Anderson,, P. Freimuth, and, M. G. Rossmann. 2001. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 8:874878.
52. He, Y.,, F. Lin,, P. R. Chipman,, C. M. Bator,, T. S. Baker,, M. Shoham,, R. J. Kuhn,, M. E. Medof, and, M. G. Rossmann. 2002. Structure of decay-accelerating factor bound to echovirus 7: a virus-receptor complex. Proc. Natl. Acad. Sci. USA 99:1032510329.
53. Heikkila, O.,, P. Susi,, G. Stanway, and, T. Hyypia. 2009. Integrin αVβ6 is a high-affinity receptor for coxsackievirus A9. J. Gen. Virol. 90:197204.
54. Hewat, E. A.,, E. Neumann,, J. F. Conway,, R. Moser,, B. Ronacher,, T. C. Marlovits, and, D. Blaas. 2000. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J. 19:63176325.
55. Hofer, F.,, M. Gruenberger,, H. Kowalski,, H. Machat,, M. Huettinger,, E. Kuechler, and, D. Blaas. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl. Acad. Sci. USA 91:18391842.
56. Hogle, J. M.,, M. Chow, and, D. J. Filman. 1985. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:13581365.
57. Holland, J. J., and, B. H. Hoyer. 1962. Early stages of entero-virus infection. Cold Spring Harbor Symp. Quant. Biol. 27:101112.
58. Honda, T.,, H. Saitoh,, M. Masuko,, T. Katagiri-Abe,, K. Tominaga,, I. Kozakai,, K. Kobayashi,, T. Kominishi,, Y. G. Watanabe,, S. Odani, and, R. Kuwano. 2000. The coxsackievirus adenovirus receptor as a cell adhesion molecule in the developing mouse brain. Mol. Brain Res. 77:1928.
59. Hoover-Litty, H., and, J. M. Greve. 1993. Formation of rhino-virus-soluble ICAM-1 complexes and conformational changes in the virion. J. Virol. 67:390397.
60. Hsu, K.-H. L.,, K. Lonberg-Holm,, B. Alstein, and, R. L. Crowell. 1988. A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J. Virol. 62:16471652.
61. Huang, C. C.,, C. C. Liu,, Y. C. Chang,, C. Y. Chen,, S. T. Wang, and, T. F. Yeh. 1999. Neurologic complications in children with enterovirus 71 infection. N. Engl. J. Med. 341:936942.
62. Huber, S. A. 1994. VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J. Virol. 68:34533458.
63. Hughes, S. A.,, H. M. Thaker, and, V. R. Racaniello. 2003. Transgenic mouse model for echovirus myocarditis and paralysis. Proc. Natl. Acad. Sci. USA 100:1590615911.
64. Ida-Hosonuma, M.,, T. Iwasaki,, T. Yoshikawa,, N. Nagata,, Y. Sato,, T. Sata,, M. Yoneyama,, T. Fujita,, C. Taya,, H. Yonekawa, and, S. Koike. 2005. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J. Virol. 79:44604469.
65. Jackson, T.,, W. Blakemore,, J. W. Newman,, N. J. Knowles,, A. P. Mould,, M. J. Humphries, and, A. M. King. 2000. Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α5β1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J. Gen. Virol. 81:13831391.
66. Jackson, T.,, S. Clark,, S. Berryman,, A. Burman,, S. Cambier,, D. Mu,, S. Nishimura, and, A. M. King. 2004. Integrin αvβ8 functions as a receptor for foot-and-mouth disease virus: role of the β-chain cytodomain in integrin-mediated infection. J. Virol. 78:45334540.
67. Jackson, T.,, F. M. Ellard,, R. A. Ghazaleh,, S. M. Brookes,, W. E. Blakemore,, A. H. Corteyn,, D. I. Stuart,, J. W. Newman, and, A. M. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70:52825287.
68. Jackson, T.,, A. P. Mould,, D. Sheppard, and, A. M. King. 2002. Integrin αvβ1 is a receptor for foot-and-mouth disease virus. J. Virol. 76:935941.
69. Jackson, T.,, D. Sheppard,, M. Denyer,, W. Blakemore, and, A. M. King. 2000. The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74:49494956.
70. Jin, Y. M.,, I. U. Pardoe,, A. T. Burness, and, T. I. Michalak. 1994. Identification and characterization of the cell surface 70-kilodalton sialoglycoprotein(s) as a candidate receptor for encephalomyocarditis virus on human nucleated cells. J. Virol. 68:73087319.
71. Johns, H. L.,, S. Berryman,, P. Monaghan,, G. J. Belsham, and, T. Jackson. 2009. A dominant-negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus: implications for virus entry. J. Virol. 83:62476256.
72. Kallewaard, N. L.,, L. Zhang,, J. W. Chen,, M. Guttenberg,, M. D. Sanchez, and, J. M. Bergelson. 2009. Tissue-specific deletion of the coxsackievirus and adenovirus receptor protects mice from virus-induced pancreatitis and myocarditis. Cell Host Microbe 6:9198.
73. Kaplan, G.,, A. Totsuka,, P. Thompson,, T. Akatsuka,, Y. Moritsugu, and, S. M. Feinstone. 1996. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15:42824296.
74. Karnauchow, T. M.,, D. L. Tolson,, B. A. Harrison,, E. Altman,, D. M. Lublin, and, K. Dimock. 1996. The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). J. Virol. 70:51435152.
75. Khan, A. G.,, J. Pichler,, A. Rosemann, and, D. Blaas. 2007. Human rhinovirus type 54 infection via heparan sulfate is less efficient and strictly dependent on low endosomal pH. J. Virol. 81:46254632.
76. King, S. L.,, J. A. Cunningham,, R. W. Finberg, and, J. M. Bergelson. 1995. Echovirus 1 interaction with the isolated VLA-2 I domain. J. Virol. 69:32373239.
77. Koike, S.,, H. Horie,, I. Ise,, A. Okitsu,, M. Yoshida,, N. Iizuka,, K. Takeuchi,, T. Takegami, and, A. Nomoto. 1990. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9:32173224.
78. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker, and, M. G. Rossmann. 1999. Structural studies of two rhino-virus serotypes complexed with fragments of their cellular receptor. EMBO J. 18:62496259.
79. Konecsni, T.,, U. Berka,, A. Pickl-Herk,, G. Bilek,, A. G. Khan,, L. Gajdzig,, R. Fuchs, and, D. Blaas. 2009. Low pH-triggered beta-propeller switch of the low-density lipoprotein receptor assists rhinovirus infection. J. Virol. 83:1092210930.
80. Lange, R.,, X. Peng,, E. Wimmer,, M. Lipp, and, G. Bernhardt. 2001. The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285:218227.
81. Lim, B. K.,, D. Xiong,, A. Dorner,, T. J. Youn,, A. Yung,, T. I. Liu,, Y. Gu,, N. D. Dalton,, A. T. Wright,, S. M. Evans,, J. Chen,, K. L. Peterson,, A. D. McCulloch,, T. Yajima, and, K. U. Knowlton. 2008. Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J. Clin. Invest. 118:27582770.
82. Lisewski, U.,, Y. Shi,, U. Wrackmeyer,, R. Fischer,, C. Chen,, A. Schirdewan,, R. Juttner,, F. Rathjen,, W. Poller,, M. H. Radke, and, M. Gotthardt. 2008. The tight junction protein CAR regulates cardiac conduction and cell-cell communication. J. Exp. Med. 205:23692379.
83. Lonberg-Holm, K., and, B. D. Korant. 1972. Early interaction of rhinoviruses with host cells. J. Virol. 9:2940.
84. Lublin, D. M., and, J. P. Atkinson. 1989. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu. Rev. Immunol. 7:3557.
85. Maier, M. K.,, S. Seth,, N. Czeloth,, Q. Qiu,, I. Ravens,, E. Kremmer,, M. Ebel,, W. Muller,, O. Pabst,, R. Forster, and, G. Bernhardt. 2007. The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur. J. Immunol. 37:22142225.
86. Marchant, D.,, A. Sall,, X. Si,, T. Abraham,, W. Wu,, Z. Luo,, T. Petersen,, R. G. Hegele, and, B. M. McManus. 2009. ERK MAP kinase-activated Arf6 trafficking directs coxsackievirus type B3 into an unproductive compartment during virus host-cell entry. J. Gen. Virol. 90:854862.
87. Marjomaki, V.,, V. Pietiainen,, H. Matilainen,, P. Upla,, J. Ivaska,, L. Nissinen,, H. Reunanen,, P. Huttunen,, T. Hyypia, and, J. Heino. 2002. Internalization of echovirus 1 in caveolae. J. Virol. 76:18561865.
88. Marlovits, T. C.,, T. Zechmeister,, M. Gruenberger,, B. Ronacher,, H. Schwihla, and, D. Blaas. 1998. Recombinant soluble low density lipoprotein receptor fragment inhibits minor group rhinovirus infection in vitro. FASEB J. 12:695703.
89. Martino, T. A.,, M. Petric,, H. Weingartl,, J. M. Bergelson,, M. A. Opavsky,, C. D. Richardson,, J. F. Modlin,, R. W. Finberg,, K. C. Kain,, N. Willis,, C. J. Gauntt, and, P. P. Liu. 2000. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B, and by swine vesicular disease virus. Virology 271:99108.
90. Mason, P.,, B. Baxt,, F. Brown,, J. Harber,, A. Murdin, and, E. Wimmer. 1993. Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192:568577.
91. Mason, P. W.,, E. Rieder, and, B. Baxt. 1994. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc. Natl. Acad. Sci. USA 91:19321936.
92. McEver, R. P., and, R. D. Cummings. 1997. Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100:485491.
93. McKenna, T. S.,, J. Lubroth,, E. Rieder,, B. Baxt, and, P. W. Mason. 1995. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J. Virol. 69:57875790.
94. Mendelsohn, C. L.,, E. Wimmer, and, V. R. Racaniello. 1989. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855865.
95. Milstone, A.,, J. Petrella,, M. Sanchez,, M. Mahmud,, J. Whit-beck, and, J. Bergelson. 2005. Interaction with coxsackievirus and adenovirus receptor (CAR), but not with decay accelerating factor (DAF), induces A particle formation in a DAF-binding coxsackievirus B3 isolate. J. Virol. 79:655660.
96. Monaghan, P.,, S. Gold,, J. Simpson,, Z. Zhang,, P. H. Weinreb,, S. M. Violette,, S. Alexandersen, and, T. Jackson. 2005. The αvβ6 integrin receptor for foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J. Gen. Virol. 86:27692780.
97. Morrison, M. E.,, Y.-J. He,, M. W. Wien,, J. M. Hogle, and, V. R. Racaniello. 1994. Homolog-scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J. Virol. 68:25782588.
98. Neff, S.,, D. Sa-Carvalho,, E. Rieder,, P. W. Mason,, S. D. Blystone,, E. J. Brown, and, B. Baxt. 1998. Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. J. Virol. 72:35873594.
99. Newcombe, N. G.,, P. Andersson,, E. S. Johansson,, G. G. Au,, A. M. Lindberg,, R. D. Barry, and, D. R. Shafren. 2003. Cellular receptor interactions of C-cluster human group A coxsackieviruses. J. Gen. Virol. 84:30413050.
100. Newcombe, N. G.,, E. S. Johansson,, G. Au,, A. M. Lindberg,, R. D. Barry, and, D. R. Shafren. 2004. Enterovirus capsid interactions with decay-accelerating factor mediate lytic cell infection. J. Virol. 78:14311439.
101. Nicodemou, A.,, M. Petsch,, T. Konecsni,, L. Kremser,, E. Kenndler,, J. M. Casasnovas, and, D. Blaas. 2005. Rhinovirus-stabilizing activity of artificial VLDL-receptor variants defines a new mechanism for virus neutralization by soluble receptors. FEBS Lett. 579:55075511.
102. Nilsson, E. C.,, F. Jamshidi,, S. M. Johansson,, M. S. Oberste, and, N. Arnberg. 2008. Sialic acid is a cellular receptor for coxsackievirus A24 variant, an emerging virus with pandemic potential. J. Virol. 82:30613068.
103. Nishimura, Y.,, M. Shimojima,, Y. Tano,, T. Miyamura,, T. Wakita, and, H. Shizumi. 2009. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 15:794797.
104. Nobis, P.,, R. Zibirre,, G. Meyer,, J. Kuhne,, G. Warnecke, and, G. Koch. 1985. Production of a monoclonal antibody against an epitope on HeLa cells that is the functional poliovirus binding site. J. Gen. Virol. 66:25632569.
105. Nurani, G.,, B. Lindqvist, and, J. M. Casasnovas. 2003. Receptor priming of major group human rhinoviruses for un-coating and entry at mild low-pH environments. J. Virol. 77:1198511991.
106. O’Donnell, V.,, M. Larocco, and, B. Baxt. 2008. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J. Virol. 82:90759085.
107. O’Donnell, V.,, M. LaRocco,, H. Duque, and, B. Baxt. 2005. Analysis of foot-and-mouth disease virus internalization events in cultured cells. J. Virol. 79:85068518.
108. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveria,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker, and, M. G. Rossmann. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90:507511.
109. Pettigrew, D. M.,, D. T. Williams,, D. Kerrigan,, D. J. Evans,, S. M. Lea, and, D. Bhella. 2006. Structural and functional insights into the interaction of echoviruses and decay-accelerating factor. J. Biol. Chem. 281:51695177.
110. Pietiainen, V.,, V. Marjomaki,, P. Upla,, L. Pelkmans,, A. Helenius, and, T. Hyypia. 2004. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol. Biol. Cell 15:49114925.
111. Powell, R. M.,, V. Schmitt,, T. Ward,, I. Goodfellow,, D. J. Evans, and, J. W. Almond. 1998. Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J. Gen. Virol. 79:17071713.
112. Powell, R. M.,, T. Ward,, D. J. Evans, and, J. W. Almond. 1997. Interaction between echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a secondary cellular factor in A-particle formation. J. Virol. 71:93069312.
113. Powell, R. M.,, T. Ward,, I. Goodfellow,, J. W. Almond, and, D. J. Evans. 1999. Mapping the binding domains on decay accelerating factor (DAF) for haemagglutinating enteroviruses: implications for the evolution of a DAF-binding phenotype. J. Gen. Virol. 80:31453152.
114. Prchla, E.,, E. Kuechler,, D. Blaas, and, R. Fuchs. 1994. Uncoating of human rhinovirus serotype 2 from late endosomes. J. Virol. 68:37133723.
115. Ren, R.,, F. Constantini,, E. Gorgacz,, J. J. Lee, and, V. R. Racaniello. 1990. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353362.
116. Ren, R., and, V. Racaniello. 1992. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 66:296304.
117. Rieder, E.,, T. Henry,, H. Duque, and, B. Baxt. 2005. Analysis of a foot-and-mouth disease virus type A24 isolate containing an SGD receptor recognition site in vitro and its pathogenesis in cattle. J. Virol. 79:1298912998.
118. Rogers, J. M.,, G. D. Diana, and, M. A. McKinlay. 1999. Pleconaril. A broad spectrum antipicornaviral agent. Adv. Exp. Med. Biol. 458:6976.
119. Roivainen, M.,, L. Piirainen,, T. Hovi,, I. Virtanen,, T. Riikinen,, J. Heino, and, T. Hyypia. 1994. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357365.
120. Rosenwirth, B., and, H. J. Eggers. 1979. Early processes of echovirus 12 infection: elution, penetration, and uncoating under the influence of rhodanine. Virology 97:241255.
121. Rossmann, M., and, A. Palmenberg. 1988. Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373382.
122. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H.-J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Moser,, R. R. Rueckert,, B. Sherry, and, G. Vriend. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145153.
123. Ruoslahti, E., and, M. D. Pierschbacher. 1987. New perspectives in cell adhesion. RGD and integrins. Science 238:491497.
124. Sa-Carvalho, D.,, E. Rieder,, B. Baxt,, R. Rodarte,, A. Tanuri, and, P. W. Mason. 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71:51155123.
125. Schelhaas, M.,, J. Malmstrom,, L. Pelkmans,, J. Haugstetter,, L. Ellgaard,, K. Grunewald, and, A. Helenius. 2007. Simian virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131:516529.
126. Seth, S.,, M. K. Maier,, Q. Qiu,, I. Ravens,, E. Kremmer,, R. Forster, and, G. Bernhardt. 2007. The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem. Biophys. Res. Commun. 364:959965.
127. Shafren, D. R. 1998. Viral cell entry induced by cross-linked decay-accelerating factor. J. Virol. 72:94079412.
128. Shafren, D. R.,, R. C. Bates,, M. V. Agrez,, R. L. Herd,, G. F. Burns, and, R. D. Barry. 1995. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J. Virol. 69:38733877.
129. Shafren, D. R.,, D. J. Dorahy,, S. J. Greive,, G. F. Burns, and, R. D. Barry. 1997. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J. Virol. 71:785789.
130. Shafren, D. R.,, D. J. Dorahy,, R. A. Ingham,, G. F. Burns, and, R. D. Barry. 1997. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J. Virol. 71:47364743.
131. Reference deleted.
132. Shi, Y.,, C. Chen,, U. Lisewski,, U. Wrackmeyer,, M. Radke,, D. Westermann,, M. Sauter,, C. Tschope,, W. Poller,, K. Klingel, and, M. Gotthardt. 2009. Cardiac deletion of the coxsackievirus-adenovirus receptor abolishes coxsackievirus B3 infection and prevents myocarditis in vivo. J. Am. Coll. Cardiol. 53:12191226.
133. Shieh, J. T. C., and, J. M. Bergelson. 2002. Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J. Virol. 76:94749480.
134. Sloan, K. E.,, J. K. Stewart,, A. F. Treloar,, R. T. Matthews, and, D. G. Jay. 2005. CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res. 65:1093010937.
135. Smith, T. J.,, E. S. Chase,, T. J. Schmidt,, N. H. Olson, and, T. S. Baker. 1996. Neutralizing antibody to human rhino-virus penetrates the receptor-binding canyon. Nature 383:350354.
136. Staunton, D. E.,, V. J. Merluzzi,, R. Rothlein,, R. Barton,, S. D. Marlin, and, T. A. Springer. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849853.
137. Tomassini, J. E.,, D. Graham,, C. M. DeWitt,, D. W. Lineberger,, J. A. Rodkey, and, R. J. Colonno. 1989. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 86:49077911.
138. Tomko, R. P.,, R. Xu, and, L. Philipson. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94:33523356.
139. Triantafilou, K.,, D. Fradelizi,, K. Wilson, and, M. Triantafilou. 2002. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J. Virol. 76:633643.
140. Tsang, S. K.,, B. M. McDermott,, V. R. Racaniello, and, J. M. Hogle. 2001. Kinetic analysis of the effect of poliovirus receptor on viral uncoating: the receptor as a catalyst. J. Virol. 75:49844989.
141. Uncapher, C. R.,, C. M. DeWitt, and, R. J. Colonno. 1991. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 180:814817.
142. Upla, P.,, V. Marjomaki,, P. Kankaanpaa,, J. Ivaska,, T. Hyypia,, F. G. Van Der Goot, and, J. Heino. 2004. Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell 15:625636.
143. Verdaguer, N.,, M. G. Mateu,, D. Andreu,, E. Giralt,, E. Domingo, and, I. Fita. 1995. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 14:16901696.
144. Vlasak, M.,, I. Goesler, and, D. Blaas. 2005. Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment. J. Virol. 79:59635970.
145. Vlasak, M.,, M. Roivainen,, M. Reithmayer,, I. Goesler,, P. Laine,, L. Snyers,, T. Hovi, and, D. Blaas. 2005. The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 HI loop is not sufficient for receptor binding. J. Virol. 79:73897395.
146. Ward, T.,, P. A. Pipkin,, N. A. Clarkson,, D. M. Stone,, P. D. Minor, and, J. W. Almond. 1994. Decay accelerating factor (CD55) identified as a receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 13:50705074.
147. Williams, C. H.,, T. Kajander,, T. Hyypia,, T. Jackson,, D. Sheppard, and, G. Stanway. 2004. Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9. J. Virol. 78:69676973.
148. Xiao, C.,, C. M. Bator-Kelly,, E. Rieder,, P. R. Chipman,, A. Craig,, R. J. Kuhn,, E. Wimmer, and, M. G. Rossmann. 2005. The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 13:10191033.
149. Xing, L.,, M. Huhtala,, V. Pietiainen,, J. Kapyla,, K. Vuorinen,, V. Marjomaki,, J. Heino,, M. S. Johnson,, T. Hyypia, and, R. H. Cheng. 2004. Structural and functional analysis of integrin α2I domain interaction with echovirus 1. J. Biol. Chem. 279:1163211638.
150. Xing, L.,, K. Tjarnlund,, B. Lindqvist,, G. G. Kaplan,, D. Feigelstock,, R. H. Cheng, and, J. M. Casasnovas. 2000. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19:12071216.
151. Yamayoshi, S.,, Y. Yamashita,, J. Li,, N. Hanagata,, T. Minawa,, T. Takemura, and, S. Koike. 2009. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 15:798801.
152. Yang, B.,, H. Chuang, and, K. D. Yang. 2009. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol. J. 6:141.
153. Zautner, A. E.,, U. Korner,, A. Henke,, C. Badorff, and, M. Schmidtke. 2003. Heparan sulfates and coxsackievirus-adenovirus receptor: each one mediates coxsackievirus B3 PD infection. J. Virol. 77:1007110077.
154. Zen, K.,, Y. Liu,, I. C. McCall,, T. Wu,, W. Lee,, B. A. Babbin,, A. Nusrat, and, C. A. Parkos. 2005. Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol. Biol. Cell 16:26942703.
155. Zhang, P.,, S. Mueller,, M. C. Morais,, C. M. Bator,, V. D. Bowman,, S. Hafenstein,, E. Wimmer, and, M. G. Rossmann. 2008. Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc. Natl. Acad. Sci. USA 105:1828418289.
156. Zhang, S., and, V. R. Racaniello. 1997. Persistent echovirus infection of mouse cells expressing the viral receptor VLA-2. Virology 235:293301.
157. Zhao, R.,, D. C. Pevear,, M. J. Kremer,, V. L. Giranda,, J. A. Kofron,, R. J. Kuhn, and, M. G. Rossmann. 1996. Human rhinovirus 3 at 3.0 Å resolution. Structure 4:12051220.

Tables

Generic image for table
Table 1.

Picornavirus receptors

Citation: Bergelson J. 2010. Receptors, p 73-86. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error