1887

Chapter 19 : Managing DNA Strand Breaks in Eukaryotic Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Managing DNA Strand Breaks in Eukaryotic Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap19-2.gif

Abstract:

This chapter discusses eukaryotic repair and tolerance responses to DNA strand breaks, and addresses pathways that do not rely on extensive sequence homology. It also considers topics that defy classification since they appear to be relevant to a variety of different pathways. Having discussed the major pathways of homologous recombination (HR), and nonhomologous end joining (NHEJ), the chapter addresses a complex of proteins that functions in surprisingly diverse areas of repair and cellular regulation associated with double-strand breaks (DSB). This complex is referred to as the MRN (for “Mre11-Rad50-NBS1/Xrs2”) complex. Following the identification of human homologs, additional insights came from the discovery that one of the components (NBS1 = Xrs2 in yeast) is responsible for an inherited human DNA repair disorder, the Nijmegen breakage syndrome (NBS). This discussion also visits several important areas of investigation that have helped characterize the various roles of the proteins involved. The recent structural findings that have provided a basis for models of molecular function are presented. Apart from higher-order eukaryotic chromosome structures, the nucleosome core consisting of DNA wrapped around a histone octamere, the building block of chromatin, can limit accessibility and influence cellular strategies of DNA damage recognition. The histone modifications such as phosphorylation seem to play a more direct role in DSB repair. The chapter describes some findings that address factors that dictate the principal “decision” between HR and NHEJ. Lastly, it talks about the repair of single-strand breaks (SSB).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 19–1
Figure 19–1

Hypothetical mechanism for joining of 5’ and 3’ single-stranded ends of broken DNA molecules. The ends are held together by an alignment protein (oval in the background), allowing continuation of fill-in DNA synthesis (triangles) primed at the recessed 3’ end in order to bridge the unligated overhangs. Establishing the first base pair at the 3’ overhang creates a substrate for DNA ligase (diamond). The fill-in synthesis is continued, and a second ligation completes the joining. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–2
Figure 19–2

Elements of V(D)J recombination. (A) The assembly of a variable region gene (see Fig. 17–26) by joining of segments from a large repertory of germ line V, D, and J segments is depicted. (B) The coding segments are flanked by recombination signal sequences (represented by arrowheads in A to C). These consist of conserved heptamer and nonamer motifs, separated by 12- or 23-bp spacers of variable sequence. (C) Joint formation results in a deletion or inversion of the intervening region. Joining of the noncoding regions originates from a heptamer-heptamer fusion, creating the signal joint. As outlined in more detail in Fig. 19–3 , a usually imprecise fusion of the ends of coding sequences results in formation of the coding joint. (Adapted from references and .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–3
Figure 19–3

Coding-joint and signal joint formation during V(D)J recombination. Following synapsis of coding and signal ends, RAG1-RAG2 recombinase introduces nicks. In a transesterification reaction, the created 3’-OH ends attack the complementary strand, seal the coding ends by creating hairpin structures, and release the blunt signal ends. The latter are normally ligated without loss of nucleotides to form the signal joint. The hairpins at the coding ends are opened by a structure-specific endonuclease. Since these are frequently not opened exactly at the apex, the following processing may result in small inverted duplications (named P sequences). Other processing steps such as trimming, fill-in DNA synthesis, and extension by TdT (creating N regions) contribute to the variability of coding joints. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–4
Figure 19–4

Detection of a DNA end-binding activity that is antigenically related or identical to the 70-kDa autoantigen Ku subunit. With labeled linearized DNA as a probe, protein-DNA complexes are detected as retarded bands in gel shift assays. An excess of unlabeled linearized DNA but not of uncut circular DNA can successfully compete for this DNA end-binding activity (compare lanes with cut and uncut competitor DNA). Addition of antiserum raised against the 70-kDa subunit of (human) autoantigen Ku results in a band of even lower mobility at the expense of the original retarded band. This “supershift” indicates binding of the complex by the antibody. In contrast to the wild type (AA8), the DNA end-binding activity is absent in an X-ray-sensitive mutant CHO cell line (XR-V15B, a mutant of the XRCC5 group). A double band is found if extracts of certain normal human cells (such as the IMR-90 line [right panel]) are probed. (Adapted from reference ; courtesy of G. Chu.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–5
Figure 19–5

DNA end binding by Ku70/80. A crystal structure of the Ku70/80 dimer bound to dsDNA shows the protein embracing the DNA via an intertwined arrangement of subunits ( ). Both protein subunits make nonspecific contacts with the backbone of the DNA. The Ku70 subunit (gold) lies close to the blunt end of the dsDNA. Panels A and B show different representations of the same structure.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–6
Figure 19–6

Telomere capping in lower and higher eukaryotes. The DNA structures of telomeres and their binding proteins are depicted. Commonly, ssDNA-binding proteins (Cdc13 and Pot1) and capping proteins (Ten1-Stn1, TRF2, and its ortholog Taz1) are found. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–7
Figure 19–7

DNA-dependent protein kinase assay used for purification of the catalytic subunit of DNA-PK from HeLa cell extracts. (A) DNA-PK activity in crude extracts is detected by using unphosphorylated S-labeled transcription factor SP1 as a substrate. During 0 to 10 min of incubation, the presence of linear plasmid DNA results in the conversion of SP1 into a phosphorylated form (SP1•P) of lower electrophoretic mobility. The addition of supercoiled DNA is ineffective. (B) The assay was repeated in the presence of linearized DNA after extract fractionation on ssDNA cellulose columns. Simultaneous addition of two fractions (eluted with 0.2 and 0.4 M KCl) is required for activity. Purified Ku complex is not active alone but can replace the factor(s) present in the 0.4 M eluate. The 469-kDa catalytic subunit of DNA-PK was later purified from the 0.2 M fraction. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–8
Figure 19–8

Models for DNA-PK interaction with DNA ends. (A) Structure models of DNA-PK protein suggest openings that can accommodate ssDNA or dsDNA. Regulation of kinase activity by ssDNA binding may be important during the process of end trimming. (B) The DNA end-binding Ku heterodimer may move away from the end to facilitate binding of and interaction with the catalytic subunit, DNA-PK. (Adapted from references [panel A] and [panel B].)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–9
Figure 19–9

Hairpin-opening activity of the Artemis-DNA-PK complex. A hairpin-forming ssDNA probe is 5’-end labeled at a 1-nucleotide overhang (*). Incubation with Artemis alone results in exonucleolytic degradation, releasing labeled DNA fragments of two nucleotides. In the presence of DNA-PK, hairpin-opening activity is observed. Addition of a DNA-PK inhibitor can reduce this stimulation. The site of cleavage varies. Most prominently, a 23-nucleotide product is released that represents a product in which 2 nucleotides remain annealed at the hairpin tip. The presence of Ku does not alter the spectrum of Artemis activities (M = size marker of 21 nucleotides). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–10
Figure 19–10

Chromatin immunoprecipitation to study the binding of DNA ligase IV and Lif1 to DSB in A general scheme of the technique is given in Fig. 18–6. Following DSB introduction by HO endonuclease expression, cross-linked protein-DNA complexes are precipitated with anti-Lig4 or anti-Lif1 antibodies. PCR is used to detect coprecipitated DNA from the DSB vicinity, indicating binding of Lig4 or Lif1. A positive result is strictly dependent on DSB introduction (+HO). Lig4 binding does not occur in a -deleted mutant (upper panel, —). On the other hand, Lif1 binding does not depend on Lig4 (lower panel). Lif1 binding, however, does depend on functional Ku70 (Yku70). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–11
Figure 19–11

Structure of XRCC4. (A) XRCC4 dimerizes through a long coiled coil, leaving the helix-turn-helix (HTH) motif of each subunit exposed for interactions with DNA. The crystal structure of an N-terminal fragment of XRCC4 suggests how the dimer might form a bridge between two dsDNA molecules ( ). (B) At high concentrations, two dimers of XRCC4 associate through their coiled-coil domains to form a tetramer (a second XRCC4 dimer is shown as a grey surface representation). The formation of tetramers is at odds with binding of XRCC4 to DNA ligase IV and therefore may serve another function ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–12
Figure 19–12

Scheme for coding-joint and signal joint formation during V(D)J recombination by NHEJ proteins in vertebrates. Following cleavage by the RAG1-RAG2 recombinase, the usually blunt-ended signal ends are joined through the action of Ku70-Ku80 and XRCC4-DNA ligase IV. The coding ends require additional activities provided by DNA-PK and also need to be processed by Artemis. TdT may extend free ends and contribute to the variability of coding-joint formation. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–13
Figure 19–13

The gene is required for the induction and processing of meiotic DSB in (A) Two DSB sites in the region of the gene during meiosis I can be physically mapped by Southern analysis with the depicted probe. (B) Concomitant with a commitment to recombination, fragments corresponding to these break sites can be detected in DNA prepared at different times after induction of synchronous meiosis. The signals are diffuse and transient in the wild type suggesting some kind of degradative processing. No signals are detected in a deletion mutant (rad50Δ/rad50Δ). However, certain point mutants of show distinct and persistent bands, suggesting the accumulation of unprocessed DSB. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–14
Figure 19–14

Linear map and domain structure of MRN complex components Rad50, Mre11, NBS1, and Xrs2. Selected structural features are referred to throughout the chapter. Rad50 contains N-and C-terminal Walker A- and B-type nucleotide-binding motifs that are separated by coiled-coil regions with a flexible hinge in between. The CysXXCys motif within this region is important for homomeric interaction (“zinc hook”). The Mre11 sequence reveals DNA-binding domains and a nuclease domain, containing four conserved phosphoesterase motifs (M1 to M4). The NBS1 map shows phosphopeptide-binding FHA and BRCT domains, and the region of mutations isolated from NBS patient cells is depicted. Important phosphorylated serine residues are also indicated. The C-terminal Mre11-binding domain is marked (MBD). (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–15
Figure 19–15

Colocalization of Mre11 foci with areas of DSB. (A) Subnuclear X irradiation of human fibroblasts through a mask creates a stripe-like pattern of exposure when DSB are visualized through labeling with TdT incorporating bromodeoxyuridine. (B) Detection of Mre11 foci by immunofluorescence in the same nucleus. (Adapted from reference with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–16
Figure 19–16

Schematic view of repair protein colocalization in foci following ionizing radiation. Localization of MRN complex and Rad51 in foci at DSB sites appears to be mutually exclusive. BRCA1 colocalizes to both; in the case of Rad51, the interaction is most probably mediated by BRCA2.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–17
Figure 19–17

Potential role of Mre11 in microhomology-dependent joining of incompatible DNA ends. It is suggested that the Mre11 dimer binds both ends simultaneously and 3’ → 5’ exonuclease activity of Mre11 results in DNA degradation until sequence homology in the undigested strands is uncovered. (Adapted from references and .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–18
Figure 19–18

Stimulation of intermolecular DNA end joining by the MRN complex. A linearized plasmid with cohesive ends is incubated with the purified proteins DNA ligase IV (Dnl4), Lif1, and the MRN complex. Increasing concentrations of the MRN complex lead to increasing amounts of intermolecular ligation products at the expense of intramolecular recircularization. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–19
Figure 19–19

Interaction of the budding-yeast MRN complex with linear duplex DNA. (Top) DNA fragments (400 bp) with 5’ cohesive ends visualized by atomic force microscopy; no protein added. (Bottom) Addition of purified MRN components (= Rad50, Mre11, and Xrs2) results in nucleoprotein complexes that align and may bridge several DNA fragments. Some MRN complexes are marked by arrows. (Adapted from reference with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–20
Figure 19–20

Antagonism between Ku complex and exonucleases in Accelerated single-strand resection around a DSB is found in the absence of Ku. In many respects, the MRN complex and Exo1 function as competing exonucleases, with Exo1 stimulating homologous recombination.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–21
Figure 19–21

Increased mitotic recombination between heteroalleles as a consequence of impaired single-strand resection in diploid MRN mutants. Open circles indicate inactivating point mutations at different locations within the same gene, which, for example, may be needed for amino acid synthesis. Diminishing the length of ssDNA that invades the duplex will limit the length of generated heteroduplex DNA and thus the probability of coconversion by mismatch repair (compare left and right). Conversion of one marker alone leads to a prototrophic cell. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–22
Figure 19–22

Structural model, protein-protein interactions, and protein-DNA interactions of the MRN complex. See also Fig. 19–24 . (Adapted from references and .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–23
Figure 19–23

The Rad50 ATPase. (A) The N- and C-terminal domains of Rad50 form two halves of an ATPase domain that are separated by a 700-residue coiled coil (see Fig. 19–14 and Fig. 19–22 ) ( ). Crystal structures of ATP-bound and ATP-free forms of the dimeric Rad50 ATPase reveal conformational changes that may be linked to ATP-regulated dimerization and DNA-binding activities. (B) Two prominent positively charged grooves are present on one surface of the Rad50 ATPase dimer, suggestive of a surface that could interact with two DNA molecules.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–24
Figure 19–24

The zinc hook of Rad50. The coiled-coil domain of Rad50 is interrupted by a “knuckle joint,” termed the zinc hook, that facilitates the packing of two antiparallel helices in the coiled coil and mediates interactions between two Rad50 molecules ( ) (see Fig. 19–22 ). Four cysteines from two Rad50 molecules coordinate a zinc ion, creating a compact but stable dimerization interface.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–25
Figure 19–25

Zink hook-mediated interaction between MRN complexes on different broken DNA molecules may result in tethering and aligning of DNA ends. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–26
Figure 19–26

γ-H2AX foci detected by immunofluorescence in mammalian nuclei following γ-irradiation treatment. (Courtesy of E. Rogakou.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–27
Figure 19–27

Cell cycle stage-dependent IR sensitivity of chicken DT40 B-cells. G cells were isolated by elutriation. During the following synchronous cell cycle passage, survival after 2-Gy γ-irradiation was determined at the times indicated. KU70-deleted cells exhibit the highest relative IR sensitivity if irradiated in G or early S phase. This is in contrast to cells defective in homologous recombination deleted), which are more sensitive in late S/G. WT, wild type. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19–28
Figure 19–28

XRCC1 interacts with DNA and polymerase p. The structure of XRCC1 was determined by solution nuclear magnetic resonance spectroscopy methods ( ), and residues that interact with a 13-mer DNA (left panel) or with DNA polymerase β (right panel) were identified by shifts in the nuclear magnetic resonances of XRCC1 residues caused by formation of either complex (interacting residues are shown in gold).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Managing DNA Strand Breaks in Eukaryotic Cells, p 711-750. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816704.ch19
1. Adachi, N.,, T. Ishino,, Y. Ishii,, S. Takeda, and, H. Koyama. 2001. DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: implications for DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 98:1210912133.
2. Agrawal, A.,, Q. M. Eastman, and, D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744751.
3. Agrawal, A., and, D. G. Schatz. 1997. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89:4353.
4. Alani, E.,, R. Padmore, and, N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419436.
5. Alani, E.,, S. Subbiah, and, N. Kleckner. 1989. The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine-nucleotide binding domain and two large heptad-repeat regions. Genetics 122:4757.
6. Allen, C.,, A. Kurimasa,, M. A. Brenneman,, D. J. Chen, and, J. A. Nickoloff. 2002. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc. Natl. Acad. Sci. USA 99:37583763.
7. Alvarez-Gonzalez, R., and, F. R. Althaus. 1989. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat. Res. 218:6774.
8. Amé, J. C.,, V. Rolli,, V. Schreiber,, C. Niedergang,, F. Apiou,, P. Decker,, S. Muller,, T. Hoger,, J. Ménissier-de Murcia, and, G. de Murcia. 1999. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274:1786017868.
9. Anderson, C. W., 1993. DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci. 18:433437.
10. Anderson, C. W., and, T. H. Carter. 1996. The DNA-activated protein kinase—DNA-PK, p. 91111. In R. Jessberger and, M. R. Lieber (ed.), Molecular Analysis of DNA Rearrangements in the Immune System. Springer Verlag KG, Berlin, Germany.
11. Antoccia, A.,, M. Stumm,, K. Saar,, R. Ricordy,, P. Maraschio, and, C. Tanzarella. 1999. Impaired p53-mediated DNA damage response, cell-cycle disturbance and chromosome aberrations in Nijmegen breakage syndrome lymphoblastoid cell lines. Int. J. Radiat. Biol. 75:583591.
12. Aravind, L., and, E. V. Koonin. 2001. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11:13651374.
13. ÅstrÖm, S. U.,, S. M. Okamura, and, J. Rine. 1999. Yeast cell-type regulation of DNA repair. Nature 397:310.
14. Aten, J.,, J. Stap,, P. Krawczyk,, C. van Oven,, R. Hoebe,, J. Essers, and, R. Kanaar. 2004. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303:9295.
15. Aylon, Y.,, B. Liefshitz, and, M. Kupiec. 2004. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23:48684875.
16. Bailey, S. M.,, J. Meyne,, D. J. Chen,, A. Kurimasa,, G. C. Li,, B. E. Lehnert, and, E. H. Goodwin. 1999. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc. Natl. Acad. Sci. USA 96:1489914904.
17. Barnes, D. E.,, G. Stamp,, I. Rosewell,, A. Denzel, and, T. Lindahl. 1998. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol. 8:13951398.
18. Barnes, G., and, D. Rio. 1997. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:867872.
19. Bassing, C. H.,, K. F. Chua,, J. Sekiguchi,, H. Suh,, S. R. Whitlow,, J. C. Fleming,, B. C. Monroe,, D. N. Ciccone,, C. Yan,, K. Vlasakova,, D. M. Livingston,, D. O. Ferguson,, R. Scully, and, F. W. Alt. 2002. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. USA 99:81738778.
20. Bassing, C. H.,, W. Swat, and F. W. Alt., 2002. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109:S45S55.
21. Baumann, P., and, S. C. West. 1998. DNA end-joining catalyzed by human cell-free extracts. Proc. Natl. Acad. Sci. USA 95:1406614070.
22. Beckman, K. B., and, B. N. Ames. 1997. Oxidative decay of DNA. J. Biol. Chem. 272:1963319636.
23. Bender, C. F.,, M. L. Sikes,, R. Sullivan,, L. E. Huye,, M. M. Le Beau,, D. B. Roth,, O. K. Mirzoeva,, E. M. Oltz, and, J. H. J. Petrini. 2002. Cancer predisposition and hematopoietic failure in Rad50s/s mice. Genes Dev. 16:22372251.
24. Bertuch, A. A., and, V. Lundblad. 2003. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell. Biol. 23:82028215.
25. Bertuch, A. A., and, V. Lundblad. 2003. Which end: dissecting Ku’s function at telomeres and double-strand breaks. Genes Dev. 17:23472350.
26. Besmer, E.,, J. Mansilla-Soto,, S. Cassard,, D. J. Sawchuk,, G. Brown,, M. Sadofsky,, S. M. Lewis,, M. C. Nussenzweig, and, P. Cortes. 1998. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol. Cell 2:817828.
27. Bi, X.,, S. C. Wei, and, Y. S. Rong. 2004. Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr. Biol. 14:13481353.
28. Biedermann, K. A.,, J. R. San,, A. J. Giaccia,, L. M. Tosto, and, J. M. Brown. 1991. Scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 88:13941397.
29. Bird, A. W.,, D. Y. Yu,, M. G. Pray-Grant,, Q. Qiu,, K. E. Harmon,, P. C. Megee,, P. A. Grant,, M. M. Smith, and, M. F. Christman. 2002. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419:411415.
30. Blackwell, T. K., and, F. W. Alt. 1989. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu. Rev. Genet. 23:605636.
31. Blackwell, T. K.,, B. A. Malynn,, R. R. Pollock,, P. Ferrier,, L. R. Covey,, G. M. Fulop,, R. A. Phillips,, G. D. Yancopoulos, and, F. W. Alt. 1989. Isolation of scid pre-B cells that rearrange kappa light chain genes: formation of normal signal and abnormal coding joints. EMBO J. 8:735742.
32. Bliss, T. M., and, D. P. Lane. 1997. Ku selectively transfers between DNA molecules with homologous ends. J. Biol. Chem. 272:57655773.
33. Blunt, T.,, N. J. Finnie,, G. E. Taccioli,, G. C. M. Smith,, J. Demengeot,, T. M. Gottlieb,, R. Mizuta,, A. J. Varghese,, F. W. Alt,, P. A. Jeggo, and, S. P. Jackson. 1995. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813823.
34. Bogue, M. A.,, C. Zhu,, E. Aguilar-Cordova,, L. A. Donehower, and, D. B. Roth. 1996. p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Genes Dev. 10:553565.
35. Bosma, G. C.,, R. P. Custer, and, M. J. Bosma. 1983. A severe combined immunodeficiency mutation in the mouse. Nature 301:527530.
36. Boulton, S. J., and, S. P. Jackson. 1998. Components of the Kudependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:18191828.
37. Boulton, S. J., and, S. P. Jackson. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: role in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24:46394649.
38. Boulton, S. J., and, S. P. Jackson. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15:50935103.
39. Bransteitter, R.,, P. Pham,, M. D. Scharff, and, M. F. Goodman. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100:41024107.
40. Bressan, D. A.,, B. K. Baxter, and, J. H. J. Petrini. 1999. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:76817687.
41. Bressan, D. A.,, H. A. Olivares,, B. E. Nelms, and, J. H. J. Petrini. 1998. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150:591600.
42. Brush, G. S.,, C. W. Anderson, and, T. J. Kelly. 1994. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Biochemistry 91:1252012524.
43. Bryans, M.,, M. C. Valenzano, and, T. D. Stamato. 1999. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat. Res. 433:5358.
44. Burma, S.,, B. P. Chen,, M. Murphy,, A. Kurimasa, and, D. J. Chen. 2001. ATM phosphorylates histone H2AX in response to DNA double- strand breaks. J. Biol. Chem. 276:4246242467.
45. Caldecott, K., 2003. XRCC1 and strand break repair. DNA Repair 2: 955969.
46. Caldecott, K. W., 2001. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. Bioessays 23:447455.
47. Caldecott, K. W.,, S. Aoufouchi,, P. Johnson, and, S. Shall. 1996. XRCC1 polypeptide interacts with DNA-polymerase β and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular “nick-sensor” in vitro. Nucleic Acids Res. 24:43874394.
48. Caldecott, K. W.,, C. K. McKeown,, J. D. Tucker,, S. Ljungquist, and, L. H. Thompson. 1994. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14:6876.
49. Caldecott, K. W.,, J. D. Tucker,, L. H. Stanker, and, L. H. Thompson. 1995. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res. 23:48364843.
50. Calsou, P.,, C. Delteil,, P. Frit,, J. Drouet, and, B. Salles. 2003. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J. Mol. Biol. 326:93103.
51. Cao, L.,, E. Alani, and, N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:10891101.
52. Cappelli, E.,, R. Taylor,, M. Cevasco,, A. Abbondandolo,, K. Caldecott, and, G. Frosina. 1997. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J. Biol. Chem. 272:2397023975.
53. Carney, J. P.,, R. S. Maser,, H. Olivares,, E. M. Davis,, M. Le Beau,, J. R. Yates III,, L. Hays,, W. F. Morgan, and, J. H. J. Petrini. 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477486.
54. Carter, T.,, I. Vancurová,, I. Sun,, W. Lou, and, S. DeLeon. 1990. A DNA-activated protein kinase from HeLa cell nuclei. Mol. Cell. Biol. 10:64606471.
55. Cary, R. B.,, F. Chen,, Z. Shen, and, D. J. Chen. 1998. A central region of Ku80 mediates interaction with Ku70 in vivo. Nucleic Acids Res. 26:974979.
56. Cary, R. B.,, S. R. Peterson,, J. Wang,, D. G. Bear,, E. M. Bradbury, and, D. J. Chen. 1997. DNA looping by Ku and the DNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 94:42674272.
57. Casellas, R.,, A. Nussenzweig,, R. Wuerffel,, R. Pelanda,, A. Reichlin,, H. Suh,, X.-F. Qin,, E. Besmer,, A. Kenter,, K. Rajewsky, and, M. C. Nussenzweig. 1998. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17:24042411.
58. Celeste, A.,, O. Fernandez-Capetillo,, M. J. Kruhlak,, D. R. Pilch,, D. W. Staudt,, A. Lee,, R. F. Bonner,, W. M. Bonner, and, A. Nussenzweig. 2003. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5:675679.
59. Celeste, A.,, S. Petersen,, P. J. Romanienko,, O. Fernandez-Capetillo,, H. T. Chen,, O. A. Sedelnikova,, B. Reina-San-Martin,, V. Coppola,, E. Meffre,, M. J. Difilippantonio,, C. Redon,, D. R. Pilch,, A. Olaru,, M. Eckhaus,, R. D. Camerini-Otero,, L. Tessarollo,, F. Livak,, K. Manova,, W. M. Bonner,, M. C. Nussenzweig, and, A. Nussenzweig. 2002. Genomic instability in mice lacking histone H2AX. Science 296:922927.
60. Chamankhah, M.,, T. Fontanie, and, W. Xiao. 2000. The Saccharomyces cerevisiae mre11 (ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155:569576.
61. Chamankhah, M., and, W. Xiao. 1999. Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 27:20722079.
62. Chan, D. W.,, B. P. Chen,, S. Prithivirajsingh,, A. Kurimasa,, M. D. Story,, J. Qin, and, D. J. Chen. 2002. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 16:23332338.
63. Chan, D. W., and, S. P. Lees-Miller. 1996. The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J. Biol. Chem. 271:89368941.
64. Chan, S. W.-L., and, E. H. Blackburn. 2002. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553563.
65. Chappell, C.,, L. A. Hanakahi,, F. Karimi-Busheri,, M. Weinfeld, and, S. C. West. 2002. Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J. 21:28272832.
66. Chen, H. T.,, A. Bhandoola,, M. J. Difilippantonio,, J. Zhu,, M. J. Brown,, X. Tai,, E. P. Rogakou,, T. M. Brotz,, W. M. Bonner,, T. Ried, and, A. Nussenzweig. 2000. Response to RAG-mediated VDJ cleavage by NBS1 and 7-H2AX. Science 290:19621965.
67. Chen, L.,, K. Trujillo,, W. Ramos,, P. Sung, and, A. E. Tomkinson. 2001. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/ Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell 8:11051115.
68. Chen, L.,, K. Trujillo,, P. Sung, and, A. E. Tomkinson. 2000. Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 275:2619626205.
69. Chin, G. M., and, A. M. Villeneuve. 2001. C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G2 DNA damage checkpoint. Genes Dev. 15:522534.
70. Chiu, C. Y.,, R. B. Cary,, D. J. Chen,, S. R. Peterson, and, P. L. Stewart. 1998. Cryo EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J. Mol. Biol. 284:10751081.
71. Choy, J. S., and, S. J. Kron. 2002. NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol. Cell. Biol. 22:82158225.
72. Ciapponi, L.,, G. Cenci,, J. Ducau,, C. Flores,, D. Johnson-Schlitz,, M. M. Gorski,, W. R. Engels, and, M. Gatti. 2004. The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr. Biol. 14:13601366.
73. Clikeman, J. A.,, G. J. Khalsa,, S. L. Barton, and, J. A. Nickoloff. 2001. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 157:579589.
74. Collins, A. R., 1993. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat. Res. 293:99118.
75. Connelly, J. C.,, E. S. de Leau, and, D. R. F. Leach. 1997. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res. 27:10391046.
76. Connelly, J. C., and, D. R. Leach. 2002. Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem. Sci. 27:410418.
77. Costanzo, V.,, K. Robertson,, M. Bibikova,, E. Kim,, D. Grieco,, M. Gottesman,, D. Carroll, and, J. Gautier. 2001. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8:137147.
78. Couedel, C.,, K. D. Mills,, M. Barchi,, L. Shen,, A. Olshen,, R. D. Johnson,, A. Nussenzweig,, J. Essers,, R. Kanaar,, G. C. Li,, F. W. Alt, and, M. Jasin. 2004. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev. 18:12931304.
79. Critchlow, S. E.,, R. P. Bowater, and, S. P. Jackson. 1997. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol. 7:588598.
80. d’Adda di Fagagna, F.,, M. P. Hande,, W. M. Tong,, D. Roth,, P. M. Lansdorp,, Z. Q. Wang, and, S. P. Jackson. 2001. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11:11921196.
81. d’Adda di Fagagna, F.,, P. M. Reaper,, L. Clay-Farrace,, H. Fiegler,, P. Carr,, T. von Zglinicki,, G. Saretzki,, N. P. Carter, and, S. P. Jackson. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194198.
82. Dai, Y.,, B. Kysela,, L. A. Hanakahi,, K. Manolis,, E. Riballo,, M. Stumm,, T. O. Harville,, S. C. West,, M. A. Oettinger, and, P. A. Jeggo. 2003. Nonhomologous end joining and V(D)J recombination require and additional factor. Proc. Natl. Acad. Sci. USA 100:24612467.
83. D’Amours, D., and, S. P. Jackson. 2002. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3:317327.
84. Danska, J. S.,, D. P. Holland,, S. Mariathasan,, K. M. Williams, and, C. J. Guidos. 1996. Biochemical and genetical defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol. Cell. Biol. 16:55075517.
85. Danska, J. S.,, F. Pflumio,, C. J. Williams,, O. Huner,, J. E. Dick, and, C. J. Guidos. 1994. Rescue of T cell-specific V(D)J recombination in SCID mice by DNA-damaging agents. Science 266:450455.
86. DeFazio, L. G.,, R. M. Stansel,, J. D. Griffith, and, G. Chu. 2002. Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J. 21:31923200.
87. de Jager, M.,, M. L. G. Dronkert,, M. Modesti,, C. E. T. M. Beerens,, R. Kanaar, and, D. C. van Gent. 2001. DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res. 29:13171325.
88. de Jager, M., and, R. Kanaar. 2002. Genome instability and Rad50s: subtle yet severe. Genes Dev. 16:21732178.
89. de Jager, M.,, K. M. Trujillo,, P. Sung,, K. P. Hopfner,, J. P. Carney,, J. A. Tainer,, J. C. Connelly,, D. R. Leach,, R. Kanaar, and, C. Wyman. 2004. Differential arrangements of conserved building blocks among homologs of the Rad50/Mre11 DNA repair protein complex. J. Mol. Biol. 339:937949.
90. de Jager, M.,, J. van Noort,, D. C. van Gent,, C. Dekker,, R. Kanaar, and, C. Wyman. 2001. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8:11291135.
91. de Lange, T., 2001. Telomere capping—one strand fits all. Science 292:10751076.
92. de Lange, T., and, J. H. Petrini. 2000. A new connection at human telomeres: association of the Mre11 complex with TRF2. Cold Spring Harbor Symp. Quant. Biol. 65:265273.
93. Della, M.,, P. L. Palmbos,, H. M. Tseng,, L. M. Tonkin,, J. M. Daley,, L. M. Topper,, R. S. Pitcher,, A. E. Tomkinson,, T. E. Wilson, and, A. J. Doherty. 2004. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306:683–685.
94. de Murcia, G., and, J. M. de Murcia. 1994. Poly (ADP ribose) polymerase: a molecular nick sensor. Trends Biochem. Sci. 19:172176.
95. de Murcia, G., and, S. Shall (ed.)., 2000. From DNA Damage and Stress Signalling to Cell Death: Poly(ADP-Ribosylation) Reactions. Oxford University Press, Oxford, United Kingdom.
96. de Murcia, J. M.,, C. Niedergang,, C. Trucco,, M. Ricoul,, B. Dutrillaux,, M. Mark,, F. J. Oliver,, M. Masson,, A. Dierich,, M. LeMeur,, C. Walztinger,, P. Chambon, and, G. de Murcia. 1997. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 94:73037307.
97. Desai-Mehta, A.,, K. M. Cerosaletti, and, P. Concannon. 2001. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol. 21:21842191.
98. Ding, R.,, Y. Pommier,, V. H. Kang, and, M. Smulson. 1992. Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand break rejoining. J. Biol. Chem. 267:1280412812.
99. Doherty, A. J.,, S. P. Jackson, and, G. R. Weller. 2001. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett. 500:186188.
100. Dolganov, G. M.,, R. S. Maser,, A. Novikov,, L. Tosto,, S. Chong,, D. A. Bressan, and, J. H. J. Petrini. 1996. Human Rad50 is physically associated with human Mre1: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16:48324841.
101. Downs, J., and, S. Jackson. 2004. A means to a DNA end: the many roles of Ku. Nat. Rev. Mol. Cell Biol. 5:367378.
102. Downs, J. A., and, S. P. Jackson. 1999. Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol. Cell. Biol. 19:62606268.
103. Downs, J. A.,, N. F. Lowndes, and, S. P. Jackson. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:10011004.
104. Dronkert, M. L. G.,, J. de Wit,, M. Boeve,, M. L. Vasconcelos,, H. van Steeg,, T. L. R. Tan,, J. H. J. Hoeijmakers, and, R. Kanaar. 2000. Disruption of mouse SNM1 causes increased sensitivity to the DNA inter-strand cross-linking agent mitomycin C. Mol. Cell. Biol. 20:45534561.
105. Dvir, A.,, S. R. Peterson,, M. W. Knuth,, H. Lu, and, W. S. Dynan. 1992. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl. Acad. Sci. USA 89:1192011924.
106. Dvir, A.,, L. Y. Stein,, B. L. Calore, and, W. S. Dynan. 1993. Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J. Biol. Chem. 268:1044010447.
107. Dynan, W. S., and, S. Yoo. 1998. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26:15511559.
108. Errami, A.,, W. J. I. Overkamp,, D. M. He,, A. A. Friedl,, D. A. Gell,, F. Eckardt-Schupp,, S. P. Jackson,, E. A. Hendrickson,, P. H. M. Lohman, and, M. Z. Zdzienicka. 2000. A new X-ray sensitive CHO cell mutant of ionizing radiation group 7, XR-C2, that is defective in DSB repair but has only a mild defect in V(D)J recombination. Mutat. Res. 461:5969.
109. Essers, J.,, R. W. Hendriks,, S. M. A. Swagemakers,, C. Troelstra,, J. de Wit,, D. Bootsma,, J. H. J. Hoeijmakers, and, R. Kanaar. 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195204.
110. Fan, W., and, X. Wu. 2004. DNA polymerase λ can elongate on DNA substrates mimicking non-homologous end joining and interact with XRCC4-ligase IV complex. Biochem. Biophys. Res. Commun. 323:13281333.
111. Featherstone, C., and, S. P. Jackson. 1999. Ku, a DNA repair protein with multiple cellular functions? Mutat. Res. 434:315.
112. Feldmann, E.,, V. Schmiemann,, W. Goedecke,, S. Reichenberger, and, P. Pfeiffer. 2000. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28:25852596.
113. Feldmann, H.,, L. Driller,, B. Meier,, G. Mages,, J. Kellermann, and, E.-L. Winnacker. 1996. HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. 271:2776527769.
114. Feldmann, H., and, E. L. Winnacker. 1993. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268:1289512900.
115. Fenech, M.,, A. M. Carr,, J. Murray,, F. Z. Watts, and, A. R. Lehmann. 1991. Cloning and characterization of the rad4 gene of Schizosaccharomyces pombe: a gene showing short regions of sequence similarity to the human XRCC1 gene. Nucleic Acids Res. 19:67376741.
116. Fereirra, M. G., and, J. P. Cooper. 2004. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev. 18:22492254.
117. Ferreira, M. G., and, J. P. Cooper. 2001. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol. Cell 7:5563.
118. Frank, K. M.,, J. M. Sekiguchi,, K. J. Seidl,, W. Swat,, G. A. Rath-bun,, H.-L. Cheng,, L. Kangaloo, and, F. W. Alt. 1998. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396:173177.
119. Frank, K. M.,, N. E. Sharpless,, Y. Gao,, J. M. Sekiguchi,, D. O. Ferguson,, C. Zhu,, J. P. Manis,, J. Horner,, R. A. DePinho, and, F. W. Alt. 2000. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell 5:9931002.
120. Frank-Vaillant, M., and, S. Marcand. 2001. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev. 15:30053012.
121. Frank-Vaillant, M., and, S. Marcand. 2002. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10:11891199.
122. Fugmann, S. D.,, A. I. Lee,, P. E. Shockett,, I. J. Villey, and, D. G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18:495527.
123. Fukushima, T.,, M. Takata,, C. Morrison,, R. Araki,, A. Fujimori,, M. Abe,, K. Tatsumi,, M. Jasin,, P. K. Dhar,, E. Sonoda,, T. Chiba, and, S. Takeda. 2001. Genetic analysis of the DNA-dependent protein kinase reveals an inhibitory role of Ku in late S-G2 phase DNA double-strand break repair. J. Biol. Chem. 276:4441344418.
124. Fulop, G. M., and, R. A. Phillips. 1990. The scid mutation in mice causes a general defect in DNA repair. Nature 347:479482.
125. Furuse, M.,, Y. Nagase,, H. Tsubouchi,, K. Murakami-Murofushi,, T. Shibata, and, K. Ohta. 1998. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17:64126425.
126. Furuta, T.,, H. Takemura,, Z. Y. Liao,, G. J. Aune,, C. Redon,, O. A. Sedelnikova,, D. R. Pilch,, E. P. Rogakou,, A. Celeste,, H. T. Chen,, A. Nussenzweig,, M. I. Aladjem,, W. M. Bonner, and, Y. Pommier. 2003. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA-double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J. Biol. Chem. 278:2030320312.
127. Gallego, M. E., and, C. I. White. 2001. RAD50 function is essential for telomere maintenance in Arabidopsis. Proc. Natl. Acad. Sci. USA 98:17111716.
128. Game, J. C., 1993. DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces. Semin. Cancer Biol. 4:7383.
129. Game, J. C., 1983. Radiation-sensitive mutants and repair in yeast, p. 109137. In J. F. T. Spencer,, D. M. Spencer, and, A. R. W. Smith (ed.), Yeast Genetics: Fundamental and Applied Aspects. Springer Verlag, New York, N.Y.
130. Game, J. C., and, R. K. Mortimer. 1974. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24:281292.
131. Gao, Y.,, J. Chaudhuri,, C. Zhu,, L. Davidson,, D. T. Weaver, and, F. W. Alt. 1998. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9:367376.
132. Gao, Y.,, D. O. Ferguson,, W. Xie,, J. P. Manis,, J. Sekiguchi,, K. M. Frank,, J. Chaudhuri,, J. Horner,, R. A. DePinho, and, F. W. Alt. 2000. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404:897900.
133. Gao, Y.,, Y. Sun,, K. M. Frank,, P. Dikkes,, Y. Fujiwara,, K. J. Seidl,, J. M. Sekiguchi,, G. A. Rathbun,, W. Swat,, J. Wang,, R. T. Bronson,, B. A. Malynn,, M. Bryans,, C. Zhu,, J. Chaudhuri,, L. Davidson,, R. Ferrini,, T. Stamato,, S. Orkin,, M. E. Greenberg, and, F. W. Alt. 1998. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95:891902.
134. Gellert, M., 1997. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64:3964.
135. Gellert, M., 1992. V(D)J recombination gets a break. Trends Genet. 8:408412.
136. Getts, R. C., and, T. D. Stamato. 1994. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant. J. Biol. Chem. 269:1598115984.
137. Gilley, D.,, H. Tanaka,, M. P. Hande,, A. Kurimasa,, G. C. Li,, M. Oshimura, and, D. J. Chen. 2001. DNA-PKcs is critical for telomere capping. Proc. Natl. Acad. Sci. USA 98:1508415088.
138. Girard, P.-M.,, N. Foray,, M. Stumm,, A. Waugh,, E. Riballo,, R. S. Maser,, W. P. Phillips,, J. Petrini,, C. F. Arlett, and, P. A. Jeggo. 2000. Radiosensitivity in Nijmegen breakage syndrome cells is attributable to a repair defect and not cell cycle checkpoint defect. Cancer Res. 60:48814888.
139. Gladdy, R. A.,, M. D. Taylor,, C. J. Williams,, I. Grandal,, J. Karaskova,, J. A. Squire,, J. T. Rutka,, C. J. Guidos, and, J. S. Danska. 2003. The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell 3:3750.
140. Goedecke, W.,, M. Eijpe,, H. H. Offenberg,, M. van Aalderen, and, C. Heyting. 1999. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat. Genet. 23:194198.
141. Gorski, M. M.,, R. J. Romeijn,, J. C. Eeken,, A. W. de Jong,, B. L. van Veen,, K. Szuhai,, L. H. Mullenders,, W. Ferro, and, A. Pastink. 2004. Disruption of Drosophila Rad50 causes pupal lethality, the accumulation of DNA double-strand breaks and the induction of apoptosis in third instar larvae. DNA Repair 3:603615.
142. Gottlieb, S.,, J. Wagstaff, and, R. E. Esposito. 1989. Evidence for two pathways of meiotic intrachromosomal recombination in yeast. Proc. Natl. Acad. Sci. USA 86:70727076.
143. Gottlieb, T. M., and, S. P. Jackson. 1993. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72:131142.
144. Goytisolo, F. A.,, E. Samper,, S. Edmonson,, G. E. Taccioli, and, M. A. Blasco. 2001. The absence of the DNA-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol. Cell. Biol. 21:36423651.
145. Gravel, S., and, R. J. Wellinger. 2002. Maintenance of double-stranded telomeric repeats as the critical determinant for cell viability in yeast cells lacking Ku. Mol. Cell. Biol. 22:21822193.
146. Grawunder, U., and, E. Harfst. 2001. How to make ends meet in V(D)J recombination. Curr. Opin. Cell Biol. 13:186194.
147. Grawunder, U.,, M. Wilm,, X. Wu,, P. Kulesza,, T. E. Wilson,, M. Mann, and, M. R. Lieber. 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492498.
148. Grawunder, U.,, D. Zimmer,, S. Fugmann,, K. Schwarz, and, M. R. Lieber. 1998. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol. Cell 2:477484.
149. Grawunder, U.,, D. Zimmer, and, M. R. Lieber. 1998. DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr. Biol. 8:873876.
150. Gu, Y.,, K. J. Seidl,, G. A. Rathbun,, C. Zhu,, J. P. Manis,, N. van der Stoep,, L. Davidson,, H.-L. Cheng,, J. M. Sekiguchi,, K. Frank,, P. Stanhope-Baker,, M. S. Schlissel,, D. B. Roth, and, F. W. Alt. 1997. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7: 653665.
151. Gu, Y.,, J. Sekiguchi,, Y. Gao,, P. Dikkes,, K. Frank,, D. Ferguson,, P. Hasty,, J. Chun, and, F. W. Alt. 2000. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc. Natl. Acad. Sci. USA 97:26682673.
152. Guidos, C. J.,, C. J. Williams,, I. Grandal,, G. Knowles,, M. T. F. Huang, and, J. S. Danska. 1996. V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev. 10:20382054.
153. Guo, C. Y.,, Y. Wang,, D. L. Brautigan, and, J. M. Larner. 1999. Histone H1 dephosphorylation is mediated through a radiation-induced signal transduction pathway dependent on ATM. J. Biol. Chem. 274:1871518720.
154. Haber, J. E., 1998. The many interfaces of Mre11. Cell 95:583586.
155. Haber, J. E., 1999. Sir-Ku-itous routes to make ends meet. Cell 97: 829832.
156. Hamer, G.,, H. L. Roepers-Gajadien,, A. van Duyn-Goedhart,, I. S. Gademan,, H. B. Kal,, P. P. van Buul,, T. Ashley, and, D. G. de Rooij. 2003. Function of DNA-protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86. Biol. Reprod. 68:717721.
157. Hammarsten, O., and, G. Chu. 1998. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Natl. Acad. Sci. USA 95:525530.
158. Hanakahi, L. A.,, M. Bartlet-Jones,, C. Chappell,, D. Pappin, and, S. C. West. 2000. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721729.
159. Hanakahi, L. A., and, S. C. West. 2002. Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J. 21:20382044.
160. Harfst, E.,, S. Cooper,, S. Neubauer,, L. Distel, and, U. Grawunder. 2000. Normal V(D)J recombination in cells from patients with Nijmegen breakage syndrome. Mol. Immunol. 37:915929.
161. Harriman, W.,, H. VÖlk,, N. Defranoux, and, M. Wabl. 1993. Immunoglobulin class switch recombination. Annu. Rev. Immunol. 11:361384.
162. Harrington, J.,, C.-L. Hsieh,, J. Gerton,, G. Bosma, and, M. R. Lieber. 1992. Analysis of the defect in DNA end joining in the murine scid mutation. Mol. Cell. Biol. 12:47584768.
163. Harrington, J. J., and, M. R. Lieber. 1994. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13:12351246.
164. Hartley, K. O.,, D. Gell,, G. C. M. Smith,, H. Zhang,, N. Divecha,, M. A. Connelly,, A. Admon,, S. Lees-Miller,, C. W. Anderson, and, S. P. Jackson. 1995. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849856.
165. Haynes, R. H., and, B. A. Kunz. 1981. DNA repair and mutagenesis in yeast, p. 371414. In J. N. Strathern,, E. W. Jones, and, J. R. Broach (ed.), The Molecular Biology of the Yeast Saccharomyces, vol. I. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
166. Heidenreich, E.,, R. Novotny,, B. Kneidinger,, V. Holzmann, and, U. Wintersberger. 2003. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. 22:22742283.
167. Hendrickson, E. A.,, X.-Q. Qin,, E. A. Bump,, D. G. Schatz,, M. Oettinger, and, D. T. Weaver. 1991. A link between double-strand break-related repair and V(D)J recombination: the scid mutation. Proc. Natl. Acad. Sci. USA 88:40614065.
168. Hendrickson, E. A.,, M. S. Schlissel, and, D. T. Weaver. 1990. Wild-type V(D)J recombination in scidpre-B cells. Mol. Cell. Biol. 10:53975407.
169. Henriques, J. A. P., and, M. Brendel. 1990. The role of PSO and SNM genes in DNA repair of the yeast Saccharomyces cerevisiae. Curr. Genet. 5:387394.
170. Her, C.,, A. T. Vo, and, X. Wu. 2002. Evidence for a direct association of hMRE11 with the human mismatch repair protein hMLH1. DNA Repair 1:719729.
171. Herrmann, G.,, T. Lindahl, and, P. Schär. 1998. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17:41884198.
172. Hesse, J. E.,, M. R. Lieber,, M. Gellert, and, K. Mizuuchi. 1987. Extrachromosomal substrates undergo inversion or deletion at immunoglobulin VDJ joining signals. Cell 49:775783.
173. Hiom, K., and, M. Gellert. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1: 10111019.
174. Hiom, K., and, M. Gellert. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:6572.
175. Hiom, K.,, M. Melek, and, M. Gellert. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463470.
176. Holland, I. B., and, M. A. Blight. 1999. ABC-ATPases, adaptable energy generators fueling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293:381399.
177. Hopfner, K.-P.,, L. Craig,, G. Moncalian,, R. A. Zinkel,, T. Usui,, B. A. L. Owen,, A. Karcher,, B. Henderson,, J.-L. Bodmer,, C. T. McMurray,, J. P. Carney,, J. H. J. Petrini, and, J. A. Tainer. 2002. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562566.
178. Hopfner, K.-P.,, A. Karcher,, L. Craig,, T. T. Woo,, J. P. Carney, and, J. A. Tainer. 2001. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473485.
179. Hopfner, K.-P.,, A. Karcher,,