1887

Chapter 13 : Repair of Mitochondrial DNA Damage

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Repair of Mitochondrial DNA Damage, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap13-2.gif

Abstract:

The cells of higher eukaryotes typically contain several thousand copies of mitochondrial DNA (mtDNA). This chapter first talks about mitochondrial mutagenesis and DNA damage in the mitochondrial genome. Several factors can facilitate preferential mtDNA damage. While a number of early studies provided suggestive hints about mtDNA repair, the first definitive study demonstrating active base excision repair (BER) in mitochondria in mammalian cells documented the formation and repair of N-methylpurines in an insulinoma cell line exposed to the naturally occurring nitrosamine streptozotocin. The chapter discusses loss of specific types of base damage from mtDNA and repair of oxidative damage. Other covered topics are enzymes for BER repair in mitochondrial extracts, short-patch BER of mitochondrial DNA, age-related studies of mitochondrial DNA repair, alternative excision repair pathway, and recombinational repair in mtDNA. The determination of the number and type of distinct DNA repair pathways that operate in mtDNA in mammalian cells remains an important challenge and that results obtained with lower eukaryotes cannot be extrapolated to higher organisms.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13

Key Concept Ranking

DNA Repair Enzyme
0.45561424
DNA Synthesis
0.45531303
Base Excision Repair
0.4131526
Electron Transport Complex I
0.40614277
0.45561424
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 13–1
Figure 13–1

The mitochondrial genome comprises circular DNA molecules. The arrows indicate regions of replicating DNA. (Courtesy of David A. Clayton.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–2
Figure 13–2

The mitochondrial electron transport chain showing a schematic representation of mammalian electron transport complexes I to V. Electrons flow from NADH or succinate to complex I or II, respectively, and then to a ubiquinone (UQ) pool. Subsequently, electrons flow through complexes III and IV to the final acceptor, molecular oxygen. The flow of electrons is coupled to the movement of protons across the inner membrane in complexes I, II, and IV. The resulting proton gradient is harvested by complex V to generate ATP. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–3
Figure 13–3

In contrast to the nuclear gene, there is no detectable NER (see chapters 8 and 9) of either CPD (A) or (6–4) photoproducts ([6-4] PP) (B) in mtDNA of human cells exposed to UV radiation. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–4
Figure 13–4

Loss of O-methylguanine (O-methyl dG) from rat liver nuclear DNA and mtDNA at various times after the administrationof N-nitrosodimethylamine. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–5
Figure 13–5

Kinetics of the removal of O-ethylguanosine (O-EtdGuo) from nuclear (continuous black line) and mitochondrial (broken black line) DNA from rat brain and kidneys after exposure of animals to ethylnitrosourea. Note that O-ethyl-2’-deoxythymidine (O-EtdThd) (gold line) is not removed from either DNA. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–6
Figure 13–6

Repair of 8-oxoG in mtDNA (A) and nuclear DNA (B) of liver cells from wild-type mice (+/+) but not from homozygous mutant mice (—/—). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–7
Figure 13–7

Frequency of spontaneous mitochondrial mutants in wild-type (WT) and isogenic mutant yeast strains. The numbers in parentheses reflect the number of independent cultures examined. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13–8
Figure 13–8

Schematic representation of the role of mitochondria in human aging and age-related degenerative diseases. The electron transport system in the mitochondrial inner membrane, composed of protein subunits encoded by both mtDNA and nuclear DNA, is involved in ATP synthesis through coupling with respiration that consumes about 90% of the oxygen uptake of tissue cells. A fraction of the oxygen is incompletely reduced by one-electron transfer (mostly via ubisemiquinone) to generate the ROS and organic free radicals, which are usually disposed of by the coordinated function of antioxidant enzymes. However, if they escape, they may cause oxidative damage and mutation of the nearby mtDNA molecules. mtDNA with oxidative modification and/or mutation is transcribed and translated to produce defective protein subunits that are assembled to form a defective electron transport chain. The impaired chain not only works less efficiently in ATP synthesis but also generates more ROS, which will enhance the oxidative damage to various biomolecules in mitochondria. This “vicious cycle” is propagating in an age-dependent manner and results in the widely observed age-related accumulation of oxidative damage and mutation of mtDNA, which ultimately leads to a progressive decline in the bioenergetic function of tissue cells in the aging process. At the same time, free-radical scavenger enzymes and DNA repair systems for removal of oxidative damage by ROS and free radicals become less efficient. In addition, the high levels of oxidants can indirectly induce apoptosis by changing cellular redox potentials, depleting reduced glutathione, reducing ATP levels, and decreasing reducing equivalents such as NADH and NADPH. These changes can facilitate lipid peroxidation and the opening of permeability transition pores, leading to the subsequent release of cytochrome and apoptosis inducing factor (AIF) (see chapter 23). Aging-related overproduction of mitochondrial ROS may thus lead to activation of apoptotic pathways. The accumulation of oxidatively damaged and mutated mtDNA molecules and defective mitochondria, together with enhanced apoptosis, acts synergistically to perpetuate a general decline of biochemical and physiological functions of tissue cells in the aging process. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816704.ch13
1. Anderson, C. T., and, E. C. Friedberg. 1980. The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 8:875888.
2. Anson, R. M.,, D. L. Croteau,, R. H. Stierum,, C. Filburn,, R. Parsell, and, V. A. Bohr. 1998. Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res. 26:662668.
3. Ballinger, S. W.,, B. Van Houten,, G. F. Jin,, C. A. Conklin, and, B. F. Godley. 1999. Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp. Eye Res. 68:765772.
4. Barja, G., 1998. Mitochondrial free radical production and aging in mammals and birds. Ann. N.Y. Acad. Sci. 854:224238.
5. Bianchi, N. O.,, M. S. Bianchi, and, S. M. Richard. 2001. Mitochondrial genome instability in human cancers. Mutat. Res. 488:923.
6. Bogenhagen, D. F.,, K. G. Pinz, and, R. M. Perez-Jannotti. 2001. Enzymology of mitochondrial base excision repair. Prog. Nucleic Acid Res. Mol. Biol. 68:257271.
7. Bohr, V. A., 2002. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic. Biol. Med. 32:804812.
8. Bohr, V. A., and, R. M. Anson. 1999. Mitochondrial DNA repair pathways. J. Bioenerg. Biomembr. 31:391398.
9. Caradonna, S.,, R. Ladner,, M. Hansbury,, M. Kosciuk,, F. Lynch, and, S. Muller. 1996. Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases. Exp. Cell Res. 222:345359.
10. Chen, D.,, G. Cao,, T. Hastings,, Y. Feng,, W. Pei,, C. O’Horo, and, J. Chen. 2002. Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J. Neurochem. 81:12731284.
11. Chen, D.,, M. Minami,, D. C. Henshall,, R. Meller,, G. Kisby, and, R. P. Simon. 2003. Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J. Cereb. Blood Flow Metab. 23:8898.
12. Clayton, D. A.,, J. N. Doda, and, E. C. Friedberg. 1974. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 71:27772781.
13. Croteau, D. L.,, C. M. ap Rhys,, E. K. Hudson,, G. L. Dianov,, R. G. Hansford, and, V. A. Bohr. 1997. An oxidative damage-specific endonuclease from rat liver mitochondria. J. Biol. Chem. 272:2733827344.
14. de Souza-Pinto, N. C.,, L. Eide,, B. A. Hogue,, T. Thybo,, T. Stevnsner,, E. Seeberg,, A. Klungland, and, V. A. Bohr. 2001. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 61:53785381.
15. de Souza-Pinto, N. C.,, B. A. Hogue, and, V. A. Bohr. 2001. DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic. Biol. Med. 30:916923.
16. Dianov, G. L.,, N. Souza-Pinto,, S. G. Nyaga,, T. Thybo,, T. Stevnsner, and, V. A. Bohr. 2001. Base excision repair in nuclear and mitochondrial DNA. Prog. Nucleic Acid Res. Mol. Biol. 68:285297.
17. DiMauro, S., and, E. A. Schon. 2003. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348:26562668.
18. Dobson, A. W.,, Y. Xu,, M. R. Kelley,, S. P. LeDoux, and, G. L. Wilson. 2000. Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J. Biol. Chem. 275:3751837523.
19. Domena, J. D.,, R. T. Timmer,, S. A. Dicharry, and, D. W. Mosbaugh. 1988. Purification and properties of mitochondrial uracil-DNA glycosylase from rat liver. Biochemistry 27:67426751.
20. Driggers, W. J.,, G. P. Holmquist,, S. P. LeDoux, and, G. L. Wilson. 1997. Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA. Nucleic Acids Res. 25:43624369.
21. Driggers, W. J.,, S. P. LeDoux, and, G. L. Wilson. 1993. Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J. Biol. Chem. 268:2204222045.
22. Druzhyna, N.,, R. G. Nair,, S. P. LeDoux, and, G. L. Wilson. 1998. Defective repair of oxidative damage in mitochondrial DNA in Down’s syndrome. Mutat. Res. 409:8189.
23. Druzhyna, N. M.,, S. B. Hollensworth,, M. R. Kelley,, G. L. Wilson, and, S. P. Ledoux. 2002. Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42:370378.
24. Epe, B.,, M. Pflaum,, M. Haring,, J. Hegler, and, H. Rudiger. 1993. Use of repair endonucleases to characterize DNA damage induced by reactive oxygen species in cellular and cell-free systems. Toxicol. Lett. 67: 5772.
25. Fishel, M. L.,, Y. R. Seo,, M. L. Smith, and, M. R. Kelley. 2003. Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing. Cancer Res. 63:608615.
26. Grishko, V.,, M. Solomon,, G. L. Wilson,, S. P. LeDoux, and, M. N. Gillespie. 2001. Oxygen radical-induced mitochondrial DNA damage and repair in pulmonary vascular endothelial cell phenotypes. Am. J. Physiol. Ser. L 280:L1300L1308.
27. Hagelberg, E., 2003. Recombination or mutation rate heterogeneity? Implications for mitochondrial Eve. Trends Genet. 19:8490.
28. Hasegawa, Y., 2001. A homolog of Escherichia coli RecA in mitochondria of the cellular slime mold Dictyostelium discoideum. DNA Repair 3:515525.
29. Haug, T.,, F. Skorpen,, P. A. Aas,, V. Malm,, C. Skjelbred, and, H. E. Krokan. 1998. Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res. 26:14491457.
30. Hou, J. H., and, Y. H. Wei. 1996. The unusual structures of the hot-regions flanking large-scale deletions in human mitochondrial DNA. Biochem. J. 318:10651070.
31. Howell, N., 1999. Human mitochondrial diseases: answering questions and questioning answers. Int. Rev. Cytol. 186:49116.
32. Hudson, E. K.,, B. A. Hogue,, N. C. Souza-Pinto,, D. L. Croteau,, R. M. Anson,, V. A. Bohr, and, R. G. Hansford. 1998. Age-associated change in mitochondrial DNA damage. Free Radic. Res. 29:573579.
33. Jensen, A.,, G. Calvayrac,, B. Karahalil,, V. A. Bohr, and, T. Stevnsner. 2003. Mammalian 8-oxoguanine DNA glycosylase 1 incises 8-oxoadenine opposite cytosine in nuclei and mitochondria, while a different glycosylase incises 8-oxoadenine opposite guanine in nuclei. J. Biol. Chem. 278:1954119548.
34. Kang, D., and, N. Hamasaki. 2002. Maintenance of mitochondrial DNA integrity: repair and degradation. Curr. Genet. 41:311322.
35. Khaidakov, M.,, R. H. Heflich,, M. G. Manjanatha,, M. B. Myers, and, A. Aidoo. 2003. Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat. Res. 526:17.
36. Kowald, A., 2001. The mitochondrial theory of aging. Biol. Signals Recept. 10:162175.
37. Kraytsberg, Y.,, M. Schwartz,, T. A. Brown,, K. Ebralidse,, W. S. Kunz,, D. A. Clayton,, J. Vissing, and, K. Khrapko. 2004. Recombination of human mitochondrial DNA. Science 304:981.
38. LeDoux, S. P.,, W. J. Driggers,, A. W. Dobson,, B. Van Houten, and, G. L. Wilson. 2000. Measurement of oxidative lesions in specific mitochondrial and nuclear DNA sequences, p. 5670. In T. M. Bray and, N. W. Schone (ed.), Models and Methods in Cell Signaling and Gene Expression: Application to Oxidative Stress Research. OICA International, London.
39. LeDoux, S. P., and, G. L. Wilson. 2001. Base excision repair of mitochondrial DNA damage in mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 68:273284.
40. LeDoux, S. P.,, G. L. Wilson,, E. J. Beecham,, T. Stevnsner,, K. Wassermann, and, V. A. Bohr. 1992. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 13: 19671973.
41. Lee, H. M.,, C. Wang,, Z. Hu,, G. H. Greeley,, W. Makalowski,, H. L. Hellmich, and, E. W. Englander. 2002. Hypoxia induces mitochondrial DNA damage and stimulates expression of a DNA repair enzyme, the Escherichia coli MutY DNA glycosylase homolog (MYH), in vivo, in the rat brain. J. Neurochem. 80:928937.
42. Lieber, M. R., and, Z. E. Karanjawala. 2004. Opinion: ageing, repetitive genomes and DNA damage. Nat. Rev. Mol. Cell Biol. 5:6975.
43. Ling, F.,, H. Morioka,, E. Ohtsuka, and, T. Shibata. 2000. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res. 28:49564963.
44. Mandavilli, B. S.,, J. H. Santos, and, B. Van Houten. 2002. Mitochondrial DNA repair and aging. Mutat. Res. 509:127151.
45. Marcelino, L. A., and, W. G. Thilly. 1999. Mitochondrial mutagenesis in human cells and tissues. Mutat. Res. 434:177203.
46. Martin, G. M., and, L. A. Loeb. 2004. Mice and mitochondria. Nature 429:358359.
47. Mason, P. A.,, E. C. Matheson,, A. G. Hall, and, R. N. Lightowlers. 2003. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 31:10521058.
48. Meeusen, S.,, Q. Tieu,, E. Wong,, E. Weiss,, D. Schieltz,, J. R. Yates, and, J. Nunnari. 1999. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J. Cell Biol. 145:291304.
49. Michikawa, Y.,, F. Mazzucchelli,, N. Bresolin,, G. Scarlato, and, G. Attardi. 1999. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774779.
50. Moraes, C. T., 2001. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 17:199205.
51. Myers, K. A.,, R. Saffhill, and, P. J. O’Connor. 1988. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 9:285292.
52. Nagelhus, T. A.,, G. Slupphaug,, T. Lindmo, and, H. E. Krokan. 1995. Cell cycle regulation and subcellular localization of the major human uracil-DNA glycosylase. Exp. Cell Res. 220:292297.
53. Ohtsubo, T.,, K. Nishioka,, Y. Imaiso,, S. Iwai,, H. Shimokawa,, H. Oda,, T. Fujiwara, and, Y. Nakabeppu. 2000. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 28:13551364.
54. O’Rourke, T. W.,, N. A. Doudican,, M. D. Mackereth,, P. W. Doetsch, and, G. S. Shadel. 2002. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol. Cell Biol. 22:40864093.
55. Pascucci, B.,, A. Versteegh,, A. van Hoffen,, A. A. van Zeeland,, L. H. Mullenders, and, E. Dogliotti. 1997. DNArepair of UVphotoproducts and mutagenesis in human mitochondrial DNA. J. Mol. Biol. 273:417427.
56. Penta, J. S.,, F. M. Johnson,, J. T. Wachsman, and, W. C. Copeland. 2001. Mitochondrial DNA in human malignancy. Mutat. Res. 488:119133.
57. Pettepher, C. C.,, S. P. LeDoux,, V. A. Bohr, and, G. L. Wilson. 1991. Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266:31133117.
58. Pinz, K. G., and, D. F. Bogenhagen. 2000. Characterization of a catalytically slow AP lyase activity in DNA polymerase gamma and other family A DNA polymerases. J. Biol. Chem. 275:1250912514.
59. Pinz, K. G., and, D. F. Bogenhagen. 1998. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol. Cell Biol. 18:12571265.
60. Polyak, K.,, Y. Li,, H. Zhu,, C. Lengauer,, J. K. Willson,, S. D. Markowitz,, M. A. Trush,, K. W. Kinzler, and, B. Vogelstein. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20:291293.
61. Rachek, L. I.,, V. I. Grishko,, S. I. Musiyenko,, M. R. Kelley,, S. P. LeDoux, and, G. L. Wilson. 2002. Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J. Biol. Chem. 277:4493244937.
62. Richter, C., 1992. Reactive oxygen and DNA damage in mitochondria. Mutat. Res. 275:249255.
63. Richter, C.,, J. W. Park, and, B. N. Ames. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85:64656467.
64. Salazar, J. J., and, B. Van Houten. 1997. Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mutat. Res. 385:139149.
65. Satoh, M. S.,, N. Huh,, M. F. Rajewsky, and, T. Kuroki. 1988. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 263:68546856.
66. Sawyer, D. E., and, B. Van Houten. 1999. Repair of DNA damage in mitochondria. Mutat. Res. 434:161176.
67. Shen, C. C.,, W. Wertelecki,, W. J. Driggers,, S. P. LeDoux, and, G. L. Wilson. 1995. Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mutat. Res. 337:1923.
68. Shen, G. P.,, H. Galick,, M. Inoue, and, S. S. Wallace. 2003. Decline of nuclear and mitochondrial oxidative base excision repair activity in late passage human diploid fibroblasts. DNA Repair 2:673693.
69. Shokolenko, I. N.,, M. F. Alexeyev,, F. M. Robertson,, S. P. LeDoux, and, G. L. Wilson. 2003. The expression of exonuclease III from E. coli in mitochondria of breast cancer cells diminishes mitochondrial DNA repair capacity and cell survival after oxidative stress. DNA Repair 2:471482.
70. Singh, K. K.,, B. Sigala,, H. A. Sikder, and, C. Schwimmer. 2001. Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res. 29:13811388.
71. Snyderwine, E. G., and, V. A. Bohr. 1992. Gene- and strand-specific damage and repair in Chinese hamster ovary cells treated with 4-nitroquinoline 1-oxide. Cancer Res. 52:41834189.
72. Souza-Pinto, N. C.,, D. L. Croteau,, E. K. Hudson,, R. G. Hansford, and, V. A. Bohr. 1999. Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Res. 27:19351942.
73. Stevnsner, T.,, T. Thorslund,, N. C. de Souza-Pinto, and, V. A. Bohr. 2002. Mitochondrial repair of 8-oxoguanine and changes with aging. Exp. Gerontol. 37:11891196.
74. Stierum, R. H.,, G. L. Dianov, and, V. A. Bohr. 1999. Single- nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts. Nucleic Acids Res. 27:37123719.
75. Szczesny, B.,, T. K. Hazra,, J. Papaconstantinou,, S. Mitra, and, I. Boldogh. 2003. Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases. Proc. Natl. Acad. Sci. USA 100:1067010675.
76. Taffe, B. G.,, F. Larminat,, J. Laval,, D. L. Croteau,, R. M. Anson, and, V. A. Bohr. 1996. Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutat. Res. 364:183192.
77. Takao, M.,, H. Aburatani,, K. Kobayashi, and, A. Yasui. 1998. Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 26:29172922.
78. Thibodeau, L., and, W. G. Verly. 1980. Cellular localization of the apurinic/apyrimidinic endodeoxyribonucleases in rat liver. Eur. J. Biochem. 107:555563.
79. Tomkinson, A. E.,, R. T. Bonk,, J. Kim,, N. Bartfeld, and, S. Linn. 1990. Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res. 18:929935.
80. Tomkinson, A. E.,, R. T. Bonk, and, S. Linn. 1988. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J. Biol. Chem. 263:1253212537.
81. Trifunovic, A.,, A. Wredenberg,, M. Falkenberg,, J. N. Spelbrink,, A. T. Rovio,, C. E. Bruder,, M. Bohlooly-Y,, S. Gidlof,, A. Oldfors,, R. Wibom,, J. Tornell,, H. T. Jacobs and, N-G. Larsson. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417423.
82. Van Houten, B., and, E. C. Friedberg. 1999. DNA Repair: Mitochondrial DNA Damage and Repair. Elsevier, New York, N.Y.
83. Van Remmen, H., and, A. Richardson. 2001. Oxidative damage to mitochondria and aging. Exp. Gerontol. 36:957968.
84. Wallace, D. C., 1999. Mitochondrial diseases in man and mouse. Science 283:14821488.
85. Wei, Y. H., 1998. Oxidative stress and mitochondrial DNA mutations in human aging. Proc. Soc. Exp. Biol. Med. 217:5363.
86. Wei, Y. H., and, H. C. Lee. 2002. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. 227:671682.
87. Yakes, F. M., and, B. Van Houten. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94:514519.
88. Yasuhira, S., and, A. Yasui. 2000. Alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe operates both in nucleus and in mitochondria. J. Biol. Chem. 275:1182411828.
89. You, H. J.,, R. L. Swanson,, C. Harrington,, A. H. Corbett,, S. Jinks-Robertson,, S. Senturker,, S. S. Wallace,, S. Boiteux,, M. Dizdaroglu, and, P. W. Doetsch. 1999. Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry 38:1129811306.

Tables

Generic image for table
Table 13–1

mtDNA repair

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13
Generic image for table
Table 13–2

DNA repair proteins/activities detected in mitochondria

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Repair of Mitochondrial DNA Damage, p 449-459. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error