1887

Chapter 3 : Introduction to Mutagenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Introduction to Mutagenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap03-2.gif

Abstract:

One of the major reasons that so much effort has been devoted to analyzing DNA damage and understanding the biological mechanisms for its repair is that mutations can be introduced into DNA as a consequence of such damage. This chapter defines a number of terms that are used when discussing mutations and their biological consequences. It also describes examples of systems that have been developed to allow convenient analyses of mutations, describes use of site-specific adducts, and summarizes some of the simpler known mechanisms that can lead to the introduction of mutations in DNA. The process by which mutations are produced is referred to as mutagenesis. Mutagenesis that occurs without treatment of the organism with an exogenous mutagen is referred to as spontaneous mutagenesis. Spontaneous mutations can occur because of replication errors, or can arise as a consequence of lesions that are introduced into DNA during normal growth of the cell. To understand how chemically modified bases or other lesions give rise to mutations during DNA replication, it is instructive to consider how a normal DNA template is copied by a DNA polymerase. A fairly detailed understanding of the mechanisms of DNA synthesis has come from decades of biochemical studies of DNA polymerases and from analyses of crystal structures of these enzymes complexed to DNA and nucleotide substrates. These studies highlight the role of substrate shape in the selection of the correct deoxyribonucleotide for insertion opposite each template base.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3

Key Concept Ranking

Gene Expression and Regulation
0.63637406
DNA Synthesis
0.4848912
Genetic Elements
0.46729782
Human immunodeficiency virus 1
0.4580791
Genetic Recombination
0.45228374
Denaturing Gradient Gel Electrophoresis
0.40801242
0.63637406
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3–1
Figure 3–1

Suppression of a nonsense mutation by a nonsense suppressor mutation.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–2
Figure 3–2

Illustration of how a frameshift mutation results in a shift in the translational reading frame.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–3
Figure 3–3

A portion of the T4 gene showing the number of mutations isolated at each site. Each square represents one occurrence at the indicated site. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–4
Figure 3–4

Base substitutions required to restore the glutamic acid codon at position 461 of β-galactosidase. Missense or nonsense mutations at coding position 461 result in the Lac- phenotype, but they can revert to the GAG codon by one of six base substitutions. In each case, one specific substitution restores the GAG codon ( ). (Adapted from references and .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–5
Figure 3–5

The Ames test. A set of auxotrophs of serovar Typhimurium are mixed with the compound to be tested and plated on minimal-glucose plates containing a limiting amount of histidine. After 2 days of incubation, His revertants on each plate are counted. Mammalian metabolism is simulated by the addition of an extract of rat liver, termed the S9 supernatant. The S9 supernatant is prepared from rats that have been injected with a polychlorinated biphenyl mixture, Aroclor. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–6
Figure 3–6

Mutagenicity in the Ames test of aflatoxin B. Strain TA1538 bears a different mutation from that in strains TA100 and TA1535. Strain TA100 is a derivative of TA1535 that carries plasmid pKM101 (see chapter 15). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–7
Figure 3–7

The system for the analysis of mutations ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–8
Figure 3–8

Distribution of 3,738 mutations from G•C → A•T transitions in the gene of The number of independent occurrences at each site is indicated by the bar height. One amber and one ochre mutation were analyzed from each mutagenized culture, so that hot spots can be identified by comparing the frequency of mutation at an amber site with that at other amber sites and similarly by comparing the frequency of mutation at an ochre site with that at other ochre sites. See reference for a discussion of amber mutation frequencies relative to ochre mutation frequencies. Large areas, instead of bar height, indicate that the number of occurrences is greater than 69, with the actual number shown in parentheses. Abbreviations: 4-NQO, 4-nitroquinoline-1-oxide; 2AP, 2-aminopurine; EMS, ethyl methanesulfonate; NG, N-methyl-N’-nitro-N-nitrosoguanidine. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–9
Figure 3–9

Secondary structure of a single-stranded DNA containing the tRNA gene sequence and showing the location of mutations that inactivate function. Sites of single (gold circles) and tandem (grey rectangles) base substitutions, insertions (gold triangles), and deletions (gold X) are indicated. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–10
Figure 3–10

Fusions of to and the selection system used to detect deletions in (A) The deletion fuses the gene to the gene. The resulting hybrid protein is missing the last 5 residues of the repressor and the first 23 residues of β-galactosidase but retains β-galactosidase activity ( ). indicates the promoter. (B) Frameshift mutations and which are separated by 697 bp, have been crossed into the fusion. Only deletions can restore the Lac character. The principal deletions that were detected were of the a or b type. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–11
Figure 3–11

Schematic representation of a shuttle vector genetic map. Mammalian represents DNA sequences from animal virus replication origins allowing replication in mammalian cells by using a viral -acting protein. The selection gene codes for a protein allowing selection and maintenance of this vector in mammalian cells. The bacterial represents DNA sequences from a bacterial plasmid or bacteriophage. The antibiotic resistance gene codes for a protein allowing the selection and maintenance of the vector in bacteria. The target gene represents the DNA sequences used for detecting mutants (see also Table 3–5 ). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–12
Figure 3–12

General scheme of the various protocols involving shuttle vectors. 1, Vector DNA is first transfected into the mammalian host cell. 2, By using an SV40-based plasmid, transient replication occurs in 2 to 4 days after transfection. 3, By using an Epstein-Barr virus-based plasmid and selecting for antibiotic resistance, established cell lines replicating the vector as an epi-some are isolated. 4, By using a nonreplicating vector and selecting for a gene on the vector, cell lines containing integrated shuttle vector sequences are isolated. 5, Replicated and mutated vector sequences are recovered as low-molecular-weight (L.M.W.) DNA, which is then transfected into host bacteria cells. DNA alterations in the vector target gene are analyzed from isolated colonies or plaques. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–13
Figure 3–13

Strategies involving PCR to analyze mutations in a target gene in a mammalian cell line. These involve first selecting for mutants (e.g., 6-thioguanine resistance) and then either making cDNA and amplifying the sequence or directly amplifying fragments of the genomic DNA and sequencing.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–14
Figure 3–14

Analyses of mutagenesis in transgenic mice. See the text for details.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–15
Figure 3–15

Principle of Spi selection. Growth of wild-type X phage is restricted in cells carrying P2 phage DNA in the chromosome, i.e., P2 lysogen. This phenomenon is called P2 interference. Mutant X phages deficient in both and gene functions grow well in P2 lysogen and display the Spi phenotype as long as they carry a χ site and the host strain is Since simultaneous inactivation of two genes is often induced by deletions in the region, Spi selection preferentially detects deletion mutants of λ DNA ( ). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–16
Figure 3–16

Potential mechanisms of loss of heterozygosity (LOH). Various mutagenic events can lead to the loss of function of a second allele of an autosomal gene. LOH can result from locus-restricted events such as gene conversion or multilocus events such as large deletion, mitotic recombination, or mitotic nondisjunction with or without duplication of the remaining chromosome. In the upper picture, two homologous chromosomes that contain a heterozygosity for gene A are shown. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–17
Figure 3–17

(A) The generation of MassEXTEND reaction products as part of the MassARRAY system. Prior to the MassEXTEND reaction, genomic DNA containing the SNP site of interest is amplified by PCR and shrimp alkaline phosphatase is added to samples to dephosphorylate any residual amplification nucleotides and to prevent their future incorporation and interference with the primer extension assay (not shown). The MassEXTEND primer, DNA polymerase, and a cocktail mixture of dNTPs and ddNTPs are added to initiate the primer extension reaction. This reaction generates allele-specific primer extension products that are generally 1 to 4 bases longer than the original MassEXTEND primer. A common MassEXTEND primer that identifies both alleles is hybridized directly or closely adjacent to the polymorphic site. Nucleotide mixtures are selected to maximize mass differences for all potential MassEXTEND products. Appropriate deoxynucleotides are incorporated through the polymorphic site until a single dideoxynucleotide is incorporated and the reaction terminates. Since the termination point and number of nucleotides is sequence specific, the mass of the extension products generated for allele 1 and allele 2 can be used to identify the possible variants by using MALDI-TOF analysis. (B) Spectral analysis of MassEXTEND reaction primer extension products. Each addition of a nucleotide to the primer extension product increases the mass by 289 to 329 Da, depending on the nucleotide added. The mass difference is easily resolved by MALDI-TOF, which has the ability to detect differences as small as 3 Da. Thus, alleles differing by a single nucleotide are readily discriminated. (Adapted from Sequenom, Inc., with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–18
Figure 3–18

Methods for the construction of site-specifically modified genomes. The procedure shown on the left uses DNA ligase to insert an adducted oligonucleotide into a complementary site in a gapped heteroduplex genome. The product can be used directly to study the genetic effect of the lesion in double-stranded DNA, or if the strand opposing the adduct contains a nonligatable nick, the genome can be denatured and the biological effects of an adduct situated in a single-stranded DNA can be determined. One modification of the approach depicted on the right has been to use DNA polymerase to join an adducted dNTP onto the 3’ end of an unmodified oligonucleotide previously annealed to a single-stranded genome. Synthesis of the site-specifically modified duplex vector is completed upon subsequent addition of unmodified dNTPs. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–19
Figure 3–19

The base-pairing scheme dictating the double-helical structure of DNA can accommodate mispairs like the G•T Hoogsteen base pair shown here. Hoogsteen pairs have a different shape from the normal Watson-Crick pairs, and those arising from mistakes during replication are typically subject to proofreading. An exception is the oxidative lesion 8-oxoguanosine, which forms a stable Hoogsteen base pair with A that is not subject to proofreading ( ) and is consequently highly mutagenic (see chapter 4).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–20
Figure 3–20

Geometric characteristics of Watson-Crick and mismatched base pairs. The figure is based on X-ray crystallography of duplex B-DNA oligonucleotides. The striking geometric identity of the Watson-Crick base pairs (A and B) is not matched by the A•C (C) and G•T (D) wobble pairs or by the pair (E). The G-T pairing shown in panel D is a Hoogsteen base pair. (Adapted from references and .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–21
Figure 3–21

The crystal structure of the Klenow fragment of DNA polymerase I revealed a protein fold shaped like a right hand, with fingers, thumb, and palm subdomains ( ). The polymerase active site is located at the junction of the palm and fingers, and the proofreading 3’ to 5’ exonuclease is located in a separate region at the N terminus of the protein (cf. Fig. 3–29 ). Many different DNA polymerases, and the monomeric RNA polymerases from bacteriophages, have a similar shape resembling a right hand ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–22
Figure 3–22

DNA Pol β is a repair polymerase that functions in the gap-filling reaction during base excision repair. The crystal structure of Pol β inserting a nucleotide into DNA containing a single-nucleotide gap shows that the polymerase contacts the DNA ends on both sides of the gap ( ). In complex with DNA and nucleotide substrates, Pol β adopts a closed conformation that aligns the nucleotide for insertion at the 3’ end of the primer DNA strand ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–23
Figure 3–23

DNA polymerases catalyze the addition of nucleoside monophosphates to the 3’ end of a primer DNA strand by a nucleophilic displacement mechanism featuring two metal ions ( ). The 3’ OH of the primer strand is activated for nucleophilic attack of the α-phosphorus of an NTP, resulting in the release of pyrophosphate and incorporation of a nucleoside monophosphate into the growing DNA strand. The metals serve to align the reacting molecules, activate the 3’ OH, and counteract the growing charge on the pyrophosphate leaving group ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–24
Figure 3–24

DNA polymerases utilize an induced-fit mechanism for selecting the correct nucleotide for incorporation into DNA ( ). The closure of the fingers subdomain when nucleotides bind in the polymerase active site provides a means of sensing the shape of the nascent base pair, which is an important means of substrate selection ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–25
Figure 3–25

In the closed conformation, the active site of T7 DNA polymerase forms a narrow slot for the incoming nucleotide and a template base. The shape and surface chemistry of the closed polymerase are compatible with Watson-Crick base pairs, whereas mispairs fit poorly in the active site and prevent the fingers from closing ( ). Substrate-induced conformational changes have been observed in crystal structures of a variety of DNA and RNA polymerases ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–26
Figure 3–26

The phosphoryl transfer reaction catalyzed by DNA and RNA polymerases features charged intermediates that are stabilized by basic amino acids and divalent metals bound in the polymerase active site to catalyze DNA synthesis. The actual structure of the transition state for this reaction is likely to be intermediate between two extremes, a dissociative metaphosphate-like state (A) and an associative pentacoordinate state (B) ( ). The induced-fit-type mechanism for the catalytic selectivity of DNA polymerases, shown in Fig. 3–23 and 3-24 , suggests how the structure of the polymerase is adapted to the structure of the transition state for nucleotide incorporation into DNA.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–27
Figure 3–27

The O-helix within the fingers of Pol A family DNA polymerases contains conserved residues that interact with the incoming nucleotide and template base and strongly influence the rate and fidelity of DNA synthesis (see Fig. 3–25 ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–28
Figure 3–28

The nucleobase isosteres 2,4-difluorotoluene (compound F) and 4-methylbenzimidazole (compound Z) mimic the shape of the natural DNA bases T and A, respectively, but lack hydrogen-bonding capability. Nonetheless, nonpolar nucleoside mimics containing these unnatural bases are selectively incorporated by the Klenow fragment DNA polymerase ( ). This result shows that the shape of the nascent base pair is an important determinant of the fidelity of DNA synthesis, even in the absence of Watson-Crick hydrogen bonding between the template base and the incoming nucleotide.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–29
Figure 3–29

Exonucleolytic proofreading is a mechanism for removing misincorporated nucleotides during DNA synthesis, increasing the accuracy of copying a DNA template approximately 100-fold. (A) The 3’ to 5’ exonuclease of the Klenow fragment DNA polymerase is located far from the polymerase active site, necessitating a large shift in the bound DNA during the transition from DNA synthesis (left) and proofreading (right) ( ). DNA synthesis is slowed by the misincorporation of a nucleotide because the 3’-OH is misaligned for the subsequent round of nucleotide incorporation into DNA. This slowing of DNA synthesis favors the dissociation of the DNA from the polymerase site and rebinding in the 3’ to 5’ proofreading exonuclease site. After one or more nucleotides are removed from the 3’ end of the primer strand, DNA synthesis resumes in the polymerase active site. (B) A series of minor-groove interactions with the base pairs located in the polymerase active site may provide the mechanism for detecting mismatched base pairs, triggering the movement of DNA to the exonuclease and the proofreading reaction. A wobble or Hoogsteen base pair resulting from misinsertion of a nucleotide by the polymerase would not accommodate these interactions with the minor groove.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–30
Figure 3–30

The error-prone DNA polymerases of the polymerase Y superfamily contain five conserved sequence motifs that are different from those of other DNA polymerases. The discovery of the Y polymerase superfamily resulted from the isolation of several novel DNA polymerases with the unusual ability to synthesize DNA past chemically modified nucleotides in a DNA template. It was subsequently realized that polymerases with these conserved motifs are widespread in all kingdoms of life ( ). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–31
Figure 3–31

The error-prone Y family DNA polymerases have a shape resembling a right hand, with fingers, thumb, and palm subdomains, but the active site of these enzymes is less constraining than the closed active site of high-fidelity DNA polymerases ( Fig. 3–24 and 3-25 ). The crystal structure of the Dpo4 polymerase complexed to DNA showed that two nucleotides on the template strand could fit into the polymerase active (note the unpaired 5’ nucleotide bound near the fingers), providing an explanation for the bypass of CPD and other bulky lesions ( ). A C-terminal domain of Y family polymerases, alternatively called the little finger or polymerase-associated domain, binds to DNA and significantly influences DNA lesion bypass activity ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–32
Figure 3–32

(A) UV exposure damages DNA, causing a particularly insidious lesion, the CPD, at dipyrimidine sequences in DNA. The covalent linkage of two adjacent bases in a CPD impairs DNA synthesis by replicative polymerases ( ). (B) Specialized polymerases of the Y superfamily can bypass CPD lesions by virtue of their more accommodating active sites ( Fig. 3–31 ). The crystal structure of the Dpo4 polymerase in complex with DNA containing a CPD lesion shows how the enzyme can catalyze the templated insertion of A across from the 3’ T of CPD, by accommodating both thymines of the CPD at once in the polymerase active site ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–33
Figure 3–33

Mutational intermediates for substitution and frameshift errors that involve primer-template misalignments. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–34
Figure 3–34

Misalignment between tandem repeats improved by a palindrome. In each case the deletion is produced by misaligning arrow 1’ with arrow 2. Arrow 1 is a repeat of arrow 2; arrow 1 ‘ is the normal complement of arrow 1. (A) The palindrome brings arrow 2 to precisely the misaligned position that produces a deletion ( ). (B) The palindrome brings arrow 2 adjacent to the misaligned position ( ). (C) The palindrome brings arrow 2 closer ( ). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3–35
Figure 3–35

Model for the production of templated T4 mutations. The complex mutations termed mutant 1 and mutant 2 are rationalized as being due to the formation of a palindromic intermediate between two quasi-homologous sequences. Changed bases are in gold, and Δ indicates a deleted base. (Adapted from references and .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Introduction to Mutagenesis, p 71-106. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816704.ch03
1. Admiraal, S. J., and, D. Herschlag. 1995. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem. Biol. 2:729739.
2. Aidoo, A.,, L. E. Lyn-Cook,, R. A. Mittelstaedt,, R. H. Heflich, and, D. A. Casciano. 1991. Induction of 6-thioguanine resistant lymphocytes in Fischer 344 rats following in vivo exposure to N-ethyl-N-nitrosourea and cyclophosphamide. Environ. Mol. Mutagen. 17:141151.
3. Albertini, A. M.,, M. Hofer,, M. P. Calos, and, J. H. Miller. 1982. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29:319326.
4. Albertini, R. J.,, K. L. Castle, and, W. R. Borcherding. 1982. T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc. Natl. Acad. Sci. USA 79:66176621.
5. Allawi, H. T., and, J. SantaLucia, Jr., 1998. Nearest neighbor thermodynamic parameters for internal G-A mismatches in DNA. Biochemistry 37:21702179.
6. Allawi, H. T., and, J. SantaLucia, Jr., 1998. Nearest-neighbor thermodynamics of internal A-C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37:94359444.
7. Allawi, H. T., and, J. SantaLucia, Jr., 1997. Thermodynamics and NMR of internal G-T mismatches in DNA. Biochemistry 36:1058110594.
8. Allawi, H. T., and, J. SantaLucia, Jr., 1998. Thermodynamics of internal C-T mismatches in DNA. Nucleic Acids Res. 26:26942701.
9. Ames, B. N.,, W. E. Durston,, E. Yamasaki, and, F. D. Lee. 1973. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 70:22812285.
10. Ames, B. N.,, J. McCann, and, E. Yamasaki. 1975. Methods for detecting carcinogens and mutagens with the Salmonella-microsome mutagenicity test. Mutat. Res. 31:347364.
11. Ashman, C. R., and, R. L. Davidson. 1987. DNA base sequence changes induced by ethyl methanesulfonate in a chromosomally integrated shuttle vector gene in mouse cells. Somatic Cell Mol. Genet. 13:563568.
12. Ashman, C. R., and, R. L. Davidson. 1985. High spontaneous mutation frequency of BPV shuttle vector. Somatic Cell Mol. Genet. 11:499504.
13. Ashman, C. R.,, P. Jagadeeswaran, and, R. L. Davidson. 1986. Efficient recovery and sequencing of mutant genes from mammalian chromosomal DNA. Proc. Natl. Acad. Sci. USA 83:33563360.
14. Astatke, M.,, N. D. Grindley, and, C. M. Joyce. 1995. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J. Biol. Chem. 270:19451954.
15. Astatke, M.,, K. Ng,, N. D. Grindley, and, C. M. Joyce. 1998. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. USA 95:34023407.
16. Basu, A. K., and, J. M. Essigmann. 1990. Site-specific alkylated oligodeoxynucleotides: probes for mutagenesis, DNA repair and the structural effects of DNA damage. Mutat. Res. 233:189201.
17. Basu, A. K., and, J. M. Essigmann. 1988. Site-specifically modified oligonucleotides as probes for the structural and biological effects of DNA-damaging agents. Chem. Res. Toxicol. 1:118.
18. Beard, W. A., and, S. H. Wilson. 2001. DNA lesion bypass polymerases open up. Structure (Cambridge) 9:759764.
19. Beard, W. A., and, S. H. Wilson. 2000. Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. Mutat. Res. 460:231244.
20. Beard, W. A., and, S. H. Wilson. 2003. Structural insights into the origins of DNA polymerase fidelity. Structure (Cambridge) 11:489496.
21. Bebenek, K.,, J. Abbotts,, S. H. Wilson, and, T. A. Kunkel. 1993. Error-prone polymerization by HIV-1 reverse transcriptase. J. Biol. Chem. 268:1032410334.
22. Beese, L. S.,, V. Derbyshire, and, T. A. Steitz. 1993. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260: 352355.
23. Beese, L. S., and, T. A. Steitz. 1991. Structural basis for the 3’-5’ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10:2533.
24. Bell, J. B.,, K. A. Eckert,, C. M. Joyce, and, T. A. Kunkel. 1997. Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J. Biol. Chem. 272:73457351.
25. Benzer, S., 1961. Genetic fine structure. Harvey Lect. 56:121.
26. Benzer, S., 1961. On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. USA 47:403415.
27. Berger, H.,, W. J. Brammar, and, C. Yanofsky. 1968. Analysis of amino acid replacements resulting from frameshift and missense mutations in the tryptophan synthetase A gene of Escherichia coli. J. Mol. Biol. 34:219238.
28. Besaratinia, A.,, T. W. Synold,, B. Xi, and, G. P. Pfeifer. 2004. G-to- T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet a radiation in mammalian cells. Biochemistry. 43:81698177.
29. Bielas, J. H., and, J. A. Heddle. 2000. Proliferation is necessary for both repair and mutation in transgenic mouse cells. Proc. Natl. Acad. Sci. USA 97:1139111396.
30. Bjorheim, J.,, M. Minarik,, G. Gaudernack, and, P. O. Ekstrom. 2002. Mutation detection in KRAS Exon 1 by constant denaturant capillary electrophoresis in 96 parallel capillaries. Anal. Biochem. 304:200205.
31. Bommarito, S.,, N. Peyret, and, J. SantaLucia, Jr., 2000. Thermo-dynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res. 28:19291934.
32. Boudsocq, F.,, R. J. Kokoska,, B. S. Plosky,, A. Vaisman,, H. Ling,, T. A. Kunkel,, W. Yang, and, R. Woodgate. 2004. Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J. Biol. Chem. 279:3293232940.
33. Bourre, F., and, A. Sarasin. 1983. Targeted mutagenesis of SV40 DNA induced by UV light. Nature (London) 305:6870.
34. Braithwaite, D. K., and, J. Ito. 1993. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 21:787802.
35. Brautigam, C. A., and, T. A. Steitz. 1998. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 8:5463.
36. Brautigam, C. A.,, S. Sun,, J. A. Piccirilli, and, T. A. Steitz. 1999. Structures of normal single-stranded DNA and deoxyribo-3’-S-phosphorothiolates bound to the 3’-5’ exonucleolytic active site of DNA polymerase I from Escherichia coli. Biochemistry 38:696704.
37. Bridges, B. A., 1998. DNA repair: getting past a lesion—at a cost. Curr. Biol. 8:R886R888.
38. Bridges, B. A., 1960. Sensitization of Escherichia coli to gamma radiation by N-ethylmaleimide. Nature 188:415.
39. Brieba, L. G.,, B. F. Eichman,, R. J. Kokoska,, S. Doublie,, T. A. Kunkel, and, T. Ellenberger. 2004. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO J. 23:34523461.
40. Brody, R. S.,, S. Adler,, P. Modrich,, W. J. Stec,, Z. J. Leznikowski, and, P. A. Frey. 1982. Stereochemical course of nucleotidyl transfer catalyzed by bacteriophage T7 induced DNA polymerase. Biochemistry 21:25702572.
41. Brody, R. S., and, P. A. Frey. 1981. Unambiguous determination of the stereochemistry of nucleotidyl transfer catalyzed by DNA polymerase I from Escherichia coli. Biochemistry 20:12451252.
42. Burgers, P. M., and, F. Eckstein. 1979. A study of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phospho-rothioate analogs of deoxyadenosine triphosphate. J. Biol. Chem. 254:68896893.
43. Burgers, P. M.,, E. V. Koonin,, E. Bruford,, L. Blanco,, K. C. Burtis,, M. F. Christman,, W. C. Copeland,, E. C. Friedberg,, F. Hanaoka,, D. C. Hin-kle,, C. W. Lawrence,, M. Nakanishi,, H. Ohmori,, L. Prakash,, S. Prakash,, C. A. Reynaud,, A. Sugino,, T. Todo,, Z. Wang,, J. C. Weill, and, R. Woodgate. 2001. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol. Chem. 276:4348743490.
44. Calos, M. P.,, J. S. Lebkowski, and, M. R. Botchan. 1983. High mutation frequency in DNA transfected into mammalian cells. Proc. Natl. Acad. Sci. USA 80:30153019.
45. Calos, M. P., and, J. H. Miller. 1981. Genetic and sequence analysis of frameshift mutations induced by ICR-191. J. Mol. Biol. 153:3966.
46. Cariello, N. F.,, P. Keohavong,, A. G. Kat, and, W. G. Thilly., 1990. Molecular analysis of complex human cell populations: mutational spectra of MNNG and ICR-191. Mutat. Res. 231:165176.
47. Cariello, N. F.,, J. K. Scott,, A. G. Kat,, W. G. Thilly, and, P. Keohavong. 1988. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRTMunich. Am. J. Hum. Genet. 42:726734.
48. Cariello, N. F.,, J. A. Swenberg, and, T. R. Skopek. 1992. In vitro mutational specificity of cisplatin in the human hypoxanthine guanine phosphoribosyl transferase gene. Cancer Res. 52:28662873.
49. Carothers, A. M.,, G. Urlaub,, D. Grunberger, and, L. A. Chasin. 1993. Splicing mutants and their second-site suppressors at the dihydro-folate reductase locus in Chinese hamster ovary cells. Mol. Cell. Biol. 13: 50855098.
50. Carothers, A. M.,, G. Urlaub,, J. Mucha,, D. Grunberger, and, L. A. Chasin. 1989. Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA, and Taq sequencing by a novel method. BioTechniques 7:494496.
51. Carroll, S. S.,, M. Cowart, and, S. J. Benkovic. 1991. A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity. Biochemistry 30:804813.
52. Cebula, T. A., and, W. H. Koch. 1990. Analysis of spontaneous and psoralen-induced Salmonella typhimurium hisG46 revertants by oligo-deoxynucleotide colony hybridization: use of psoralens to cross-link probes to target sequences. Mutat. Res. 229:7987.
53. Cotton, R. G. H., 1989. Detection of single base changes in nucleic acids. Biochem. J. 263:110.
54. Cotton, R. G. H., and, R. D. Campbell. 1989. Chemical reactivity of matched cytosine and thymine bases near mismatched and unmatched bases in a heteroduplex between DNA strands with multiple differences. Nucleic Acids Res. 17:42234233.
55. Cotton, R. G. H.,, N. R. Rodrigues, and, R. D. Campbell. 1988. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85:43974401.
56. Coulondre, C., and, J. H. Miller. 1977. Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escherichia coli. J. Mol. Biol. 117:577606.
57. Cox, M. M.,, M. F. Goodman,, K. N. Kreuzer,, D. J. Sherratt,, S. J. Sandler, and, K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404:3741.
58. Crick, F. H. C.,, L. Barnett,, S. Brenner, and, R. J. Watts-Tobin. 1961. General nature of the genetic code for proteins. Nature (London) 192:1227–1232.
59. Cupples, C., and, J. H. Miller. 1989. A set of lacZ mutations in Esch-erichia coli allows rapid detection of each of the six base substitutions. Proc. Natl. Acad. Sci. USA 86:53455349.
60. Dahlberg, M. E., and, S. J. Benkovic., 1991. Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformation change and evaluation of the internal equilibrium constant. Biochemistry 30:48354843.
61. Dean, S. W., and, B. Myhr. 1994. Measurement of gene mutation in vivo using Muta Mouse and positive selection for lacZ phage. Mutagenesis 9:183185.
62. de Boer, J. G.,, S. Provost,, N. Gorelick,, K. Tindall, and, B. W. Glickman. 1998. Spontaneous mutation in lacI transgenic mice: a comparison of tissues. Mutagenesis 13:109114.
63. de Boer, J. G., and, L. S. Ripley. 1984. Demonstration of the production of frameshift and base-substitution mutations by quasipalindromic DNA sequences. Proc. Natl. Acad. Sci. USA 81:55285531.
64. de Boer, J. G., and, L. S. Ripley. 1988. An in vitro assay for frameshift mutations: hotspots for deletions of 1 bp by Klenow-fragment polymerase share a consensus DNA sequence. Genetics 118:181191.
65. Delarue, M.,, O. Poch,, N. Tordo,, D. Moras, and, P. Argos. 1990. An attempt to unify the structure of polymerases. Protein Eng. 3:461467.
66. Demerec, M.,, G. Bertani, and, J. Flint. 1951. A survey of chemicals for mutagenesis action on E. coli. Proc. Natl. Acad. Sci. USA 85:119136.
67. Dempsey, J. L., and, A. A. Morley. 1986. Measurement of in vivo mutant frequency in lymphocytes in the mouse. Environ. Mutagen. 8:385391.
68. DiMaio, D.,, R. Treisman, and, T. Maniatis. 1982. Bovine papillo-mavirus vector that propogates as a plasmid in both mouse and bacterial cells. Proc. Natl. Acad. Sci. USA 79:40304034.
69. Doublie, S., and, T. Ellenberger. 1998. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol. 8:704712.
70. Doublie, S.,, M. R. Sawaya, and, T. Ellenberger. 1999. An open and closed case for all polymerases. Struct. Fold. Des. 7:R31R35.
71. Doublie, S.,, S. Tabor,, A. M. Long,, C. C. Richardson, and, T. El-lenberger. 1998. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391:251258.
72. Drake, J. W., 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88:71607164.
73. Drake, J. W., 1970. The Molecular Basis of Mutation. Holden-Day, San Francisco, Calif.
74. Drake, J. W., 1992. Mutation rates. Bioessays 14:137140.
75. Drake, J. W., 1963. Properties of ultraviolet-induced rIImutants of bacteriophage T4. J. Mol. Biol. 6:268283.
76. Drake, J. W., 1993. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90:41714175.
77. Drake, J. W., 1991. Spontaneous mutation. Annu. Rev. Genet. 25:125146.
78. Drake, J. W.,, B. W. Glickman, and, L. W. Ripley. 1983. Updating the theory of mutation. Am. Sci. 71:621630.
79. Drinkwater, N. R., and, D. K. Klinedinst. 1986. Chemically induced mutagenesis in a shuttle vector with a low background mutant frequency. Proc. Natl. Acad. Sci. USA 83:34023406.
80. Drobetsky, E. A.,, A. J. Grosovsky, and, B. W. Glickman. 1987. The specificity of UV induced mutation at an endogenous locus in mammalian cells. Proc. Natl. Acad. Sci. USA 84:91039107.
81. DuBridge, R. B., and, M. P. Calos. 1988. Recombinant shuttle vectors for the study of mutagenesis. Mutagenesis 3:19.
82. DuBridge, R. B.,, P. Tang,, H. C. Hsia,, P. M. Leong,, J. H. Miller, and, M. P. Calos. 1987. Analysis of mutation in human cells using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7:379387.
83. Dumaz, N.,, C. Drougard,, A. Sarasin, and, L. Daya-Grosjean. 1993. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. USA 90:1052910533.
84. Echols, H., and, M. F. Goodman. 1991. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60:477511.
85. Eisenstadt, E., 1987. Analysis of mutagenesis, p., 10161033. In F. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
86. Ellenberger, T., and, L. F. Silvian. 2001. The anatomy of infidelity. Nat. Struct. Biol. 8:827828.
87. Eom, S. H.,, J. Wang, and, T. A. Steitz. 1996. Structure of Taq polymerase with DNA at the polymerase active site. Nature 382:278281.
88. Essigmann, J. M., and, M. L. Wood. 1993. The relationship between the chemical structure and mutagenic specificities of the DNA lesions formed by chemical and physical mutagens. Toxicol. Lett. 67:2939.
89. Falt, S.,, R. Kumar,, A. Wennborg,, A. Tomita-Mitchell,, W. G. Thilly, and, B. Lambert. 2000. Identification of in vivo mutations in exon 5 of the human HPRT gene in a set of pooled T-cell mutants by constant denaturant capillary electrophoresis (CDCE). Mutat. Res. 452:5766.
90. Fischer, S. G., and, L. S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80: 15791583.
91. Fischer, S. G., and, L. S. Lerman. 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16:191200.
92. Foster, P. L., 2000. Adaptive mutation in Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 65:2129.
93. Foster, P. L., 1992. Escherichia coli and Salmonella typhimurium, mutagenesis, p., 107114. In J. Lederberg (ed.), Encyclopedia of Microbiology, vol., 2. Academic Press, Inc., New York, N.Y.
94. Franklin, M. C.,, J. Wang, and, T. A. Steitz. 2001. Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105:657667.
95. Freemont, P. S.,, J. M. Friedman,, L. S. Beese,, M. R. Sanderson, and, T. A. Steitz. 1988. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. USA 85:89248928.
96. Freese, E., 1959. On the molecular explanation of spontaneous and induced mutations. Brookhaven Symp. Biol. 12:6373.
97. Friedberg, E. C.,, P. L. Fischhaber, and, C. Kisker. 2001. Error-prone DNA polymerases: novel structures and the benefits of infidelity. Cell 107: 912.
98. Friedberg, E. C.,, R. Wagner, and, M. Radman. 2002. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296:16271630.
99. Friedberg, E. C.,, G. C. Walker, and, W. Siede. 1995. DNA Repair and Mutagenesis. American Society for Microbiology, Washington, D.C.
100. Gentil, A.,, A. Margot, and, A. Sarasin. 1986., 2-(N-Acetoxy N-acetylamino)fluorene mutagenesis in mammalian cells: sequence specific hot spot. Proc. Natl. Acad. Sci. USA 83:95569560.
101. Glazer, P. M.,, S. N. Sarkar, and, W. C. Summers. 1986. Detection and analysis of UV-induced mutations in mammalian cell DNA using a X phage shuttle system. Proc. Natl. Acad. Sci. USA 83:10411044.
102. Glickman, B. W., and, L. S. Ripley. 1984. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc. Natl. Acad. Sci. USA 81:512516.
103. Glusker, J. P., 1991. Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42:176.
104. Goodman, M. F., 2002. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71:1750.
105. Goodman, M. F., 1997. Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc. Natl. Acad. Sci. USA 94:1049310495.
106. Goodman, M. F.,, S. Creighton,, L. B. Bloom, and, J. Petruska. 1993. Biochemical basis of DNA replication fidelity. Crit. Rev. Biochem. Mol. Biol. 28:83126.
107. Goodman, M. F., and, B. Tippin. 2000. Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev. 10:162168.
108. Gordon, A. J. E.,, P. A. Burns,, D. F. Fix,, F. Yatagi,, F. L. Allen,, M. J. Horsfall,, J. A. Halliday,, J. Gray,, C. Bernelot-Moens, and, B. W. Glick-man. 1988. Missense mutation in the lacI gene of Escherichia coli: inferences on the structure of the repressor protein. J. Mol. Biol. 200:239251.
109. Gossen, J. A.,, W. J. F. De Leeuw,, C. H. Tan,, E. C. Zwarthoff,, F. Berends,, P. H. M. Lohman,, D. L. Knook, and, J. Vijg. 1989. Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc. Natl. Acad. Sci. USA 86:79717975.
110. Grosovsky, A. J.,, E. A. Drobetsky,, P. J. deJong, and, B. W. Glick-man. 1986. Southern analysis of genomic alterations in gamma-ray-induced aprt hamster cell mutants. Genetics 113:405415.
111. Guckian, K. M.,, B. A. Schweitzer,, R. X. -F. Ren,, C. J. Sheils,, D. C. Tahmassebi, and, E. T. Kool. 2000. Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J. Am. Chem. Soc. 122:22132222.
112. Halangoda, A.,, J. G. Still,, K. A. Hill, and, S. S. Sommer. 2001. Spontaneous microdeletions and microinsertions in a transgenic mouse mutation detection system: analysis of age, tissue, and sequence specificity. Environ. Mol. Mutagen 37:311323.
113. Hampsey, D. M.,, J. F. Ernst,, J. W. Stewart, and, F. Sherman. 1988. Multiple base-pair mutations in yeast. J. Mol. Biol. 201:471486.
114. Herschlag, D., and, W. P. Jencks. 1989. Phosphoryl transfer to an-ionic oxygen nucleophiles. Nature of the transition state and electrostatic repulsion. J. Am. Chem. Soc. 111:75877596.
115. Hill, K. A.,, V. L. Buettner,, A. Halangoda,, M. Kunishige,, S. R. Moore,, J. Longmate,, W. A. Scaringe, and, S. S. Sommer., 2004. Spontaneous mutation in Big Blue mice from fetus to old age: tissue-specific time courses of mutation frequency but similar mutation types. Environ. Mol. Mutagen 43:110120.
116. Hoogsteen, K., 1963. The crystal and molecular structure of a hydrogen-bonded complex between 1-methyl thymine and 9-methyl adenine. Acta Crystallogr. 16:907916.
117. Hoorn, A. J. W.,, L. L. Custer,, B. C. Myhr,, D. Brusick,, J. Gossen, and, J. Vijg. 1993. Detection of chemical mutagens using Muta Mouse: a transgenic mouse model. Mutagenesis 8:710.
118. Hsia, H. C.,, J. S. Lekowski,, P.-M. Leong,, M. P. Calos, and, J. H. Miller. 1989. Comparison of ultraviolet irradiation-induced mutagenesis of the lacIgene in Escherichia coli and in human 293 cells. J. Mol. Biol. 205:103113.
119. Hsu, G. W.,, M. Ober,, T. Carell, and, L. S. Beese. 2004. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 431:217221.
120. Huang, H.,, R. Chopra,, G. L. Verdine, and, S. C. Harrison. 1998. Structure of a covalently trapped catalytic complex of HIV-1 reverse tran-scriptase: implications for drug resistance. Science 282:16691675.
121. Ikeda, H.,, H. Shimizu,, T. Ukita, and, M. Kumagai. 1995. A novel assay for illegitimate recombination in Escherichia coli: stimulation of lambda bio transducing phage formation by ultra-violet light and its independence from RecA function. Adv. Biophys. 31:197208.
122. Ikehata, H.,, T. Akagi,, H. Kimura,, S. Akasaka, and, T. Kato. 1989. Spectrum of spontaneous mutations in a cDNA of the human hprt gene integrated in chromosomal DNA. Mol. Gen. Genet. 219:349358.
123. Iyer, V. N., and, W. Szybalski. 1958. Two simple methods for the detection of chemical mutagens. Appl. Microbiol. 6:2329.
124. Johnson, K. A., 1993. Conformational coupling in DNA polymerase fidelity. Annu. Rev. Biochem. 62:685713.
125. Johnson, R. E.,, S. Prakash, and, L. Prakash. 2000. The human DINB1 gene encodes the DNA polymerase Pol8. Proc. Natl. Acad. Sci. USA 97:38383843.
126. Johnson, R. E.,, M. T. Washington,, S. Prakash, and, L. Prakash. 1999. Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc. Natl. Acad. Sci. USA 96:1222412226.
127. Johnson, R. E.,, M. T. Washington,, S. Prakash, and, L. Prakash. 2000. Fidelity of human DNA polymerase eta. J. Biol. Chem. 275:74477450.
128. Jones, I. M.,, K. Burkhart-Schultz,, C. L. Strout, and, T. L. Crip-pen. 1987. Factors that affect the frequency of thioguanine-resistant lymphocytes in mice following exposure to ethylnitrosourea. Environ. Mutagen. 9:317329.
129. Joyce, C. M., and, T. A. Steitz. 1994. Function and structural relationships in DNA polymerases. Annu. Rev. Biochem. 63:777822.
130. Kaushik, N.,, V. N. Pandey, and, M. J. Modak. 1996. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Biochemistry 35:72567266.
131. Kennard, O., 1987. The molecular structure of base pair mismatches. Nucleic Acids Mol. Biol. 1:2552.
132. Keohavong, P.,, V. F. Liu, and, T. G. Thilly. 1991. Analysis of point mutations induced by ultraviolet light in human cells. Mutat. Res. 249: 147159.
133. Khrapko, K.,, J. S. Hanekamp,, W. G. Thilly,, A. Belenkii,, F. Foret, and, B. L. Karger. 1994. Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis. Nucleic Acids Res. 22:364369.
134. Kiefer, J. R.,, C. Mao,, J. C. Braman, and, L. S. Beese. 1998. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391:304307.
135. Kiefer, J. R.,, C. Mao,, C. J. Hansen,, S. L. Basehore,, H. H. Hogrefe,, J. C. Braman, and, L. S. Beese. 1997. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution. Structure 5:95108.
136. Kim, A. S.,, X. C. Li-Sucholeiki, and, W. G. Thilly. 2001. Applications of constant denaturant capillary electrophoresis and complementary procedures. Measurement of point mutational spectra. Methods Mol. Biol. 163:175189.
137. Kim, A. S., and, W. G. Thilly. 2003. Ligation of high-melting-temperature ‘clamp’ sequence extends the scanning range of rare point-mutational analysis by constant denaturant capillary electrophoresis (CDCE) to most of the human genome. Nucleic Acids Res. 31:e97.
138. Knowles, J. R., 1980. Enzyme-catalyzed phosphoryl transfer reactions. Annu. Rev. Biochem. 49:877919.
139. Koffel-Schwartz, P.,, J. M. Verdier,, J. F. Lefervre,, M. Bichara,, A. M. Fruend,, M. P. Daune, and, R. P. P. Fuchs. 1984. Carcinogen-induced mutation spectrum in wild-type, uvrA, and umuC strains of E. coli: strain specificity and mutation-prone sequences. J. Mol. Biol. 177:3351.
140. Kohler, S. W.,, G. S. Provost,, A. Fieck,, P. L. Kretz,, W. O. Bullock,, J. A. Sorge,, D. L. Putman, and, J. M. Short. 1991. Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc. Natl. Acad. Sci. USA 88:79587962.
141. Kohler, S. W.,, G. S. Provost,, P. L. Kretz,, M. J. Dycaico,, J. A. Sorge, and, S. M. Short. 1990. Development of a short-term, in vivo mutagenesis assay: the effects of methylation on the recovery of lambda phage shuttle vector from transgenic mice. Nucleic Acids Res. 18:30073013.
142. Kool, E. T., 2001. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30:122.
143. Korn, D.,, P. A. Fisher, and, T. S. -F. Wang. 1983. Enzymological characterization of human DNA polymerases-a and p, p., 1755. In A. M. de Recondo (ed.), New Approaches in Eukaryotic DNA Replication. Plenum Publishing Corp., New York, N.Y.
144. Kornberg, A., and, T. A. Baker. 1992. DNA Replication, 2nd ed. W. H. Freeman & Co., New York, N.Y.
145. Kraemer, K. H., and, M. M. Seidman. 1989. Use of supF, an Esch-erichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutat. Res. 220:6172.
146. Kuchta, R. D.,, P. Benkovic, and, S. J. Benkovic. 1988. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27:67166725.
147. Kunkel, T. A., 1992. DNA replication fidelity. J. Biol. Chem. 267:1825118254.
148. Kunkel, T. A., 1990. Misalignment mediated DNA synthesis errors. Biochemistry 29:80038011.
149. Kunkel, T. A., 1985. The mutational specificity of DNA polymerase-p during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J. Biol. Chem. 260:57875796.
150. Kunkel, T. A., and, P. S. Alexander. 1986. The base substitution fidelity of eucaryotic polymerases. J. Biol. Chem. 261:160166.
151. Kunkel, T. A., and, K. Bebenek. 2000. DNA replication fidelity. Annu. Rev. Biochem. 69:497529.
152. Kunkel, T. A., and, K. Bebenek. 1988. Recent studies of the fidelity of DNA synthesis. Biochim. Biophys. Acta 951:115.
153. Kunkel, T. A.,, Y. I. Pavlov, and, K. Bebenek. 2003. Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amsterdam) 2:135149.
154. Kunkel, T. A., and, A. Soni. 1988. Mutagenesis by transient mis-aligment. J. Biol. Chem. 29:1478414789.
155. Kupchella, E., and, T. A. Cebula. 1991. Analysis of Salmonella typhimurium hisD3052 revertants: the use of oligodeoxynucleotide colony hybridization, PCR, and direct sequencing in mutational analysis. Environ. Mol. Mutagen. 18:224230.
156. Lam, W. C.,, E. J. Van der Schans,, C. M. Joyce, and, D. P. Millar. 1998. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3’-5’ exonuclease sites of DNA polymerase I (Klenow fragment). Biochemistry 37:15131522.
157. Lambert, I. B.,, R. L. Napolitano, and, R. P. P. Fuchs. 1992. Carcinogen-induced frameshift mutagenesis in repetitive sequences. Proc. Natl. Acad. Sci. USA 89:13101314.
158. Lebkowski, J. S.,, R. B. DuBridge,, E. A. Antell,, K. S. Greisen, and, M. P. Calos. 1984. Transfected DNA is mutated in monkey, mouse, and human cell lines. Mol. Cell. Biol. 4:19511960.
159. LeClerc, J. E.,, N. L. Istock,, B. R. Saran, and, R. Allen, Jr., 1984. Sequence analysis of ultraviolet-induced mutations in M13lacZ hybrid phage DNA. J. Mol. Biol. 180:217237.
160. Levin, D. E., and, B. N. Ames. 1986. Classifying mutagens as to their possible specificity in causing the six possible transitions and transversions: a simple analysis using the Salmonella mutagenicity assay. Environ. Mutagen. 8:928.
161. Levine, J. G.,, R. M. Schaaper, and, D. M. DeMarini. 1994. Complex frameshift mutations mediated by plasmid pKM101: mutational mechanisms deduced from 4-aminobiphenyl-induced mutational spectra in Salmonella. Genetics 136:731746.
162. Levy, D. D.,, J. D. Groopman,, S. E. Lim,, M. M. Seidman, and, K. H. Kraemer. 1992. Sequence specificity of aflatoxin B1-induced mutations in a plasmid replicated in xeroderma pigmentosum and DNA repair proficient human cells. Cancer Res. 52:56685673.
163. Li, Y.,, S. Dutta,, S. Doublie,, H. M. Bdour,, J. S. Taylor, and, T. Ellenberger. 2004. Nucleotide insertion opposite a cis-synthymine dimer by a replicative DNA polymerase from bacteriophage T7. Nat. Struct. Mol. Biol. 11:784790.
164. Li, Y.,, Y. Kong,, S. Korolev, and, G. Waksman. 1998. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates. Protein Sci. 7:11161123.
165. Li, Y.,, S. Korolev, and, G. Waksman. 1998. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17:75147525.
166. Liang, L.,, L. Deng,, C. Shao,, P. J. Stambrook, and, J. A. Tischfield. 2000. In vivo loss of heterozygosity in T-cells of B6C3F1 Aprt(+ / -) mice. Environ. Mol. Mutagen. 35:150157.
167. Ling, H.,, F. Boudsocq,, B. S. Plosky,, R. Woodgate, and, W. Yang. 2003. Replication of a cis-syn thymine dimer at atomic resolution. Nature 424:10831087.
168. Ling, H.,, F. Boudsocq,, R. Woodgate, and, W. Yang. 2001. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91102.
169. Livneh, Z., 2001. DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. J. Biol. Chem. 276:2563925642.
170. Loeb, L. A., and, T. A. Kunkel. 1982. Fidelity of DNA synthesis. Annu. Rev. Biochem. 52:429457.
171. Luria, S. E., and, M. Delbruck. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491511.
172. MacGregor, G. R., and, J. F. Burke. 1987. Stability of a bacterial gene in a bovine papilloma virus based shuttle vector maintained extra-chromosomally in mammalian cells. J. Gen. Virol. 183:273278.
173. Madzak, C.,, J. Armier,, A. Stary,, L. Daya-Grosjean, and, A. Sarasin. 1993. UV-induced mutations in a shuttle vector replicated in repair deficient trichothiodystrophy cells differ with those in genetically-related cancer prone xeroderma pigmentosum. Carcinogenesis 14:12551260.
174. Maher, V. M.,, J. L. Yang,, R. H. Chen,, W. G. McGregor,, L. Lukash,, J. M. Scheid,, D. S. Reinhold, and, J. J. McCormick. 1991. Use of PCR amplification of cDNA to study mechanism of human cell mutagenesis and malignant transformation. Environ. Mol. Mutagen. 18:239244.
175. Maor-Shoshani, A.,, N. B. Reuven,, G. Tomer, and, Z. Livneh, 2000. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Proc. Natl. Acad. Sci. USA 97:565570.
176. Masutani, C.,, M. Araki,, A. Yamada,, R. Kusumoto,, T. Nogi-mori,, T. Maekawa,, S. Iwai, and, F. Hanaoka. 1999. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:34913501.
177. Masutani, C.,, R. Kusumoto,, S. Iwai, and, F. Hanaoka. 2000. Mechanisms of accurate translesion synthesis by human DNA polymerase eta. EMBO J. 19:31003109.
178. Matsuda, T.,, K. Bebenek,, C. Masutani,, F. Hanaoka, and, T. A. Kunkel. 2000. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature 404:10111013.
179. Matsuda, T.,, K. Bebenek,, C. Masutani,, I. B. Rogozin,, F. Hanaoka, and, T. A. Kunkel. 2001. Error rate and specificity of human and murine DNA polymerase eta. J. Mol. Biol. 312:335346.
180. McCann, J., and, B. N. Ames. 1976. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950954.
181. McCann, J., and, B. N. Ames. 1978. The Salmonella/microsome mutagenicity test: predictive value for animal carcinogenicity, p., 87108. In W. G. Flamm and, M. A. Mehlman (ed.), Advances in Modern Toxicology, vol., 5. Hemisphere Publishing Corp., Washington, D.C.
182. McCann, J.,, E. Choi,, E. Yamasaki, and, B. N. Ames. 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:51355139.
183. McCann, J.,, N. E. Spingarn,, J. Kobori, and, B. N. Ames. 1975. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc. Natl. Acad. Sci. USA 72:979983.
184. McClure, W. R., and, T. M. Jovin. 1975. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I. J. Biol. Chem. 250:40734080.
185. McKenzie, G. J.,, P. L. Lee,, M. J. Lombardo,, P. J. Hastings, and, S. M. Rosenberg. 2001. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell 7:571579.
186. Melton, D. W.,, D. S. Konecki,, J. Brennand, and, C. T. Caskey. 1984. Structure, expression, and mutation of the hypoxanthine phospho-ribosyl transferase gene. Proc. Natl. Acad. Sci. USA 81:14841488.
187. Mildvan, A. S., and, L. A. Loeb. 1979. The role of metal ions in the mechanisms of DNA and RNA polymerases. Crit. Rev. Biochem. 6:219244.
188. Miller, J. H., 1982. Carcinogens induce targeted mutations in Escherichia coli. Cell 31:57.
189. Miller, J. H., 1985. Mutagenic specificity of ultraviolet light. J. Mol. Biol. 182:4568.
190. Miller, J. H., 1983. Mutational specificity in bacteria. Annu. Rev. Genet. 17:215238.
191. Miller, J. H., 1992. A Short Course in Bacterial Genetics. A Laboratory Manual for Escherichia coli and Related Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
192. Miller, J. H., and, M. Michaels. 1996. Finding new mutator strains of Escherichia coli— a review. Gene 179:129132.
193. Miller, J. K., and, W. M. Barnes. 1986. Colony probing as an alternative to standard sequencing as a means of direct analysis of chromosomal DNA to determine the spectrum of single-base changes in regions of known sequence. Proc. Natl. Acad. Sci. USA 83:10261030.
194. Minnick, D. T.,, M. Astatke,, C. M. Joyce, and, T. A. Kunkel. 1996. A thumb subdomain mutant of the large fragment of Escherichia coli DNA polymerase I with reduced DNA binding affinity, processivity, and frameshift fidelity. J. Biol. Chem. 271:2495424961.
195. Minnick, D. T.,, K. Bebenek,, W. P. Osheroff,, R. M. Turner, Jr.,, M. Astatke,, L. Liu,, T. A. Kunkel, and, C. M. Joyce. 1999. Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment). J. Biol. Chem. 274:30673075.
196. Morales, J. C., and, E. T. Kool. 1998. Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat. Struct. Biol. 5:950954.
197. Moran, S.,, R. X. Ren, and, E. T. Kool. 1997. A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. Proc. Natl. Acad. Sci. USA 94:1050610511.
198. Morley, A. A.,, K. J. Trainor,, R. Seshadri, and, R. G. Ryall. 1983. Measurement of in vivo mutations in human lymphocytes. Nature (London) 302:155156.
199. Myers, R. M.,, N. Lumelsky,, L. S. Lerman, and, T. Maniatis. 1985. Detection of single base substitutions in total genomic DNA. Nature (London) 313:495498.
200. Narlikar, G. J., and, D. Herschlag. 1997. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu. Rev. Biochem. 66:1959.
201. Nelson, J. R.,, C. W. Lawrence, and, D. C. Hinkle. 1996. Deoxy-cytidyl transferase activity of yeast REV1 protein. Nature 382:729731.
202. Nichols, B. P., and, C. Yanofsky. 1979. Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: an evolutionary comparison. Proc. Natl. Acad. Sci. USA 76:52445248.
203. Nohmi, T.,, M. Katoh,, H. Suzuki,, M. Matsui,, M. Yamada,, M. Watanabe,, M. Suzuki,, N. Horiya,, O. Ueda,, T. Shibuya,, H. Ikeda, and, T. Sofuni. 1996. A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environ. Mol. Mutagen. 28:465470.
204. Nohmi, T.,, M. Suzuki,, K. Masumura,, M. Yamada,, K. Matsui,, O. Ueda,, H. Suzuki,, M. Katoh,, H. Ikeda, and, T. Sofuni. 1999. Spi(-) selection: an efficient method to detect gamma-ray-induced deletions in trans-genic mice. Environ. Mol. Mutagen. 34:915.
205. Nohmi, T.,, T. Suzuki, and, K. Masumura. 2000. Recent advances in the protocols of transgenic mouse mutation assays. Mutat. Res. 455:191215.
206. Novack, D. F.,, N. J. Casna,, S. G. Fischer, and, J. P. Ford. 1986. Detection of single-base pair mismatches in DNA by chemical modification followed by electrophoresis in 15% polyacrylamide gel. Proc. Natl. Acad. Sci. USA 83:586590.
207. Ohashi, E.,, T. Ogi,, R. Kusumoto,, S. Iwai,, C. Masutani,, F. Hanaoka, and, H. Ohmori. 2000. Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev. 14:15891594.
208. Ohmori, H.,, E. C. Friedberg,, R. P. Fuchs,, M. F. Goodman,, F. Hanaoka,, D. Hinkle,, T. A. Kunkel,, C. W. Lawrence,, Z. Livneh,, T. Nohmi,, L. Prakash,, S. Prakash,, T. Todo,, G. C. Walker,, Z. Wang, and, R. Woodgate. 2001. The Y-family of DNA polymerases. Mol. Cell 8:78.
209. Oller, A. R.,, I. J. Fijalkowska, and, R. M. Schaaper. 1993. The Escherichia coli galK2 papillation assay: its specificity and application to seven newly isolated mutator strains. Mutat. Res. 292:175185.
210. Oller, A. R., and, W. G. Thilly. 1992. Mutational spectra in human B-cells: spontaneous, oxygen, and hydrogen peroxide-induced mutations at the hprt gene. J. Mol. Biol. 228:813826.
211. Ollis, D. L.,, P. Brick,, R. Hamlin,, N. G. Xuong, and, T. A. Steitz. 1985. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature (London) 313:762766.
212. Papanicolaou, C., and, L. S. Ripley. 1991. An in vitro approach to identifying specificity determinants of mutagenesis mediated by DNA misalignments. J. Mol. Biol. 221:805821.
213. Parris, C. N., and, M. M. Seidman. 1992. A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene 117:15.
214. Patel, P. H.,, M. Suzuki,, E. Adman,, A. Shinkai, and, L. A. Loeb. 2001. Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection. J. Mol. Biol. 308:823837.
215. Patel, S. S.,, I. Wong, and, K. A. Johnson. 1991. Pre-steady state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30:511525.
216. Pelletier, H.,, M. R. Sawaya,, A. Kumar,, S. H. Wilson, and, J. Kraut. 1994. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264:18911903.
217. Petersheim, M., and, D. H. Turner. 1983. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCG- GUp. Biochemistry 22:256263.
218. Petruska, J.,, L. C. Sowers, and, M. F. Goodman. 1986. Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA 83:15591562.
219. Polesky, A. H.,, M. E. Dahlberg,, S. J. Benkovic,, N. D. Grindley, and, C. M. Joyce. 1992. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J. Biol. Chem. 267:84178428.
220. Prakash, L., and, F. Sherman. 1973. Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast. J. Mol. Biol. 79:6582.
221. Prakash, S.,, R. E. Johnson,, M. T. Washington,, L. Haracska,, C. M. Kondratick, and, L. Prakash. 2000. Role of yeast and human DNA polymerase eta in error-free replication of damaged DNA. Cold Spring Harbor Symp. Quant. Biol. 65:5159.
222. Prakash, S., and, L. Prakash. 2002. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 16:18721883.
223. Pribnow, D.,, D. C. Sigurdson,, L. Gold,, B. S. Singer,, C. Napoli,, J. Brosius,, T. J. Dull, and, H. F. Noller. 1981. rIIcistrons of bacteriophage T4: DNA sequence around the intercistronic divide and positions of genetic landmarks. J. Mol. Biol. 149:337376.
224. Razzaque, A.,, H. Mizusawa, and, M. M. Seidman. 1983. Rearrangements and mutagenesis of a shuttle vector plasmid after passage in mammalian cells. Proc. Natl. Acad. Sci. USA 80:30103014.
225. Reuven, N. B.,, G. Arad,, A. Maor-Shoshani, and, Z. Livneh. 1999. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD’ , RecA, and SSB and specialized for translesion synthesis. J. Biol. Chem. 274:3176331766.
226. Ripley, L.,, A. Clark, and, J. G. de Boer. 1986. Spectrum of spontaneous frameshift mutations. Sequences of bacteriophage T4 rII frame-shifts. J. Mol. Biol. 191:601613.
227. Ripley, L. S., 1990. Frameshift mutation: determinants of specificity. Annu. Rev. Genet. 24:189213.
228. Romac, S.,, P. Leong,, H. Sockett, and, F. Hutchinson. 1989. DNA base sequence changes induced by ultraviolet light mutagenesis of a gene on a chromosome in Chinese hamster ovary cells. J. Mol. Biol. 209:195204.
229. Saiki, R. K.,, D. Gefland,, S. Stoffel,, S. J. Scharf,, R. Higuchi,, G. T. Horn,, K. B. Mullis, and, H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487491.
230. SantaLucia, J.,Jr.,, H. T. Allawi, and, P. A. Seneviratne. 1996. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35:35553562.
231. Sarasin, A., 1989. Shuttle vectors for studying mutagenesis in mammalian cells. J. Photochem. Photobiol. Ser. B 3:143155.
232. Sawaya, M. R.,, H. Pelletier,, A. Kumar,, S. H. Wilson, and, J. Kraut. 1994. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 264:19301935.