1887

Chapter 24 : Xeroderma Pigmentosum

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Xeroderma Pigmentosum, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap24-2.gif

Abstract:

Understanding how DNA repair operates in human cells was for many years limited by the availability of mutant cell lines genetically defective in various responses to DNA damage. A researcher in University of California at San Francisco obtained skin biopsy specimens from individuals and discovered that cultures of fibroblasts derived from such patients are defective in repair synthesis following exposure to UV radiation, suggesting that they are indeed defective in nucleotide excision repair (NER). These observations were independently confirmed by another research group and provided the first demonstration of a DNA repair defect associated with a hereditary human disease. The group's observations of XP cells provided an impetus to examine the response to DNA-damaging agents in cells derived from other hereditary human diseases, particularly those associated with spontaneous or environmentally induced chromosomal abnormalities or with an abnormally high incidence of neoplasia. In addition, the observation that human subjects suffering from XP in particular are severely prone to skin tumors associated with sunlight exposure prompted further exploration of the relationship between DNA damage, mutagenesis, and neoplastic transformation in a more general sense. Since then, an enormous amount of information has been garnered about the molecular pathology of XP. This chapter considers mutant mouse strains defective in gene functions required for NER, some (but not all) of which mimic some of the phenotypes of humans with XP. XP mouse strains defective in the , , , , , , , and genes have been generated.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24

Key Concept Ranking

DNA Synthesis
0.5140666
RNA Polymerase II
0.5054348
Nucleotide Excision Repair
0.45088655
Base Excision Repair
0.44501176
0.5140666
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 24–1
Figure 24–1

Defective repair synthesis (UDS) of DNA can be demonstrated in the epidermal cells of living XP individuals following the injection of tritiated thymidine into an area of skin previously exposed to UV radiation. The panel on the left is from an unirradiated normal subject, and that in the middle from a UV-irradiated normal subject. The panel on the right is from a UV-irradiated XP individual.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–2
Figure 24–2

In some cases of severe Sun exposure, cancers of the tongue can develop in individuals with XP.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–3
Figure 24–3

(A) Age at which first skin cancer was reported for 186 XP individuals compared with the age distribution for over 29,000 non-XP patients with either basal or squamous cell carcinoma in the U.S. general population. (B) Age distribution of patients with XP. The age at last clinical observation is shown for 785 patients, 373 of whom were also reported to have skin cancer.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–4
Figure 24–4

XP cells in culture from most genetic complementation groups are hypersensitive to UV radiation. However, the precise level of sensitivity varies somewhat from cell line to cell line within a given genetic complementation group and particularly between genetic complementation groups.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–5
Figure 24–5

XP cells (genetic complementation groups A and C are shown here) have an increased frequency of mutations at various genetic loci (such as the locus for azaguanine resistance shown) when exposed to DNA-damaging agents such as UV radiation.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–6
Figure 24–6

The kinetics of the disappearance of sites in DNA (pyrimidine dimers) that are sensitive to attack by a pyrimidine dimer-DNA glycosylase (see chapter 7 for details of this technique). The percentages shown are relative to the enzyme-sensitive sites (ESS) detected in unirradiated cells. The broken line in each panel is reproduced from the kinetics observed with normal cells in the first panel.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–7
Figure 24–7

Defective repair synthesis (UDS) in XP cells in culture. Normal cells (left panel) show autoradiographic labeling of the great majority of the nuclei that are not in S phase (intensely labeled cells), reflecting repair synthesis of DNA. XP cells (right panel) show normal S-phase (scheduled) DNA synthesis, but are defective in UDS. (Courtesy of J. E. Cleaver.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–8
Figure 24–8

Host cell reactivation of UV-irradiated plasmid DNA measured by chloramphenicol acetyltransferase (CAT) activity in a reporter plasmid following transfection of XP cells with wild-type genes. (Left) XP-A cells transfected with the (light gold) or (dark gold) gene. (Right) XP-F cells transfected with the (light gold) or (dark gold) gene. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–9
Figure 24–9

DNA containing oxidative base damage produced by exposure to γ-rays (A) or HO plus Cu (B) is repaired by extracts of normal cells but not by extracts of cells from XP complementation group A.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–10
Figure 24–10

Repair of UV-B radiation-induced DNA damage in lymphocytes from various XP genetic complementation groups. Repair is shown as relative chloramphenicol acetyltransferase (CAT) activity from a reporter gene transfected into the cells. Black lines show the means of multiple independent experiments in a given cell line, and gold lines reflect mean values with eight different cell lines from a given XP complementation group. The shaded areas indicate the minimum and maximum values of the wild-type range. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–11
Figure 24–11

Catalase activity measured in extracts of cells from normal, XP heterozygous, and XP homozygous individuals of different genetic complementation groups. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–12
Figure 24–12

Correlation between mean catalase activity in cell extracts and DNA repair efficiency, expressed as relative UDS after exposure to UV light. Cells were transfected with viruses carrying the indicated XP genes. het, heterozygous. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–13
Figure 24–13

Structure of the and diastereoisomers of 5’,8-cyclo-2’-deoxyadenosine. These structures are found in DNA damaged by hydroxyl radicals. These lesions contain two covalent linkages to the sugar-phosphate backbone of DNA. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–14
Figure 24–14

Plasmid DNA containing 5’,8-cyclo-2’-deoxy-adenosine residues in either the (gold bars) or (grey bars) form was incubated with extracts of cells proficient for NER in the absence or presence of XPA antiserum (to inactivate NER). The figure shows quantitation of the amount of oligonucleotide excision product generated by NER. ab., antibody; prot., protein. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–15
Figure 24–15

Complementation of defective repair synthesis (UDS) in heterodikaryons derived by fusing cells of XP individuals from different genetic complementation groups. The cells labeled a to d are monokaryons which are defective in UDS. The cells labeled f and g are homodikaryons resulting from fusion of cells from the same individual and hence are also defective in UDS. The heterodikaryon labeled shows restoration of normal levels of UDS in both nuclei. (Courtesy of J. E. Cleaver.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–16
Figure 24–16

Quantitative complementation analysis by monitoring UDS after treatment of cells with either UV radiation or the UV radiomimetic chemical 4-nitroquinoline 1-oxide (4-NQO). When cells from two group C individuals are fused (C/C fusion), the levels of UDS in the heterodikaryons are no greater than in each of the monokaryons. However, when XP-A and XP-D cells are fused (A/D fusion), the levels of UDS in the heterodikaryons are greater than in each of the monokaryons.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–17
Figure 24–17

Autoradiograph showing that expression of the gene following its microinjection into the nuclei of TTD6V1 cells results in the correction of defective UDS in these cells. Two uncomplemented cells can also be seen to the right. (Courtesy of W. Vermeulen and Jan H. J. Hoeijmakers.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–18
Figure 24–18

Distribution of different base substitutions observed in internal and skin tumors from non-XP individuals and in skin tumors from XP-C individuals. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–19
Figure 24–19

Diagrammatic representation of the relative locations on mutations identified in a group of 17 XP individuals from genetic complementation group D, resulting either in classic XP or TTD. Amino acid changes in individual cell lines are boxed in grey, and white boxes show cell line designations in which the subscripts 1 and 2 indicate different alleles. (A) Mutations found in all the cell lines, with XP and TTD lines segregated above and below the stick-like polypeptide, respectively. The small gold bars beneath the stick-like polypeptide indicate the relative sizes of deletion mutations. (B) Subset of mutations found in both XP-D and TTD individuals. I to VII denote the seven DNA helicase domains in the primary structure of the XPD protein. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–20
Figure 24–20

Mutations in the gene in eight XP-E individuals. The p48 ORF is diagrammatically represented with exons indicated in roman numerals. Putative WD domains in the protein are shown as light gold boxes, and the dark gold boxes represent putative nuclear localization signals. Mutations in DNA are shown above or below boxes, which contain corresponding amino acid (aa) changes. All the mutations map to the C-terminal half of the protein. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–21
Figure 24–21

Rates of new actinic keratoses in placebo-treated and T4 endonuclease V-treated individuals. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–22
Figure 24–22

Kinetics of tumor development in mice defective in NER following exposure to UV-B radiation (left) or 7,12-dimethylbenz[a]anthracene (DMBA) (right). The black lines represent wild-type mice, and the grey line represents mice. The gold line represents mice. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–23
Figure 24–23

Mutagenesis in lymphocytes from wild-type (gold line) and Xpa mutants (black line) following exposure to benzo[a]pyrene [B(a)P]. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–24
Figure 24–24

Cells from Xpc mice are defective in NER of base damage [(6–4)PP] in the nontranscribed DNA strand (NTS) of the gene following exposure to UV radiation. TS, transcribed strand. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–25
Figure 24–25

UV-B radiation-induced skin cancer in Xpc mice. Animals were exposed to daily doses of UV-B radiation for several weeks. Skin cancers develop on the shaved dorsal skin in mice much more rapidly than in heterozygous mutant or wild-type mice.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–26
Figure 24–26

Xpcmice (dark gold line) develop skin cancer much faster than (black line) or wild-type (light gold line) animals do. However, after about 40 weeks, animals show an increased skin cancer predisposition relative to wild-type mice.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–27
Figure 24–27

The loss of one allele sensitizes both and mutant mice to UV-B radiation-induced skin cancer.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–28
Figure 24–28

Spectrum of some of the more prominent mutations in the nontranscribed strand of the gene of skin tumors from UV-B-irradiated mice with the indicated genotypes. Notice that the threonine codon 122 (T122), located at the end of codon 4, is a very hot spot for mutations uniquely in animals. Mutations at codons 124 and 210 observed in various mutant mice have not been previously found in skin tumors in mice.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–29
Figure 24–29

Frequency of mutations in codon 122 of the gene in wild-type and mutant mice of various genotypes, relative to mutations at all other locations in the gene. Mutations were determined in the gene from UVB radiation-induced skin cancers.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–30
Figure 24–30

homozygous mutant mice are highly prone to liver and lung tumors after exposure to acetylaminofluorene. (A) The liver from an mutant is riddled with tumors. (B) Incidence of both liver and lung tumors in mice of various genotypes.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–31
Figure 24–31

Frequency of spontaneous mutations at the locus in lymphocytes in mice of the indicated genotypes. Mutations were measured at 12 months of age. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24–32
Figure 24–32

Phenotypic rescue of viability following expression of an transgene in the liver of mice. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Xeroderma Pigmentosum, p 865-894. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816704.ch24
1. Aledo, R.,, G. Renault,, M. Prieur,, M. F. Avril,, B. Chretien,, B. Dutrillaux, and, A. Aurias. 1989. Increase of sister chromatid exchanges in excision repair deficient xeroderma pigmentosum. Hum. Genet. 81:221225.
2. Andrews, A. D.,, S. F. Barrett, and, J. H. Robbins. 1978. Xeroderma pigmentosum neurological abnormalities correlate with colony-forming ability after ultraviolet radiation. Proc. Natl. Acad. Sci. USA 75:19841988.
3. Auerbach, A. D., and, P. C. Verlander. 1997. Disorders of DNA replication and repair. Curr. Opin. Pediatr. 9:600616.
4. Banerjee, S. K.,, R. B. Christensen,, C. W. Lawrence, and, J. E. LeClerc. 1988. Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector. Proc. Natl. Acad. Sci. USA 85:81418145.
5. Benhamou, S., and, A. Sarasin. 2002. ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463469.
6. Benhamou, S., and, A. Sarasin. 2000. Variability in nucleotide excision repair and cancer risk: a review. Mutat. Res. 462:149158.
7. Berg, R. J.,, A. de Vries,, H. van Steeg, and, F. R. de Gruijl. 1997. Relative susceptibilities of XPA knockout mice and their heterozygous and wild–type littermates to UVB–induced skin cancer. Cancer Res. 57:581584.
8. Berg, R. J.,, H. J. Ruven,, A. T. Sands,, F. R. de Gruijl, and, L. H. Mullenders. 1998. Defective global genome repair in XPC mice is associated with skin cancer susceptibility but not with sensitivity to UVB induced erythema and edema. J. Investig. Dermatol. 110:405409.
9. Berneburg, M., and, A. R. Lehmann. 2001. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet. 43:71102.
10. Bohr, V.A.,, M. K. Evans, and, A. J. Fornace, Jr., 1989. Biology of disease. DNA repair and its pathogenetic implications. Lab. Investig. 61:143161.
11. Bol, S. A.,, H. van Steeg,, J. G. Jansen,, C. Van Oostrom,, A. de Vries,, A. J. de Groot,, A. D. Tates,, H. Vrieling,, A. A. van Zeeland, and, L. H. Mullenders. 1998. Elevated frequencies of benzo(a)pyrene–induced Hprt mutations in internal tissue of XPA–deficient mice. Cancer Res. 58:28502856.
12. Bootsma, D., 1993. The genetic defect in DNA repair deficiency syndromes. EACR—Muhlbock Memorial Lecture, 1993. Eur. J. Cancer 29A:14821488.
13. Bootsma, D.,, K. H. Kraemer,, J. E. Cleaver, and, J. H. J. Hoeijmakers. 2001. Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, p. 677703. In C. R. Scriver,, A. L. Beaudet,, W. S. Sly,, D. Valle,, B. Childs,, K. W. Kinzler, and, B. Vogelstein (ed.), The Metabolic and Molecular Bases of Inherited Disease, 8th ed. McGraw–Hill Book Co., New York, N.Y.
14. Bootsma, D.,, K. H. Kraemer,, J. Cleaver, and, J. H. J. Hoeijmakers. 1998. Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, p., 245274. In B. Vogelstein, and, K. W. Kinzler (ed.), The Genetic Basis of Human Cancer. McGraw–Hill Book Co., New York, N.Y.
15. Bootsma, D.,, M. P. Mulder,, J. A. Cohen, and, F. Pot. 1970. Different inherited levels of DNA repair replication in xeroderma pigmentosum cell strains after exposure to ultraviolet irradiation. Mutat. Res. 9:507516.
16. Bootsma, D.,, G. Weeda,, W. Vermeulen,, H. van Vuuren,, C. Troelstra,, P. van der Spek, and, J. Hoeijmakers. 1995. Nucleotide excision repair syndromes: molecular basis and clinical symptoms. Philos. Trans. R. Soc. Lond. Ser. B 347:7581.
17. Brash, D. E., and, W. A. Haseltine. 1982. UV–induced mutation hotspots occur at DNA damage hotspots. Nature 298:189192.
18. Brash, D. E.,, S. Seetharam,, K. H. Kraemer,, M. M. Seidman, and, A. Bredberg. 1987. Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human cells. Proc. Natl. Acad. Sci. USA 84:37823786.
19. Bredberg, A.,, K. H. Kraemer, and, M. M. Seidman. 1986. Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells. Proc. Natl. Acad. Sci. USA 83:82738277.
20. Bridges, B. A., 1998. UV–induced mutations and skin cancer: how important is the link? Mutat. Res. 422:2330.
21. Brooks, P. J.,, D. S. Wise,, D. A. Berry,, J. V. Kosmoski,, M. J. Smerdon,, R. L. Somers,, H. Mackie,, A. Y. Spoonde,, E. J. Ackerman,, K. Coleman,, R. E. Tarone, and, J. H. Robbins. 2000. The oxidative DNA lesion 8,5’–(S)–cyclo–2’–deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J. Biol. Chem. 275:2235522362.
22. Broughton, B. C.,, H. Steingrimsdottir,, C. A. Weber, and, A. R. Lehmann. 1994. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat. Genet. 7:189194.
23. Burk, P. G.,, M. A. Lutzner,, D. D. Clarke, and, J. H. Robbins. 1971. Ultraviolet–stimulated thymidine incorporation in xeroderma pigmentosum lymphocytes. J. Lab. Clin. Med. 77:759767.
24. Caggana, M.,, J. Kilgallen,, J. M. Conroy,, J. K. Wiencke,, K. T. Kelsey,, R. Miike,, P. Chen, and, M. R. Wrensch. 2001. Associations between ERCC2 polymorphisms and gliomas. Cancer Epidemiol. Biomarkers Prev. 10:355360.
25. Casati, A.,, M. Stefanini,, R. Giorgi,, P. Ghetti, and, F. Nuzzo. 1991. Chromosome rearrangements in normal fibroblasts from xeroderma pigmentosum homozygotes and heterozygotes. Cancer Genet. Cytogenet. 51:89101.
26. Chavanne, F.,, B. C. Broughton,, D. Pietra,, T. Nardo,, A. Browitt,, A. R. Lehmann, and, M. Stefanini. 2000. Mutations in the XPC gene in families with xeroderma pigmentosum and consequences at the cell, protein, and transcript levels. Cancer Res. 60:19741982.
27. Cheo, D. L.,, L. B. Meira,, D. K. Burns,, A. M. Reis,, T. Issac, and, E. C. Friedberg. 2000. Ultraviolet B radiation–induced skin cancer in mice defective in the Xpc, Trp53, and Apex (HAP1) genes: genotype–specific effects on cancer predisposition and pathology of tumors. Cancer Res. 60:15801584.
28. Cheo, D. L.,, L. B. Meira,, R. E. Hammer,, D. K. Burns,, A. T. Doughty, and, E. C. Friedberg. 1996. Synergistic interactions between XPC and p53 mutations in double–mutant mice: neural tube abnormalities and accelerated UV radiation–induced skin cancer. Curr. Biol. 6:16911694.
29. Cheo, D. L.,, H. J. Ruven,, L. B. Meira,, R. E. Hammer,, D. K. Burns,, N. J. Tappe,, A. A. van Zeeland,, L. H. Mullenders, and, E. C. Friedberg. 1997. Characterization of defective nucleotide excision repair in XPC mutant mice. Mutat. Res. 374:19.
30. Chu, G., and, E. Chang. 1988. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564567.
31. Chu, G., and, L. Mayne. 1996. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: do the genes explain the diseases? Trends Genet. 12:187192.
32. Clarkson, S. G., The XPG story., 2003. Biochimie 85:11131121.
33. Cleaver, J. E., 2000. Common pathways for ultraviolet skin car–cinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J. Dermatol. Sci. 23:111.
34. Cleaver, J. E., 1968. Defective repair replication of DNA in xero–derma pigmentosum. Nature 218:652656.
35. Cleaver, J. E., 1990. Do we know the cause of xeroderma pigmentosum? Carcinogenesis 11:875882.
36. Cleaver, J. E., 1969. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl. Acad. Sci. USA 63:428435.
37. Cleaver, J. E., 1972. Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J. Investig. Dermatol. 58:124128.
38. Cleaver, J. E., and, K. H. Kraemer. 1989. Xeroderma pigmentosum, p., 29492971. In C. R. Scriver,, A. L. Beaudet,, W. S. Sly, and, D. Valle (ed.), The Metabolic Basis of Inherited Disease. McGraw–Hill Book Co., New York, N.Y.
39. Cleaver, J. E.,, W. C. Charles,, M. L. McDowell,, W. J. Sadinski, and, D. L. Mitchell. 1995. Overexpression of the XPA repair gene increases re– sistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 55:61526160.
40. Cleaver, J. E.,, W. C. Charles,, G. H. Thomas, and, M. L. McDowell. 1995. A deletion and an insertion in the alleles for the xeroderma pigmentosum (XPA) DNA–binding protein in mildly affected patients. Hum. Mol. Genet. 4:16851687.
41. Cleaver, J. E.,, A. E. Greene,, L. L. Coriell, and, R. A. Mulivor. 1981. Xeroderma pigmentosum variants. Cytogenet. Cell Genet. 31:188192.
42. Cleaver, J. E., and, M. L. Hultner. 1995. Transcription–related human disorders. Am. J. Hum. Genet. 56:12571261.
43. Cleaver, J. E.,, J. R. Speakman, and, J. P. Volpe. 1995. Nucleotide excision repair: variations associated with cancer development and speciation. Cancer Surv. 25:125142.
44. Cleaver, J. E., and, E. Crowley, 2002. UV damage, DNA repair and skin carcinogenesis. Front. Biosci. 7:10241043.
45. Copeland, N. E.,, C. W. Hanke, and, J. A. Michalak. 1997. The molecular basis of xeroderma pigmentosum. Dermatol. Surg. 23:447455.
46. Crawford, D.,, I. Zbinden,, R. Moret, and, P. Cerutti. 1988. Antioxidant enzymes in xeroderma pigmentosum fibroblasts. Cancer Res. 48:21322134.
47. Culbertson, M. R., 1999. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 15:7480.
48. Daya–Grosjean, L.,, C. Robert,, C. Drougard,, H. Suarez, and, A. Sarasin. 1993. High mutation frequency in ras genes of skin tumors isolated from DNA repair deficient xeroderma pigmentosum patients. Cancer Res. 53:16251629.
49. de Boer, J.,, I. Donker,, J. de Wit,, J. H. Hoeijmakers, and, G. Weeda. 1998. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. Cancer Res. 58:8994.
50. de Boer, J., and, J. H. Hoeijmakers. 1999. Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie 81:127137.
51. de Boer, J., and, J. H. Hoeijmakers. 2000. Nucleotide excision repair and human syndromes. Carcinogenesis 21:453460.
52. de Gruijl, F. R., 1999. Skin cancer and solar UV radiation. Eur. J. Cancer 35:20032009.
53. DeLuca, J. G.,, D. A. Kaden,, E. A. Komives, and, W. G. Thilly. 1984. Mutation of xeroderma pigmentosum lymphoblasts by far–ultraviolet light. Mutat. Res. 128:4757.
54. DeSanctis, C., and, A. Cacchione. 1932. L’idiozia xerodermica. Riv. Sper. Frentiatr. Med. Leg. Alienazioni Ment. 56:269292.
55. de Vries, A.,, R. J. Berg,, S. Wijnhoven,, A. Westerman,, P. W. Wester,, C. F. van Kreijl,, P. J. Capel,, F. R. de Gruijl,, H. J. van Kranen, and, H. van Steeg. 1998. XPA–deficiency in hairless mice causes a shift in skin tumor types and mutational target genes after exposure to low doses of U.V.B. Oncogene 16:22052212.
56. de Vries, A.,, M. E. Dolle,, J. L. Broekhof,, J. J. Muller,, E. D. Kroese,, C. F. van Kreijl,, P. J. Capel,, J. Vijg, and, H. van S teeg. 1997. Induction of DNA adducts and mutations in spleen, liver and lung of XPA– deficient/lacZ transgenic mice after oral treatment with benzo(a)pyrene: correlation with tumour development. Carcinogenesis 18:23272332.
57. De Vries, A.,, T. G. Gorgels,, R. J. Berg,, G. H. Jansen, and, H. Van Steeg. 1998. Ultraviolet–B induced hyperplasia and squamous cell carcinomas in the cornea of XPA–deficient mice. Exp. Eye Res. 67:5359.
58. de Vries, A.,, C. T. van Oostrom,, P. M. Dortant,, R. B. Beems,, C. F. van Kreijl,, P. J. Capel, and, H. van Steeg. 1997. Spontaneous liver tumors and benzo(a)pyrene–induced lymphomas in XPA–deficient mice. Mol. Carcinog. 19:4653.
59. de Vries, A.,, C. T. van Oostrom,, F. M. Hofhuis,, P. M. Dortant,, R. J. Berg,, F. R. de Gruijl,, P. W. Wester,, C. F. vanKreijl,, P. J. Capel,, H. van Steeg, et al., 1995. Increased susceptibility to ultraviolet–B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377:169173.
60. de Vries, A., and, H. van Steeg. 1996. Xpa knockout mice. Semin. Cancer Biol. 7:229240.
61. De Weerd–Kastelein, E. A.,, W. Keijzer, and, D. Bootsma. 1972. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat. New Biol. 238:8083.
62. De Weerd–Kastelein, E. A.,, W. Keijzer,, G. Rainaldi, and, D. Bootsma. 1977. Induction of sister chromatid exchanges in xeroderma pigmentosum cells after exposure to ultraviolet light. Mutat. Res. 45:253261.
63. Dorado, G.,, H. Steingrimsdottir,, C. F. Arlett, and, A. R. Lehmann. 1991. Molecular analysis of ultraviolet–induced mutations in a xeroderma pigmentosum cell line. J. Mol. Biol. 217:217222.
64. Dubaele, S.,, L. Proietti De Santis,, R. J. Bienstock,, A. Keriel,, M. Stefanini,, B. Van Houten, and, J. M. Egly. 2003. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11:16351646.
65. Duell, E. J.,, J. K. Wiencke,, T. J. Cheng,, A. Varkonyi,, Z. F. Zuo,, T. D. Ashok,, E. J. Mark,, J. C. Wain,, D. C. Christiani, and, K. T. Kelsey. 2000. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and bio–markers of DNA damage in human blood mononuclear cells. Carcinogenesis 21:965971.
66. Dumaz, N.,, C. Drougard,, A. Sarasin, and, L. Daya–Grosjean. 1993. Specific UV–induced mutation spectrum in the p53 gene of skin tumors from DNA–repair–deficient xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. USA 90:1052910533.
67. Emmert, S.,, T. D. Schneider,, S. G. Khan, and, K. H. Kraemer. 2001. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 29:14431452.
68. Epe, B., 1991. Genotoxicity of singlet oxygen. Chem. Biol. Interact. 80:239260.
69. Epe, B.,, M. Pflaum, and, S. Boiteux. 1993. DNA damage induced by photosensitizers in cellular and cell–free systems. Mutat. Res. 299:135145.
70. Evans, E.,, J. G. Moggs,, J. R. Hwang,, J. M. Egly, and, R. D. Wood. 1997. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16:65596573.
71. Evans, M. K.,, J. H. Robbins,, M. B. Ganges,, R. E. Tarone,, R. S. Nairn, and, V. A. Bohr. 1993. Gene–specific DNA repair in xeroderma pig– mentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. J. Biol. Chem. 268:48394847.
72. Foote, C. S., 1991. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54:659.
73. Ford, B. N.,, C. C. Ruttan,, V. L. Kyle,, M. E. Brackley, and, B. W. Glickman. 2000. Identification of single nucleotide polymorphisms in human DNA repair genes. Carcinogenesis 21:19771981.
74. Ford, J. M., and, P. C. Hanawalt. 1997. Role of DNA excision repair gene defects in the etiology of cancer. Curr. Top Microbiol. Immunol. 221: 4770.
75. Friedberg, E. C., 1999. Cancer predisposition associated with defective DNA repair: studies with mutant mouse strains. Cancer J. Sci. Am. 5:257263.
76. Friedberg, E. C., 1997. Correcting the Blueprint ofLife: a Historical Account of the Discovery of DNA Repair Mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
77. Friedberg, E. C.,, D. L. Cheo,, L. B. Meira, and, A. M. Reis. 1999. Cancer predisposition in mutant mice defective in the XPC DNA repair gene. Prog. Exp. Tumor Res. 35:3752.
78. Friedberg, E. C.,, G. C. Walker, and, W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, D.C.
79. Friedberg, E. C., and, K. A. Henning. 1993. The conundrum of xe–roderma pigmentosum—a rare disease with frequent complexities. Mutat. Res. 289:4753.
80. Friedberg, E. C., and, L. B. Meira. 2003. Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage. Version 5. DNA Repair 2:501530.
81. Friedberg, E. C., 1985. DNA Repair. W. H. Freeman & Co., New York, N.Y.
82. Fujiwara, Y.,, A. Matsumoto,, M. Ichihashi, and, Y. Satoh. 1987. Heritable disorders of DNA repair: xeroderma pigmentosum and Fanconi’s anemia. Curr. Probl. Dermatol. 17:182198.
83. Galloway, A. M.,, M. Liuzzi, and, M. C. Paterson. 1994. Metabolic processing of cyclobutyl pyrimidine dimers and (6–4) photoproducts in UV–treated human cells. Evidence for distinct excision–repair pathways. J. Biol. Chem. 269:974980.
84. Garkinkel, D. J., and, A. M. Baillie. 2002. Nucleotide excision repair, genome stability and human disease: new insight from model systems. J. Biomed. Biotechnol. 2:5560.
85. Gaspari, A. A.,, T. A. Fleisher, and, K. H. Kraemer. 1993. Impaired interferon production and natural killer cell activation in patients with the skin cancer–prone disorder, xeroderma pigmentosum. J. Clin. Investig. 92:11351142.
86. Gianelli, F., 1986. DNA maintenance and its relation to human pathology. J. Cell Sci. 4:383416.
87. Giglia, G.,, N. Dumaz,, C. Drougard,, M. F. Avril,, L. Daya–Grosjean, and, A. Sarasin. 1998. p53 mutations in skin and internal tumors of xero–derma pigmentosum patients belonging to the complementation group C. Cancer Res. 58:44024409.
88. Glover, T. W.,, C. C. Chang,, J. E. Trosko, and, S. S. Li. 1979. Ultraviolet light induction of diphtheria toxin–resistant mutants of normal and xeroderma pigmentosum human fibroblasts. Proc. Natl. Acad. Sci. USA 76:39823986.
89. Gozukara, E. M.,, S. G. Khan,, A. Metin,, S. Emmert,, D. B. Busch,, T. Shahlavi,, D. M. Coleman,, M. Miller,, N. Chinsomboon,, M. Stefanini, and, K. H. Kraemer. 2001. A stop codon in xeroderma pigmentosum group C families in Turkey and Italy: molecular genetic evidence for a common ancestor. J. Investig. Dermatol. 117:197204.
90. Grewal, R. P., 1999. Neurodegeneration in xeroderma pigmentosum: a trinucleotide repeat mutation analysis. J. Neurol. Sci. 163:183186.
91. Halpern, A. C., and, J. F. Altman. 1999. Genetic predisposition to skin cancer. Curr. Opin. Oncol. 11:132138.
92. Han, Z. B.,, R. Hara,, H. Ayaki,, J. H. Wang,, L. Y. Sun,, Y. You,, Y. P. Zhang,, K. X. Qiang, and, M. Ikenaga. 1998. Assignment of three Chinese xeroderma pigmentosum patients to complementation group C and one to group E. Br. J. Dermatol. 138:131136.
93. Hanawalt, P. C., and, A. Sarasin. 1986. Cancer–prone hereditary diseases with DNA processing abnormalities. Trends Genet. 2:124129.
94. Harada, Y. N.,, N. Shiomi,, M. Koike,, M. Ikawa,, M. Okabe,, S. Hi– rota,, Y. Kitamura,, M. Kitagawa,, T. Matsunaga,, O. Nikaido, and, T. Shiomi. 1999. Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xero–derma pigmentosum group G gene. Mol. Cell. Biol. 19:23662372.
95. Hauser, J.,, A. S. Levine, and, K. Dixon. 1987. Unique pattern of point mutations arising after gene transfer into mammalian cells. EMBO J. 6:6367.
96. Hebra, F., and, M. Kaposi. 1874. On diseases of the skin, including the exanthemata. New Sydenham Soc. 61:252258. (Translated by W. Tay, London.)
97. Heim, R. A.,, N. J. Lench, and, M. Swift. 1992. Heterozygous manifestations in four autosomal recessive human cancer–prone syndromes: ataxia telangiectasia, xeroderma pigmentosum, Fanconi anemia, and Bloom syndrome. Mutat. Res. 284:2536.
98. Hemminki, K.,, G. Xu,, S. Angelini,, E. Snellman,, C. T. Jansen,, B. Lambert, and, S. M. Hou. 2001. XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ. Carcinogenesis 22:11851188.
99. Hoffschir, F.,, L. Daya–Grosjean,, P. X. Petit,, S. Nocentini,, B. Dutrillaux,, A. Sarasin, and, M. Vuillaume. 1998. Low catalase activity in xero–derma pigmentosum fibroblasts and SV40–transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Free Radic. Biol. Med. 24:809816.
100. Horio, T.,, H. Miyauchi–Hashimoto,, K. Kuwamoto,, S. Horiki,, H. Okamoto, and, K. Tanaka. 2001. Photobiologic and photoimmunologic characteristics of XPA gene–deficient mice. J. Investig. Dermatol. Symp. Proc. 6:5863.
101. Hwang, B. J.,, J. M. Ford,, P. C. Hanawalt, and, G. Chu. 1999. Expression of the p48 xeroderma pigmentosum gene is p53–dependent and is involved in global genomic repair. Proc. Natl. Acad. Sci. USA 96:424428.
102. Hwang, B. J.,, S. Toering,, U. Francke, and, G. Chu. 1998. p48 activates a UV–damaged DNA–binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol. Cell Biol. 18:43914399.
103. Ichikawa, M.,, H. Nakane,, G. Marra,, C. Corti,, J. Jiricny,, M. Fitch,, J. M. Ford,, M. Ikejima,, T. Shimada,, M. Yoshino,, S. Takeuchi,, Y. Nakatsu, and, K. Tanaka. 2000. Decreased UV sensitivity, mismatch repair activity and abnormal cell cycle checkpoints in skin cancer cell lines derived from UVB–irradiated XPA–deficient mice. Mutat. Res. 459:285298.
104. Ide, F.,, N. Iida,, Y. Nakatsuru,, H. Oda,, K. Tanaka, and, T. Ishikawa. 2000. Mice deficient in the nucleotide excision repair gene XPA have elevated sensitivity to benzo(a)pyrene induction of lung tumors. Carcinogenesis 21:12631265.
105. Inga, A.,, D. Nahari,, S. Velasco–Miguel,, E. C. Friedberg, and, M. A. Resnick. 2002. A novel p53 mutational hotspot in skin tumors from UV–irradiated Xpc mutant mice alters transactivation functions. Oncogene 21:57045715.
106. Itoh, M.,, M. Hayashi,, K. Shioda,, M. Minagawa,, F. Isa,, K. Tamagawa,, Y. Morimatsu, and, M. Oda. 1999. Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev. 21:326333.
107. Itoh, T.,, D. Cado,, R. Kamide, and, S. Linn. 2004. DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc. Natl. Acad. Sci. USA 101:20522057.
108. Itoh, T.,, T. Mori,, H. Ohkubo, and, M. Yamaizumi. 1999. A newly identified patient with clinical xeroderma pigmentosum phenotype has a non–sense mutation in the DDB2 gene and incomplete repair in (6–4) photoproducts. J. Investig. Dermatol. 113:251257.
109. Itoh, T.,, C. O’Shea, and, S. Linn. 2003. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol. Cell. Biol. 23:75407553.
110. Jaspers, N. G., 1997. DNA repair genes, enzymes, patients, and mouse models. Recent Results Cancer Res. 143:329335.
111. Jaspers, N. G., 1996. Multiple involvement of nucleotide excision repair enzymes: clinical manifestations of molecular intricacies. Cytokines Mol. Ther. 2:115119.
112. Jones, C. J.,, J. E. Cleaver, and, R. D. Wood. 1992. Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line. Nucleic Acids Res. 20:991995.
113. Kantor, G. J.,, L. S. Barsalou, and, P. C. Hanawalt. 1990. Selective repair of specific chromatin domains in UV–irradiated cells from xeroderma pigmentosum complementation group C. Mutat. Res. 235:171180.
114. Kantor, G. J., and, C. F. Elking. 1988. Biological significance of domain–oriented DNA repair in xeroderma pigmentosum cells. Cancer Res. 48:844849.
115. Kaposi, M., 1883. Xeroderma pigmentosum. Ann. Dermatol. Venereol. 4:2938. (In French.)
116. Katoaka, H., and, Y. Fujiwara. 1991. UV damage–specific DNA–binding protein in xeroderma pigmentosum complementation group E. Biochem. Biophys. Res. Commun. 175:11391143.
117. Keeney, S.,, A. P. Eker,, T. Brody,, W. Vermeulen,, D. Bootsma,, J. H. Hoeijmakers, and, S. Linn. 1994. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage– binding protein. Proc. Natl. Acad. Sci. USA 91:40534056.
118. Keeney, S.,, H. Wein, and, S. Linn. 1992. Biochemical heterogeneity in xeroderma pigmentosum complementation group E. Mutat. Res. 273:4956.
119. Khan, S. G.,, H. L. Levy,, R. Legerski,, E. Quackenbush,, J. T. Rear–don,, S. Emmert,, A. Sancar,, L. Li,, T. D. Schneider,, J. E. Cleaver, and, K. H. Kraemer. 1998. Xeroderma pigmentosum group C splice mutation associated with autism and hypoglycinemia. J. Investig. Dermatol. 111:791796.
120. Khan, S. G.,, E. J. Metter,, R. E. Tarone,, V. A. Bohr,, L. Grossman,, M. Hedayati,, S. J. Bale,, S. Emmert, and, K. H. Kraemer. 2000. A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis 21:1821182 5.
121. Khan, S. G.,, V. Muniz–Medina,, T. Shahlavi,, C. C. Baker,, H. Inui,, T. Ueda,, S. Emmert,, T. D. Schneider, and, K. H. Kraemer. 2002. The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res. 30:36243631.
122. Kobayashi, T.,, M. Uchiyama,, S. Fukuro, and, K. Tanaka. 2002. Mutations in the XPD gene in xeroderma pigmentosum group D cell strains: confirmation of genotype–phenotype correlation. Am. J. Med. Genet. 110:248252.
123. Koberle, B.,, J. R. Masters,, J. A. Hartley, and, R. D. Wood. 1999. Defective repair of cisplatin–induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol. 9:273276.
124. Kore–eda, S.,, T. Tanaka,, S. Moriwaki,, C. Nishigori, and, S. Imamura. 1992. A case of xeroderma pigmentosum group A diagnosed with a polymerase chain reaction (PCR) technique. Usefulness of PCR in the detection of point mutation in a patient with a hereditary disease. Arch. Dermatol. 128:971974.
125. Kraemer, K. H., 1991. Twenty years of research on xeroderma pigmentosum at the National Institutes of Health, p., 211221. In E. Riklis (ed.), Photobiology. Plenum Publishing Corp., New York, N.Y.
126. Kraemer, K. H., 1996. Xeroderma pigmentosum knockout mice: an immunologic tale. J. Investig. Dermatol. 107:291292.
127. Kraemer, K. H., 1996. Xeroderma pigmentosum knockouts. Lancet 347:278279.
128. Kraemer, K. H., and, H. Slor. 1985. Xeroderma pigmentosum, p., 3369. In D. J. Demis,, R. L. Dobson, and, J. McGuire (ed.), Clinics in Dermatology. Harper & Row, New York, N.Y.
129. Kraemer, K. H.,, C. N. Parris,, E. M. Gozukara,, D. D. Levy,, S. Adelberg, and, M. M. Seidman. 1992. Human DNA repair–deficient diseases: clinical disorders and molecular defects, p., 1522. In V. A. Bohr,, K. Wassermann, and, K. H. Kraemer (ed.), DNA Repair Mechanisms. Munksgaard, Copenhagen, Denmark.
130. Kraemer, K. H.,, H. G. Coon,, R. A. Petinga,, S. F. Barrett,, A. E. Rahe, and, J. H. Robbins. 1975. Genetic heterogeneity in xeroderma pigmentosum: complementation groups and their relationship to DNA repair rates. Proc. Natl. Acad. Sci. USA 72:5963.
131. Kraemer, K. H.,, E. A. De Weerd–Kastelein,, J. H. Robbins,, W. Keijzer,, S. F. Barrett,, R. A. Petinga, and, D. Bootsma. 1975. Five complementation groups in xeroderma pigmentosum. Mutat. Res. 33:327340.
132. Kraemer, K. H., and, J. J. DiGiovanna. 2002. Topical enzyme therapy for skin diseases? J. Am. Acad. Dermatol. 46:463466.
133. Kraemer, K. H.,, J. J. DiGiovanna,, A. N. Moshell,, R. E. Tarone, and, G. L. Peck. 1988. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N. Engl. J. Med. 318:16331637.
134. Kraemer, K. H.,, M. M. Lee,, A. D. Andrews, and, W. C. Lambert. 1994. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch. Dermatol. 130:10181021..
135. Kraemer, K. H.,, M. M. Lee, and, J. Scotto. 1984. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5:511514.
136. Kraemer, K. H.,, M. M. Lee, and, J. Scotto. 1987. Xeroderma pig–mentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch. Dermatol. 123:241250.
137. Kraemer, K. H.,, S. Seetheram,, M. Protic–Sabljic,, A. Bredberg,, D. E. Brash, and, M. M. Seidman. 1989. DNA repair and mutagenesis induced by dimer and non–dimer photoproducts measured with plasmid vectors in xeroderma pigmentosum cells, p., 169181. In A. Castellani (ed.), DNA Damage and Repair. Plenum Publishing Corp., New York, N.Y.
138. Kraemer, K. H., and, M. M. Seidman. 1989. Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle–vector plasmids. Mutat. Res. 220:6172.
139. Kuraoka, I.,, C. Bender,, A. Romieu,, J. Cadet,, R. D. Wood, and, T. Lindahl. 2000. Removal of oxygen free–radical–induced 5’,8–purine cyclodeoxynucleosides from DNA by the nucleotide excision–repair pathway in human cells. Proc. Natl. Acad. Sci. USA 97:38323837.
140. Kuraoka, I.,, E. H. Morita,, M. Saijo,, T. Matsuda,, K. Morikawa,, M. Shirakawa, and, K. Tanaka. 1996. Identification of a damaged–DNA binding domain of the XPA protein. Mutat. Res. 362:8795.
141. Lachaise, F.,, G. Martin,, C. Drougard,, A. Perl,, M. Vuillaume,, M. Wegnez,, A. Sarasin, and, L. Daya–Grosjean. 2001. Relationship between posttranslational modification of transaldolase and catalase deficiency in UV–sensitive repair–deficient xeroderma pigmentosum fibroblasts and SV40–transformed human cells. Free Radic. Biol. Med. 30:13651373.
142. Lambert, M. W., and, W. C. Lambert. 1999. DNA repair and chromatin structure in genetic diseases. Prog. Nucleic Acid Res. Mol. Biol. 63:257310.
143. Lambert, W. C.,, H. R. Kuo, and, M. W. Lambert. 1995. Xeroderma pigmentosum. Dermatol. Clin. 13:169209.
144. Lanza, A.,, P. Lagomarsini,, A. Casati,, P. Ghetti, and, M. Stefanini. 1997. Chromosomal fragility in the cancer–prone disease xero–derma pigmentosum preferentially involves bands relevant for cutaneous carcinogenesis. Int. J. Cancer 74:654663.
145. Lehmann, A. R., 1995. Nucleotide excision repair and the link with transcription. Trends Biochem. Sci. 20:402405.
146. Lehmann, A. R.,, D. Bootsma,, S. G. Clarkson,, J. E. Cleaver,, P. J. McAlpine,, K. Tanaka,, L. H. Thompson, and, R. D. Wood. 1994. Nomenclature of human DNA repair genes. Mutat. Res. 315:4142.
147. Li, L.,, E. S. Bales,, C. A. Peterson, and, R. J. Legerski. 1993. Characterization of molecular defects in xeroderma pigmentosum group C. Nat. Genet. 5:413417.
148. Lipinski, L. J.,, N. Hoehr,, S. J. Mazur,, G. L. Dianov,, S. Senturker,, M. Dizdaroglu, and, V. A. Bohr. 1999. Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. Nucleic Acids Res. 27:31533158.
149. Lippke, J. A.,, L. K. Gordon,, D. E. Brash, and, W. A. Haseltine. 1981. Distribution of UV light–induced damage in a defined sequence of human DNA: detection of alkaline–sensitive lesions at pyrimidine nucleoside–cytidine sequences. Proc. Natl. Acad. Sci. USA 78:33883392.
150. Lunn, R. M.,, K. J. Helzlsouer,, R. Parshad,, D. M. Umbach,, E. L. Harris,, K. K. Sanford, and, D. A. Bell. 2000. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21:551555.
151. Maher, V. M.,, D. J. Dorney,, A. L. Mendrala,, B. Konze–Thomas, and, J. J. McCormick. 1979. DNA excision–repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet irradiation. Mutat. Res. 62:311323.
152. Maher, V. M.,, L. M. Ouellette,, R. D. Curren, and, J. J. Mc– Cormick. 1976. Frequency of ultraviolet light–induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261:593595.
153. Maher, V. M.,, R.–H. Chen,, W. G. McGregor, and, J. J. Mc– Cormick. 1992. Biological evidence of strand–specific repair of carcinogen–induced DNA damage in diploid human cells, p., 126137. In V. A. Bohr,, K. Wassermann, and, K. H. Kraemer (ed.), DNA Repair Mechanisms. Munks–gaard, Copenhagen, Denmark.
154. Matsumura, Y.,, C. Nishigori,, T. Yagi,, S. Imamura, and, H. Takebe. 1998. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum. Mol. Genet. 7:969974.
155. McGregor, W. G.,, R. H. Chen,, L. Lukash,, V. M. Maher, and, J. J. McCormick. 1991. Cell cycle–dependent strand bias for UV–induced mutations in the transcribed strand of excision repair–proficient human fibroblasts but not in repair–deficient cells. Mol. Cell. Biol. 11:19271934.
156. McWhir, J.,, J. Selfridge,, D. J. Harrison,, S. Squires, and, D. W. Melton. 1993. Mice with DNA repair gene (ERCC–1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat. Genet. 5:217224.
157. Meira, L. B.,, D. L. Cheo,, R. E. Hammer,, D. K. Burns,, A. Reis, and, E. C. Friedberg. 1997. Genetic interaction between HAP1/REF–1 and p53. Nat. Genet. 17:145.
158. Mellon, I.,, T. Hock,, R. Reid,, P. C. Porter, and, J. C. States. 2002. Polymorphisms in the human xeroderma pigmentosum group A gene and their impact on cell survival and nucleotide excision repair. DNA Repair 1:531546.
159. Menck, C. F., 2002. Shining a light on photolyases. Nat. Genet. 32:338339.
160. Michelin, S.,, L. Daya–Grosjean,, F. Sureau,, S. Said,, A. Sarasin, and, H. G. Suarez. 1993. Characterization of a c–met proto–oncogene activated in human xeroderma pigmentosum cells after treatment with N– methyl–N’–nitro–N–nitrosoguanidine (MNNG). Oncogene 8:19831991.
161. Mimaki, T.,, M. Nitta,, M. Saijo,, N. Tachi,, R. Minami, and, K. Tanaka. 1996. Truncated XPA protein detected in atypical group A xeroderma pigmentosum. Acta Paediatr. 85:511513.
162. Misra, R. R.,, D. Ratnasinghe,, J. A. Tangrea,, J. Virtamo,, M. R. Andersen,, M. Barrett,, P. R. Taylor, and, D. Albanes. 2003. Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref–1, and the risk of lung cancer among male smokers in Finland. Cancer Lett. 191:171178.
163. Mitchell, D. L., and, R. S. Nairn. 1989. The biology of the (6–4) photoproduct. Photochem. Photobiol. 49:805819.
164. Miyashita, H.,, S. Mori,, N. Tanda,, K. Nakayama,, A. Kanzaki,, A. Sato,, H. Morikawa,, K. Motegi,, Y. Takebayashi, and, M. Fukumoto. 2001. Loss of heterozygosity of nucleotide excision repair factors in sporadic oral squamous cell carcinoma using microdissected tissue. Oncol. Rep. 8:11331138.
165. Miyauchi–Hashimoto, H.,, K. Kuwamoto,, Y. Urade,, K. Tanaka, and, T. Horio. 2001. Carcinogen–induced inflammation and immunosuppression are enhanced in xeroderma pigmentosum group A model mice associated with hyperproduction of prostaglandin E2. J. Immunol. 166:57825791.
166. Miyauchi–Hashimoto, H.,, K. Tanaka, and, T. Horio. 1996. Enhanced inflammation and immunosuppression by ultraviolet radiation in xeroderma pigmentosum group A (XPA) model mice. J. Investig. Dermatol. 107:343348.
167. Mohrenweiser, H. W., and, I. M. Jones. 1998. Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat. Res. 400:1524.
168. Moriwaki, S., and, K. H. Kraemer. 2001. Xeroderma pigmentosum—bridging a gap between clinic and laboratory. Photodermatol. Photoimmunol. Photomed. 17:4754.
169. Muotri, A. R.,, M. C. Marchetto,, L. F. Zerbini,, T. A. Libermann,, A. M. Ventura,, A. Sarasin, and, C. F. Menck. 2002. Complementation of the DNA repair deficiency in human xeroderma pigmentosum group A and C cells by recombinant adenovirus–mediated gene transfer. Hum. Gene Ther. 13:18331844.
170. Murai, H.,, S. Takeuchi,, Y. Nakatsu,, M. Ichikawa,, M. Yoshino,, Y. Gondo,, M. Katsuki, and, K. Tanaka. 2000. Studies of in vivo mutations in rpsL transgene in UVB–irradiated epidermis of XPA–deficient mice. Mutat. Res. 450:181192.
171. Myrand, S. P.,, R. S. Topping, and, J. C. States. 1996. Stable transformation of xeroderma pigmentosum group A cells with an XPA mini–gene restores normal DNA repair and mutagenesis of UV–treated plasmids. Carcinogenesis 17:19091917.
172. Nahari, D.,, L. McDaniel,, L. B. Task,, R. L. Daniel,, S. Velasco–Miguel, and, E. C. Friedberg. 2004. Mutations in the Trp53 gene of UV–irradiated Xpc mutant mice suggest a novel Xpc –dependent DNA repair process. DNA Repair 3:379386.
173. Nakane, H.,, S. Takeuchi,, S. Yuba,, M. Saijo,, Y. Nakatsu,, H. Murai,, Y. Nakatsuru,, T. Ishikawa,, S. Hirota,, Y. Kitamura, et al., 1995. High incidence of ultraviolet–B– or chemical–carcinogen–induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 377:165168.
174. Neisser, A., 1883. Ueber das xeroderma pigmentosum. Lioderma essentialis cum melanosi et telangiectasia. Jahrschr. Dermatol. Syphil. 1883:4762.
175. Ng, J. M.,, H. Vrieling,, K. Sugasawa,, M. P. Ooms,, J. A. Groote–goed,, J. T. Vreeburg,, P. Visser,, R. B. Beems,, T. G. Gorgels,, F. Hanaoka,, J. H. Hoeijmakers, and, G. T. van der Horst. 2002. Developmental defects and male sterility in mice lacking the ubiquitin–like DNA repair gene mHR23B. Mol. Cell. Biol. 22:12331245.
176. Nichols, A. F.,, P. Ong, and, S. Linn. 1996. Mutations specific to the xeroderma pigmentosum group E Ddb phenotype. J. Biol. Chem. 271: 2431724320.
177. Nishigori, C.,, S. Moriwaki,, H. Takebe,, T. Tanaka, and, S. Ima–mura. 1994. Gene alterations and clinical characteristics of xeroderma pigmentosum group A patients in Japan. Arch. Dermatol. 130:191197.
178. Nishigori, C.,, M. Zghal,, T. Yagi,, S. Imamura,, M. R. Komoun, and, H. Takebe. 1993. High prevalence of the point mutation in exon 6 of the xeroderma pigmentosum group A–complementing (XPAC) gene in xeroderma pigmentosum group A patients in Tunisia. Am. J. Hum. Genet. 53:10011006.
179. Norris, P. G.,, G. A. Limb,, A. S. Hamblin,, A. R. Lehmann,, C. F. Arlett,, J. Cole,, A. P. Waugh, and, J. L. Hawk. 1990. Immune function, mutant frequency, and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. J. Investig. Dermatol. 94:94100.
180. Nuzzo, F.,, P. Lagomarsini,, A. Casati,, R. Giorgi,, E. Berardesca, and, M. Stefanini. 1989. Clonal chromosome rearrangements in a fibroblast strain from a patient affected by xeroderma pigmentosum (complementation group C). Mutat. Res. 219:209215.
181. O’Donovan, A., and, R. D. Wood. 1993. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature 363:185188.
182. Ohtoshi, E.,, Y. Matsumura,, C. Nishigori,, K. I. Toda,, Y. Horiguchi,, M. Ikenaga, and, Y. Miyachi. 2001. Useful applications of DNA repair tests for differential diagnosis of atypical dyschromatosis symmetrica hereditaria from xeroderma pigmentosum. Br. J. Dermatol. 144:162168.
183. Otoshi, E.,, T. Yagi,, T. Mori,, T. Matsunaga,, O. Nikaido,, S. T. Kim,, K. Hitomi,, M. Ikenaga, and, T. Todo. 2000. Respective roles of cyclobutane pyrimidine dimers, (6–4)photoproducts, and minor photoproducts in ultraviolet mutagenesis of repair–deficient xeroderma pigmentosum A cells. Cancer Res. 60:17291735.
184. Park, C. H., and, A. Sancar. 1993. Reconstitution of mammalian excision repair activity with mutant cell–free extracts and XPAC and ERCC1 proteins expressed in Escherichia coli. Nucleic Acids Res. 21:51105116.
185. Park, D. J.,, J. Stoehlmacher,, W. Zhang,, D. D. Tsao–Wei,, S. Groshen, and, H. J. Lenz. 2001. A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum–based chemotherapy in patients with advanced colorectal cancer. Cancer Res. 61:86548658.
186. Park, J. Y.,, S. H. Park,, J. E. Choi,, S. Y. Lee,, H. S. Jeon,, S. I. Cha,, C. H. Kim,, J. H. Park,, S. Kam,, R. W. Park,, I. S. Kim, and, T. H. Jung. 2002. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer. Cancer Epidemiol. Biomarkers Prev. 11:993997.
187. Parrington, J. M.,, J. D. A. Delhanty, and, H. P. Baden. 1971. Unscheduled DNA synthesis, UV–induced chromosome aberrations and SV40 transformation in cultured cells from xeroderma pigmentosum. Ann. Hum. Genet. 35:149160.
188. Paterson, M. C.,, N. E. Gentner,, M. V. Middlestadt, and, M. Weinfeld. 1984. Cancer predisposition, carcinogen hypersensitivity, and aberrant DNA metabolism. J. Cell. Physiol. Suppl. 3:4562.
189. Patterson, M., and, G. Chu. 1989. Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol. Cell. Biol. 9:51055112.
190. Patton, J. D.,, L. A. Rowan,, A. L. Mendrala,, J. N. Howell,, V. M. Maher, and, J. J. McCormick. 1984. Xeroderma pigmentosum fibroblasts including cells from XP variants are abnormally sensitive to the mutagenic and cytotoxic action of broad spectrum simulated sunlight. Photochem. Photobiol. 39:3742.
191. Price, F. M.,, R. Parshad,, R. E. Tarone, and, K. K. Sanford. 1991. Radiation–induced chromatid aberrations in Cockayne syndrome and xeroderma pigmentosum group C fibroblasts in relation to cancer predisposition. Cancer Genet. Cytogenet. 57:110.
192. Protic–Sabljic, M., and, K. H. Kraemer. 1985. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmen– tosum cells. Proc. Natl. Acad. Sci. USA 82:66226626.
193. Protic–Sabljic, M.,, S. Seetharam,, M. M. Seidman, and, K. H. Kraemer. 1986. An SV40–transformed xeroderma pigmentosum group D cell line: establishment, ultraviolet sensitivity, transfection efficiency and plasmid mutation induction. Mutat. Res. 166:287294.
194. Protic–Sabljic, M.,, N. Tuteja,, P. J. Munson,, J. Hauser,, K. H. Kraemer, and, K. Dixon. 1986. UV light–induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells. Mol. Cell. Biol. 6:33493356.
195. Qiao, Y.,, M. R. Spitz,, Z. Guo,, M. Hadeyati,, L. Grossman,, K. H. Kraemer, and, Q. Wei. 2002. Rapid assessment of repair of ultraviolet DNA damage with a modified host–cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat. Res. 509:165174.
196. Quilliet, X.,, O. Chevallier–Lagente,, L. Zeng,, R. Calvayrac,, M. Mezzina,, A. Sarasin, and, M. Vuillaume. 1997. Retroviral–mediated correction of DNA repair defect in xeroderma pigmentosum cells is associated with recovery of catalase activity. Mutat. Res. 385:235242.
197. Rapic–Otrin, V.,, V. Navazza,, T. Nardo,, E. Botta,, M. McLenigan,, D. C. Bisi,, A. S. Levine, and, M. Stefanini. 2003. True XP group E patients have a defective UV–damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product. Hum. Mol. Genet. 12:15071522.
198. Reardon,, J. T. T. Bessho,, H. C. Kung,, P. H. Bolton, and, A. San–car. 1997. In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. USA 94:94639468.
199. Reis, A. M.,, D. L. Cheo,, L. B. Meira,, M. S. Greenblatt,, J. P. Bond,, D. Nahari, and, E. C. Friedberg. 2000. Genotype–specific Trp53 mutational analysis in ultraviolet B radiation–induced skin cancers in Xpc and Xpc Trp53 mutant mice. Cancer Res. 60:15711579.
200. Robbins, J. H., 1988. Xeroderma pigmentosum. Defective DNA repair causes skin cancer and neurodegeneration. JAMA 260:384388.
201. Robbins, J. H.,, K. H. Kraemer,, M. A. Lutzner,, B. W. Festoff, and, H. G. Coon. 1974. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Ann. Intern. Med. 80:221248.
202. Robbins, J. H.,, K. H. Kraemer,, S. N. Merchant, and, R. A. Brumback. 2002. Adult–onset xeroderma pigmentosum neurological disease— observations in an autopsy case. Clin. Neuropathol. 21:1823.
203. Robins, P.,, C. J. Jones,, M. Biggerstaff,, T. Lindahl, and, R. D. Wood. 1991. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J. 10:39133921.
204. Rolig, R. L., and, P. J. McKinnon. 2000. Linking DNA damage and neurodegeneration. Trends Neurosci. 23:417424.
205. Runger, T. M.,, B. Epe, and, K. Moller. 1995. Repair of ultraviolet B and singlet oxygen–induced DNA damage in xeroderma pigmentosum cells. J. Investig. Dermatol. 104:6873.
206. Sands, A. T.,, A. Abuin,, A. Sanchez,, C. J. Conti, and, A. Bradley. 1995. High susceptibility to ultraviolet–induced carcinogenesis in mice lacking XPC. Nature 377:162165.
207. Sarasin, A., and, A. Stary. 1997. Human cancer and DNA repair–deficient diseases. Cancer Detect. Prev. 21:406411.
208. Sasaki, M. S., 1973. DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells. Mutat. Res. 20:291293.
209. Sato, M.,, C. Nishigori,, T. Yagi, and, H. Takebe. 1996. Aberrant splicing and truncated–protein expression due to a newly identified XPA gene mutation. Mutat. Res. 362:199208.
210. Satoh, M. S.,, C. J. Jones,, R. D. Wood, and, T. Lindahl. 1993. DNA excision–repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical–induced base lesions. Proc. Natl. Acad. Sci. USA 90:63356339.
211. Satokata, I.,, K. Tanaka,, N. Miura,, I. Miyamoto,, Y. Satoh,, S. Kondo, and, Y. Okada. 1990. Characterization of a splicing mutation in group A xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA 87:99089912.