1887

Chapter 25 : Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap25-2.gif

Abstract:

This chapter discusses diseases associated with defects in nucleotide excision repair (NER) of DNA. It first talks about clinical phenotypes and cellular phenotypes of cockayne syndrome (CS). Genes designated CSA and CSB (representing the two complementation groups) have been isolated and characterized, and mutations have been identified in either of these two genes in all CS cases examined. Other clinical entities associated with mutations in CS or xeroderma pigmentosum (XP) genes are considered. The clinical entities discussed are cerebro-oculo-facio-skeletal (COFS) syndrome, UV-sensitive syndrome, and transcription syndromes. The biochemical and clinical consequences of different mutations in a single gene are often unpredictable and can produce different clinical phenotypes. Such is the case with both the combined XP/CS complex and another related disease called trichothiodystrophy (TTD) (or PIBIDS). The general considerations with respect to understanding the combined XP/CS complex apply to the relationship between XP and TTD.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25

Key Concept Ranking

RNA Polymerase II
0.6401786
DNA Synthesis
0.5423165
RNA Polymerase I
0.5392857
0.6401786
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 25–1
Figure 25–1

Cells from patients with CS are hypersensitive to killing by UV radiation.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–2
Figure 25–2

Cells from individuals with CS (fibroblasts are shown here) are slightly more sensitive than normal cells to killing following exposure to ionizing radiation. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–3
Figure 25–3

CS cells in culture manifest reduced ability to express a reporter gene (chloramphenicol acetyltransferase [CAT]) in a plasmid construct after exposure of the plasmid to UV radiation. WT, wild type. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–4
Figure 25–4

CS cells are hypermutable (shown here as mutations scored as thioguanine resistance [TG]) following exposure to UV radiation. XP cells are shown for comparison. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–5
Figure 25–5

When cells from individuals with CS are exposed to UV radiation, the recovery of total RNA synthesis (measured by the amount of [H]uridine incorporated into cells) is delayed relative to that observed in normal cells.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–6
Figure 25–6

CS cells (B) are defective in preferential NER of photoproducts from DNA compared to normal cells (A). TS, transcribed strand; NTS, nontranscribed strand. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–7
Figure 25–7

CS cells manifest increased apoptosis following exposure to UV radiation. This phenotype is substantially corrected following transfection with the appropriate wild-type gene. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–8
Figure 25–8

Genetic complementation groups for CS were determined by demonstrating correction of reduced rates of RNA synthesis after fusion of different CS cell lines. Correction of the phenotype in any fusion experiment implies that the two cell lines carry defects in different CS genes. RNA synthesis was measured by quantitating grain counts in autoradiograms. Monokaryons (monos) are shown as gold bars; bikaryons are shown as dark grey bars; multikaryons (multis) are shown as light grey bars. The CS numbers refer to particular cell lines from CS individuals. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–9
Figure 25–9

Correction of the phenotypes of UV radiation sensitivity (A) and recovery of defective RNA synthesis (B) in CS-B cells transfected with the cloned gene. Solid black line, wild-type cells; dotted black line, CS-A cells; dotted gold lines, complemented CS-A cells. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–10
Figure 25–10

Correction of the phenotype of sensitivity to UV radiation sensitivity of CS-A cells by the cloned gene, measured by expression of chloramphenicol acetyltransferase (CAT) activity from a UV-irradiated reporter plasmid. Solid grey line, wild-type cells; solid black line, CS-A cells; dotted black line, complemented CS-A cells. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–11
Figure 25–11

UV radiation-induced ubiquitination of the large subunit of RNA polymerase II in human cells in normal, CS-A, and CS-B cells. Pol IIo, hypophosphorylated form of RNA polymerase II; Pol IIa, hyperphosphorylated form of RNA polymerase II; x, ubiquitinated species of RNA polymerase II. Both CS-A and CS-B cells were transfected with an empty vector (control construct) or one carrying the or cDNA. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–12
Figure 25–12

UV radiation-induced translocation of CSA protein to the nucleus in CS-A cells expressing the gene. Cells were exposed to UV radiation and incubated for various periods. Cell extracts were subjected to specific treatments (lane numbers) to isolate various cytoplasmic and nuclear fractions, and these were then examined by gel electrophoresis. CSA protein was detected by Western blotting. Lane 9 represents a nuclear matrix fraction. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–13
Figure 25–13

Defective transcription-coupled NER of the gene in Csb-defective mouse cells. +/ + , wild-type mice; +/ —, heterozygous mutant mice; —/ —, homozygous mutant mice. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–14
Figure 25–14

Kinetics of skin tumor formation in (dark gold line), (grey line), and Csb (light gold line) mice following exposure of the shaved skin to UV radiation. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–15
Figure 25–15

Predisposition of wild-type, mutant, mutant, and double-mutant mice to skin cancer following exposure of the shaved dorsal skin to UV radiation. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–16
Figure 25–16

double-mutant mice (left) are runted and develop very slowly compared to wild-type control animals (right). (Courtesy of G. T. J. van der Horst.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–17
Figure 25–17

Complementation of UV radiation sensitivity in cells from a UV syndrome individual. WT, wild type. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–18
Figure 25–18

TTD patients manifest cleavage fractures of the hair shafts (trichoschisis). Also note the slightly undulating contour of the hair shaft and the wavy distribution pattern of melanin granules in the hair cortex. The latter feature reflects the varying orientation of the internal fiber structure in TTD.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–19
Figure 25–19

Alternating light and dark (tiger tail) pattern of the hair shaft as observed under polarizing light, from a patient with TTD. (Adapted from reference with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–20
Figure 25–20

Quantitative expression of repair synthesis levels in UV-irradiated TTD homozygous (TTD) and heterozygous (TTDH) G lymphocytes.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–21
Figure 25–21

(Left) Photograph of a TTD patient 10 days after a febrile episode associated with pneumonia. (Right) The same patient 10 weeks later. (Adapted from reference with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of

A TTD patient with β-thalassemia shows significantly different ratios of β/α-globin mRNA in cells compared to normal (control) cells and cells from a patient with XP. (Adapted from reference with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25–23
Figure 25–23

Mouse with TTD. Note the hair loss and reduced body size compared to a normal animal. (Courtesy of J. H. J. Hoeijmakers and reproduced with permission.)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816704.ch25
1. Ahmed, F. E., and, R. B. Setlow. 1978. Excision repair in ataxia telangiectasia, Fanconi’s anemia, Cockayne syndrome, and Bloom’s syndrome after treatment with ultraviolet radiation and N –acetoxy–2–acetylaminofluorene. Biochim. Biophys. Acta 521:805817.
2. Ahrens, C.,, M. Grewe,, M. Berneburg,, S. Grether–Beck,, X. Quilliet,, M. Mezzina,, A. Sarasin,, A. R. Lehmann,, C. F. Arlett, and, J. Krut–mann. 1997. Photocarcinogenesis and inhibition of intercellular adhesion molecule 1 expression in cells of DNA–repair–defective individuals. Proc. Natl. Acad. Sci. USA 94:68376841.
3. Amada, N.,, T. Tezuka,, A. Mayeda,, K. Araki,, N. Takei,, K. Todokoro, and, H. Nawa. 2003. A novel rat orthologue and homologue for the Drosophila crooked neck gene in neural stem cells and their immediate descendants. J. Biochem. 133:615623.
4. Andrews, A. D.,, S. F. Barrett,, F. W. Yoder, and, J. H. Robbins. 1978. Cockayne’s syndrome fibroblasts have increased sensitivity to ultraviolet light but normal rates of unscheduled DNA synthesis. J. Investig. Dermatol. 70:237239.
5. Arlett, C. F., 1980. Mutagenesis in repair–deficient human cell strains, p., 161174. In M. Alacevic (ed.), Progress in Environmental Mutagenesis. Elsevier Biomedical Press, Amsterdam, The Netherlands.
6. Arlett, C. F., and, S. A. Harcourt. 1978. Cell killing and mutagenesis in repair–defective human cells, p., 633636. In P. C. Hanawalt,, E. C. Friedberg, and, C. F. Fox (ed.), DNA Repair Mechanisms. Academic Press, Inc., New York, N.Y.
7. Arlett, C. F., and, S. A. Harcourt. 1982. Variation in response to mutagens amongst normal and repair–defective human cells, p., 249266. In C. W. Lawrence (ed.), Induced Mutagenesis. Molecular Mechanisms and Their Implications for Environmental Protection. Plenum Publishing Corp., New York, N.Y.
8. Balajee, A. S.,, A. May,, G. L. Dianov,, E. C. Friedberg, and, V. A. Bohr. 1997. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl. Acad. Sci. USA 94:43064311.
9. Balajee, A. S.,, L. Proietti De Santis,, R. M. Brosh, Jr.,, R. Selzer, and, V. A. Bohr. 2000. Role of the ATP ase domain of the Cockayne syndrome group B protein in UV induced apoptosis. Oncogene 19:477489.
10. Barrett, S. F.,, J. H. Robbins,, R. E. Tarone, and, K. H. Kraemer. 1991. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells. Mutat. Res. 255:281291.
11. Bergmann, E., and, J. M. Egly. 2001. Trichothiodystrophy, a transcription syndrome. Trends Genet. 17:279286.
12. Bohr, V. A.,, G. Dianov,, A. Balajee,, A. May, and, D. K. Orren. 1998. DNA repair and transcription in human premature aging disorders. J. In–vestig. Dermatol. Symp. Proc. 3:1113.
13. Bootsma, D., and, J. H. Hoeijmakers. 1993. DNA repair. Engagement with transcription. Nature 363:114115.
14. Botta, E.,, T. Nardo,, B. C. Broughton,, S. Marinoni,, A. R. Lehmann, and, M. Stefanini. 1998. Analysis of mutations in the XPD gene in Italian patients with trichothiodystrophy: site of mutation correlates with repair deficiency, but gene dosage appears to determine clinical severity. Am. J. Hum. Genet. 63:10361048.
15. Bradsher, J.,, J. Auriol,, L. Proietti de Santis,, S. Iben,, J. L. Vonesch,, I. Grummt, and, J. M. Egly. 2002. CSB is a component of RNA pol I transcription. Mol. Cell 10:819829.
16. Bradsher, J.,, F. Coin, and, J. M. Egly. 2000. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J. Biol. Chem. 275:25322538.
17. Bregman, D. B.,, R. Halaban,, A. J. van Gool,, K. A. Henning,, E. C. Friedberg, and, S. L. Warren. 1996. UV–induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. USA 93:1158611590.
18. Broughton, B. C.,, M. Berneburg,, H. Fawcett,, E. M. Taylor,, C. F. Arlett,, T. Nardo,, M. Stefanini,, E. Menefee,, V. H. Price,, S. Queille,, A. Sarasin,, E. Bohnert,, J. Krutmann,, R. Davidson,, K. H. Kraemer, and, A. R. Lehmann. 2001. Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum. Mol. Genet. 10:25392547.
19. Broughton, B. C.,, A. R. Lehmann,, S. A. Harcourt,, C. F. Arlett,, A. Sarasin,, W. J. Kleijer,, F. A. Beemer,, R. Nairn, and, D. L. Mitchell. 1990. Relationship between pyrimidine dimers, 6–4 photoproducts, repair synthesis and cell survival: studies using cells from patients with trichothiodystrophy. Mutat. Res. 235:3340.
20. Broughton, B. C.,, H. Steingrimsdottir,, C. A. Weber, and, A. R. Lehmann. 1994. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat. Genet. 7:189194.
21. Broughton, B. C.,, A. F. Thompson,, S. A. Harcourt,, W. Vermeulen,, J. H. Hoeijmakers,, E. Botta,, M. Stefanini,, M. D. King,, C. A. Weber,, J. Cole, et al., 1995. Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am. J. Hum. Genet. 56:167174.
22. Chan, G. L., and, J. B. Little. 1981. Cross–sensitivity of certain xeroderma pigmentosum and Cockayne syndrome fibroblast strains to both ionizing radiation and ultraviolet light. Mol. Gen. Genet. 181:562563.
23. Christians, F. C., and, P. C. Hanawalt. 1994. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne’s syndrome cells. Mutat. Res. 323:179187.
24. Citterio, E.,, S. Rademakers,, G. T. van der Horst,, A. J. van Gool,, J. H. Hoeijmakers, and, W. Vermeulen. 1998. Biochemical and biological characterization of wild–type and ATPase–deficient Cockayne syndrome B repair protein. J. Biol. Chem. 273:1184411851.
25. Citterio, E.,, V. Van Den Boom,, G. Schnitzler,, R. Kanaar,, E. Bonte,, R. E. Kingston,, J. H. Hoeijmakers, and, W. Vermeulen. 2000. ATP–dependent chromatin remodeling by the Cockayne syndrome B DNA repair–transcription–coupling factor. Mol. Cell. Biol. 20:76437653.
26. Cockayne, E. A., 1946. Dwarfism with retinal atrophy and deafness. Arch. Dis. Child. 21:5254.
27. Cockayne, E. A., 1936. Dwarfism with retinal atrophy and deafness. Arch. Dis. Child. 11:18.
28. Coin, F.,, E. Bergmann,, A. Tremeau–Bravard, and, J. M. Egly. 1999. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18:13571366.
29. Coin, F.,, J. C. Marinoni,, C. Rodolfo,, S. Fribourg,, A. M. Pedrini, and, J. M. Egly. 1998. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20:184188.
30. Cole, J.,, C. F. Arlett,, P. G. Norris,, G. Stephens,, A. P. Waugh,, D. M. Beare, and, M. H. Green. 1992. Elevated hprt mutant frequency in circulating T–lymphocytes of xeroderma pigmentosum patients. Mutat. Res. 273:171178.
31. Colella, S.,, T. Nardo,, D. Mallery,, C. Borrone,, R. Ricci,, G. Ruffa,, A. R. Lehmann, and, M. Stefanini. 1999. Alterations in the CSB gene in three Italian patients with the severe form of Cockayne syndrome (CS) but without clinical photosensitivity. Hum. Mol. Genet. 8:935941.
32. Crovato, F.,, C. Borrone, and, A. Rebora. 1983. Trichothiodystro–phy—BIDS, IBIDS and PIBIDS? Br. J. Dermatol. 108:247.
33. de Boer, J.,, J. de Wit,, H. van Steeg,, R. J. Berg,, H. Morreau,, P. Visser,, A. R. Lehmann,, M. Duran,, J. H. Hoeijmakers, and, G. Weeda. 1998. A mouse model for the basal transcription/DNA repair syndrome tri–chothiodystrophy. Mol. Cell 1:981990.
34. de Boer, J.,, I. Donker,, J. de Wit,, J. H. Hoeijmakers, and, G. Weeda. 1998. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. Cancer Res. 58:8994.
35. de Boer, J., and, J. H. Hoeijmakers. 2000. Nucleotide excision repair and human syndromes. Carcinogenesis 21:453460.
36. Deschavanne, P. J.,, N. Chavaudra,, B. Fertil, and, E. P. Malaise. 1984. Abnormal sensitivity of some Cockayne’s syndrome cell strains to UV–and gamma–rays. Association with a reduced ability to repair potentially lethal damage. Mutat. Res. 131:6170.
37. Deschavanne, P. J.,, C. Diatloff–Zito,, A. Macieria–Coelho, and, E. P. Malaise. 1981. Unusual sensitivity of two Cockayne’s syndrome cell strains to both UV and gamma irradiation. Mutat. Res. 91:403406.
38. de Waard, H.,, J. de Wit,, J. O. Andressoo,, C. T. van Oostrom,, B. Riis,, A. Weimann,, H. E. Poulsen,, H. van Steeg,, J. H. Hoeijmakers, and, G. T. van der Horst. 2004. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell. Biol. 24:79417948.
39. de Waard, H.,, J. de Wit,, T. G. Gorgels,, G. van den Aardweg,, J. O. Andressoo,, M. Vermeij,, H. van Steeg,, J. H. Hoeijmakers, and, G. T. van der Horst. 2003. Cell type–specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair 2:1325.
40. Dianov, G.,, C. Bischoff,, M. Sunesen, and, V. A. Bohr. 1999. Repair of 8–oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Nucleic Acids Res. 27:13651368.
41. Dianov, G. L.,, J. F. Houle,, N. Iyer,, V. A. Bohr, and, E. C. Friedberg. 1997. Reduced RNA polymerase II transcription in extracts of Cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic Acids Res. 25:36363642.
42. Drapkin, R.,, G. Le Roy,, H. Cho,, S. Akoulitchev, and, D. Reinberg. 1996. Human cyclin–dependent kinase–activating kinase exists in three distinct complexes. Proc. Natl. Acad. Sci. USA 93:64886493.
43. Dubaele, S.,, L. Proietti De Santis,, R. J. Bienstock,, A. Keriel,, M. Stefanini,, B. Van Houten, and, J. M. Egly. 2003. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11:16351646.
44. Dumaz, N.,, A. Duthu,, J. C. Ehrhart,, C. Drougard,, E. Appella,, C. W. Anderson,, P. May,, A. Sarasin, and, L. Daya–Grosjean. 1997. Prolonged p53 protein accumulation in trichothiodystrophy fibroblasts dependent on unrepaired pyrimidine dimers on the transcribed strands of cellular genes. Mol. Carcinog. 20:340347.
45. Egly, J. M., 2001. The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBSLett. 498:124128.
46. Emmert, S.,, H. Slor,, D. B. Busch,, S. Batko,, R. B. Albert,, D. Cole– man,, S. G. Khan,, B. Abu–Libdeh,, J. J. DiGiovanna,, B. B. Cunningham,, M. M. Lee,, J. Crollick,, H. Inui,, T. Ueda,, M. Hedayati,, L. Grossman,, T. Shahlavi,, J. E. Cleaver, and, K. H. Kraemer. 2002. Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients. J. Investig. Dermatol. 118:972982.
47. Eveno, E.,, F. Bourre,, X. Quilliet,, O. Chevallier–Lagente,, L. Roza,, A. P. Eker,, W. J. Kleijer,, O. Nikaido,, M. Stefanini,, J. H. Hoeijmakers, et al., 1995. Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases. Cancer Res. 55:43254332.
48. Friedberg, E. C., 1996. Cockayne syndrome—a primary defect in DNA repair, transcription, both or neither? Bioessays 18:731738.
49. Friedberg, E. C., 2001. Hot news: temperature–sensitive humans explain hereditary disease. Bioessays 23:671673.
50. Friedberg, E. C., 1996. Relationships between DNA repair and transcription. Annu. Rev. Biochem. 65:1542.
51. Friedberg, E. C.,, A. J. Bardwell,, L. Bardwell,, Z. Wang, and, G. Dianov. 1994. Transcription and nucleotide excision repair—reflections, considerations and recent biochemical insights. Mutat. Res. 307:514.
52. Friedberg, E. C.,, G. C. Walker, and, W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, D.C.
53. Friedberg, E. C., and, K. A. Henning. 1993. The conundrum of xeroderma pigmentosum—a rare disease with frequent complexities. Mutat. Res. 289:4753.
54. Fujimoto, W. Y.,, M. L. Green, and, J. E. Seegmiller. 1969. Cockayne’s syndrome: report of a case with hyperlipoproteinemia, hyperinsulinemia, renal disease, and normal growth hormone. J. Pediatr. 75:881884.
55. Gao, S.,, R. Drouin, and, G. P. Holmquist. 1994. DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science 263:14381440.
56. George, J. W.,, E. P. Salazar,, M. P. Vreeswijk,, J. E. Lamerdin,, J. T. Reardon,, M. Z. Zdzienicka,, A. Sancar,, S. Kadkhodayan,, R. S. Tebbs,, L. H. Mullenders, and, L. H. Thompson. 2001. Restoration of nucleotide excision repair in a helicase–deficient XPD mutant from intragenic suppression by a trichothiodystrophy mutation. Mol. Cell. Biol. 21:73557365.
57. Giglia–Mari, G.,, F. Coin,, J. A. Ranish,, D. Hoogstraten,, A. Theil,, N. Wijgers,, N. G. Jaspers,, A. Raams,, M. Argentini,, P. J. Van Der Spek,, E. Botta,, M. Stefanini,, J. M. Egly,, R. Aebersold,, J. H. Hoeijmakers, and, W. Vermeulen. 2004. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36:714719.
58. Gillespie, J. M., and, R. C. Marshall. 1983. A comparison of the proteins of normal and trichothiodystrophic human hair. J. Investig. Dermatol. 80:195202.
59. Graham, J. M., Jr.,, K. Anyane–Yeboa,, A. Raams,, E. Appeldoorn,, W. J. Kleijer,, V. H. Garritsen,, D. Busch,, T. G. Edersheim, and, N. G. Jaspers. 2001. Cerebro–oculo–facio–skeletal syndrome with a nucleotide excision repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy. Am. J. Hum. Genet. 69:291300.
60. Groisman, R.,, J. Polanowska,, I. Kuraoka,, J. Sawada,, M. Saijo,, R. Drapkin,, A. F. Kisselev,, K. Tanaka, and, Y. Nakatani. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357367.
61. Guzzetta, F., 1972. Cockayne–Neill–Dingwall syndrome. Handb. Clin. Neurol. 13:431440.
62. Hamel, B. C.,, A. Raams,, A. R. Schuitema–Dijkstra,, P. Simons,, I. van der Burgt,, N. G. Jaspers, and, W. J. Kleijer. 1996. Xeroderma pig–mentosum—Cockayne syndrome complex: a further case. J. Med. Genet. 33:607610.
63. Hanawalt, P. C., 2000. DNA repair. The bases for Cockayne syndrome. Nature 405:415416.
64. Hanawalt, P. C., 1991. Heterogeneity of DNA repair at the gene level. Mutat. Res. 247:203211.
65. Hanawalt, P. C., 1994. Transcription–coupled repair and human disease. Science 266:19571958.
66. Hanawalt, P. C., 1992. Transcription–dependent and transcription coupled DNA repair responses, p., 231246. In V. A. Bohr,, K. Wasserman, and, K. H. Kraemer (ed.), DNA Repair Mechanisms. Munksgaard, Copenhagen, Denmark.
67. Henning, K. A.,, L. Li,, N. Iyer,, L. D. McDaniel,, M. S. Reagan,, R. Legerski,, R. A. Schultz,, M. Stefanini,, A. R. Lehmann,, L. V. Mayne, et al., 1995. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:555564.
68. Horibata, K.,, Y. Iwamoto,, I. Kuraoka,, N. G. J. Jaspers,, A. Kurimasa,, M. Oshimura,, M. Ichihashi, and, K. Tanaka. 2004. Complete absence of Cockayne syndrome group B gene product gives rise to UV–sensitive syndrome but not Cockayne syndrome. Proc. Natl. Acad. Sci. USA 101:1541015415.
69. Itin, P. H.,, A. Sarasin, and, M. R. Pittelkow. 2001. Trichothiody–strophy: update on the sulfur–deficient brittle hair syndromes. J. Am. Acad. Dermatol. 44:891920.
70. Itoh, T.,, Y. Fujiwara,, T. Ono, and, M. Yamaizumi. 1995. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am. J. Hum. Genet. 56:12671276.
71. Itoh, T.,, T. Ono, and, M. Yamaizumi. 1994. A new UV–sensitive syndrome not belonging to any complementation groups of xeroderma pig–mentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat. Res. 314:233248.
72. Itoh, T.,, T. Shiomi,, N. Shiomi,, Y. Harada,, M. Wakasugi,, T. Mat–sunaga,, O. Nikaido,, E. C. Friedberg, and, M. Yamaizumi. 1996. Rodent complementation group 8 (ERCC8) corresponds to Cockayne syndrome complementation group A. Mutat. Res. 362:167174.
73. Itoh, T.,, M. Yamaizumi,, M. Ichihashi,, M. Hiro–Oka,, T. Matsui,, M. Matsuno, and, T. Ono. 1996. Clinical characteristics of three patients with UVs syndrome, a photosensitive disorder with defective DNA repair. Br. J. Dermatol. 134:11471150.
74. Iyer, N.,, M. S. Reagan,, K. J. Wu,, B. Canagarajah, and, E. C. Fried–berg. 1996. Interactions involving the human RNA polymerase II tran–scription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35:21572167.
75. Kamiuchi, S.,, M. Saijo,, E. Citterio,, M. de Jager,, J. H. Hoeijmakers, and, K. Tanaka. 2002. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription–coupled DNA repair. Proc. Natl. Acad. Sci. USA 99:201206.
76. Keriel, A.,, A. Stary,, A. Sarasin,, C. Rochette–Egly, and, J. M. Egly. 2002. XPD mutations prevent TFIIH –dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 109:125135.
77. Klungland, A.,, M. Hoss,, D. Gunz,, A. Constantinou,, S. G. Clark– son,, P. W. Doetsch,, P. H. Bolton,, R. D. Wood, and, T. Lindahl. 1999. Base excision repair of oxidative DNA damage activated by XPG protein. Mol. Cell 3:3342.
78. Kramer, K. H.,, C. N. Parris,, E. M. Gozukara,, D. D. Levy,, S. Adelberg, and, M. M. Seidman. 1992. Human DNA repair–deficient diseases: clinical disorders and molecular defects, p., 1522. In V. A. Bohr,, K. Wassermann, and, K. H. Kraemer (ed.), DNA Repair Mechanisms. Munksgaard, Copenhagen, Denmark.
79. Krutmann, J.,, E. Bohnert, and, E. G. Jung. 1994. Evidence that DNA damage is a mediate in ultraviolet B radiation–induced inhibition of human gene expression: ultraviolet B radiation effects on intercellular adhesion molecule–1 (ICAM–1) expression. J. Investig. Dermatol. 102:428432.
80. Kyng, K. J.,, A. May,, R. M. Brosh, Jr.,, W. H. Cheng,, C. Chen,, K. G. Becker, and, V. A. Bohr. 2003. The transcriptional response after ox–idative stress is defective in Cockayne syndrome group B cells. Oncogene 22:11351149.
81. Lambert, W. C., and, M. L. Lambert. 1989. Co–recessive inheritance: a model for diseases associated with defective DNA repair, p., 399428. In M. W. Lambert, and, J. Laval (ed.), DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells. Plenum Publishing, Corp., New York, N.Y.
82. Lambert, W. C., and, M. L. Lambert. 1985. Co–recessive inheritance: a model for DNA repair, genetic disease and carcinogenesis. Mutat. Res. 145:227234.
83. Lehmann, A., 1987. Cockayne’s syndrome and trichothiodystrophy: defective repair without cancer. Cancer Rev. 7:82103.
84. Lehmann, A. R., 1998. Dual functions of DNA repair genes: molecular, cellular, and clinical implications. Bioessays 20:146155.
85. Lehmann, A. R., 1982. Three complementation groups in Cockayne syndrome. Mutat. Res. 106:347356.
86. Lehmann, A. R., 1989. Trichothiodystrophy and the relationship between DNA repair and cancer. Bioessays 11:168170.
87. Lehmann, A. R., 2001. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15:1523.
88. Lehmann, A. R., and, L. V. Mayne. 1981. The response of Cockayne’s syndrome cells to UV–irradiation, p., 367371. In E. Seeberg, and, K. Kleppe (ed.), Chromosome Damage and Repair. Plenum Publishing Corp., New York. N.Y.
89. Lehmann, A. R., and, P. G. Norris. 1989. DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne’s syndrome and trichothiodystrophy. Carcinogenesis 10:13531356.
90. Lehmann, A. R., and, B. A. Bridges. 1990. Sunlight–induced cancer: some new aspects and implications of the xeroderma pigmentosum model. Br. J. Dermatol. 122(Suppl.,35):115119.
91. Lehmann, A. R.,, C. F. Arlett,, B. C. Broughton,, S. A. Harcourt,, H. Steingrimsdottir,, M. Stefanini,, M. R. Taylor,, A. T. Natarajan,, S. Green,, M. D. King,, R. M. MacKie,, J. B. P. Stephenson, and, J. L. Tolmie. 1988. Trichothiodystophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light. Cancer Res. 48:60906096.
92. Lehmann, A. R.,, S. Kirk–Bell, and, L. Mayne. 1979. Abnormal kinetics of DNA synthesis in ultraviolet light–irradiated cells from patients with Cockayne’s syndrome. Cancer Res. 39:42374241.
93. Lehmann, A. R., and, P. G. Norris. 1989. DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne’s syndrome and trichothiodystrophy. Carcinogenesis 10:13531356.
94. Lehmann, A. R.,, A. F. Thompson,, S. A. Harcourt,, M. Stefanini, and, P. G. Norris. 1993. Cockayne’s syndrome: correlation of clinical features with cellular sensitivity of RNA synthesis to UV irradiation. J. Med. Genet. 30:679682.
95. Le Page, F.,, E. E. Kwoh,, A. Avrutskaya,, A. Gentil,, S. A. Leadon,, A. Sarasin, and, P. K. Cooper. 2000. Transcription–coupled repair of 8– oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101:159171.
96. Li, Z.,, A. Yu, and, A. M. Weiner. 1998. Adenovirus type 12–induced fragility of the human RNU2 locus requires p53 function. J. Virol. 72:41834191.
97. Licht, C. L.,, T. Stevnsner, and, V. A. Bohr. 2003. Cockayne syndrome group B cellular and biochemical functions. Am. J. Hum. Genet. 73:12171239.
98. Lin, Y. W.,, M. Kubota,, H. Hirota,, K. Furusho,, K. Tomiwa,, J. Ochi,, Y. Kasahara,, H. Sasaki, and, S. Ohta. 1995. Somatic cell mutation frequency at the HPRT, T–cell antigen receptor and glycophorin A loci in Cockayne syndrome. Mutat. Res. 337:4955.
99. Lindenbaum, Y.,, D. Dickson,, P. Rosenbaum,, K. Kraemer,, I. Rob–bins, and, I. Rapin. 2001. Xeroderma pigmentosum/Cockayne syndrome complex: first neuropathological study and review of eight other cases. Eur. J. Paediatr. Neurol. 5:225242.
100. Liu, J.,, S. Akoulitchev,, A. Weber,, H. Ge,, S. Chuikov,, D. Libutti,, X. W. Wang,, J. W. Conaway,, C. C. Harris,, R. C. Conaway,, D. Reinberg, and, D. Levens. 2001. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 104:353363.
101. Ljungman, M., and, F. Zhang. 1996. Blockage of RNA polymerase as a possible trigger for u.v. light–induced apoptosis. Oncogene 13:823831.
102. Ljungman, M.,, F. Zhang,, F. Chen,, A. J. Rainbow, and, B. C. McKay. 1999. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18:583592.
103. Lowry, R. B.,, R. MacLean,, D. M. McLean, and, B. Tischler. 1971. Cataracts, microcephaly, kyphosis, and limited joint movement in two siblings: a new syndrome. J. Pediatr. 79:282284.
104. Lu, Y.,, H. Lian,, P. Sharma,, N. Schreiber–Agus,, R. G. Russell,, L. Chin,, G. T. van der Horst, and, D. B. Bregman. 2001. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer–predisposed Ink4a/ARF knockout mice. Mol. Cell. Biol. 21:18101818.
105. Madzak, C.,, J. Armier,, A. Stary,, L. Daya–Grosjean, and, A. Sarasin. 1993. UV–induced mutations in a shuttle vector replicated in repair deficient trichothiodystrophy cells differ with those in genetically–related cancer prone xeroderma pigmentosum. Carcinogenesis 14:12551260.
106. Mallery, D. L.,, B. Tanganelli,, S. Colella,, H. Steingrimsdottir,, A. J. van Gool,, C. Troelstra,, M. Stefanini, and, A. R. Lehmann. 1998. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am. J. Hum. Genet. 62:7785.
107. Marionnet, C.,, J. Armier,, A. Sarasin, and, A. Stary. 1998. Cy–clobutane pyrimidine dimers are the main mutagenic DNA photoproducts in DNA repair–deficient trichothiodystrophy cells. Cancer Res. 58:102108.
108. Marshall, R. R.,, C. F. Arlett,, S. A. Harcourt, and, B. A. Broughton. 1980. Increased sensitivity of cell strains from Cockayne’s syndrome to sis–ter–chromatid–exchange induction and cell killing by UV light. Mutat. Res. 69:107112.
109. Mayne, L. V., and, A. R. Lehmann. 1982. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42:14731478.
110. McCusick, V. A. (ed.)., 1992. Mendelian Inheritance in Man. Catalogs of Autosomal Dominant, Recessive and X–Linked Phenotypes. Johns Hopkins University Press, Baltimore, Md.
111. McElvanney, A. M.,, W. J. Wooldridge,, A. A. Khan, and, A. M. Ansons. 1996. Ophthalmic management of Cockayne’s syndrome. Eye 10:6164.
112. Meira, L. B.,, J. M. Graham, Jr.,, C. R. Greenberg,, D. B. Busch,, A. T. Doughty,, D. W. Ziffer,, D. M. Coleman,, I. Savre–Train, and, E. C. Friedberg. 2000. Manitoba aboriginal kindred with original cerebro–oculo–facio–skeletal syndrome has a mutation in the Cockayne syndrome group B (CSB) gene. Am. J. Hum. Genet. 66:12211228.
113. Mondello, C.,, T. Nardo,, S. Giliani,, J. E. Arrand,, C. A. Weber,, A. R. Lehmann,, F. Nuzzo, and, M. Stefanini. 1994. Molecular analysis of the XP–D gene in Italian families with patients affected by trichothiodystrophy and xeroderma pigmentosum group D. Mutat. Res. 314:159165.
114. Morison, W. L.,, C. Bucana,, N. Hashem,, M. L. Kripke,, J. E. Cleaver, and, J. L. German. 1985. Impaired immune function in patients with xeroderma pigmentosum. Cancer Res. 45:39293931.
115. Murai, M.,, Y. Enokido,, N. Inamura,, M. Yoshino,, Y. Nakatsu,, G. T. van der Horst,, J. H. Hoeijmakers,, K. Tanaka, and, H. Hatanaka. 2001. Early postnatal ataxia and abnormal cerebellar development in mice lacking xeroderma pigmentosum group A and Cockayne syndrome group B DNA repair genes. Proc. Natl. Acad. Sci. USA 98:1337913384.
116. Nakatsu, Y.,, H. Asahina,, E. Citterio,, S. Rademakers,, W. Vermeulen,, S. Kamiuchi,, J. P. Yeo,, M. C. Khaw,, M. Saijo,, N. Kodo,, T. Mat–suda,, J. H. Hoeijmakers, and, K. Tanaka. 2000. XAB2, a novel tetratricopeptide repeat protein involved in transcription–coupled DNA repair and transcription. J. Biol. Chem. 275:3493134937.
117. Nance, M. A., and, S. A. Berry. 1992. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42:6884.
118. Neer, E. J.,, C. J. Schmidt,, R. Nambudripad, and, T. F. Smith. 1994. The ancient regulatory–protein family of WD–repeat proteins. Nature 371:297300.
119. Nouspikel, T.,, P. Lalle,, S. A. Leadon,, P. K. Cooper, and, S. G. Clarkson. 1997. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl. Acad. Sci. USA 94:31163121.
120. Orren, D. K.,, G. L. Dianov, and, V. A. Bohr. 1996. The human CSB (ERCC6) gene corrects the transcription–coupled repair defect in the CHO cell mutant UV61. Nucleic Acids Res. 24:33173322.
121. Parris, C. N., and, K. H. Kraemer. 1993. Ultraviolet–induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Proc. Natl. Acad. Sci. USA 90:72607264.
122. Pena, S. D., and, M. H. Shokeir. 1974. Autosomal recessive cere–bro–oculo–facio–skeletal (COFS) syndrome. Clin. Genet. 5:285293.
123. Petrini, J. H., 2000. When more is better. Nat. Genet. 26:257258.
124. Pollitt, R. J.,, F. A. Jenner, and, M. Davies. 1968. Sibs with mental and physical retardation and trichorrhexis nodosa with abnormal amino acid composition of the hair. Arch. Dis. Child. 43:211216.
125. Price, V. H.,, R. B. Odom,, W. H. Ward, and, F. T. Jones. 1980. Trichothiodystrophy: sulfur–deficient brittle hair as a marker for a neuroectodermal symptom complex. Arch. Dermatol. 116:13751384.
126. Rainbow, A. J., and, M. Howes. 1982. A deficiency in the repair of UV and gamma–ray damaged DNA in fibroblasts from Cockayne’s syndrome. Mutat. Res. 93:235247.
127. Ranish, J. A.,, S. Hahn,, Y. Lu,, E. C. Yi,, X. J. Li,, J. Eng, and, R. Aebersold. 2004. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat. Genet. 36:707713.
128. Rapin, I.,, Y. Lindenbaum,, D. W. Dickson,, K. H. Kraemer, and, J. H. Robbins. 2000. Cockayne syndrome and xeroderma pigmentosum. Neurology 55:14421449.
129. Reardon, J. T.,, H. Ge,, E. Gibbs,, A. Sancar,, J. Hurwitz, and, Z. Q. Pan. 1996. Isolation and characterization of two human transcription factor IIH (TFIIH)–related complexes: ERCC2/CAK and TFIIH. Proc. Natl. Acad. Sci. USA 93:64826487.
130. Robbins, J. H.,, K. H. Kraemer,, M. A. Lutzner,, B. W. Festoff, and, H. G. Coon. 1974. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Ann. Intern. Med. 80:221248.
131. Rockx, D. A.,, R. Mason,, A. van Hoffen,, M. C. Barton,, E. Citterio,, D. B. Bregman,, A. A. van Zeeland,, H. Vrieling, and, L. H. Mullenders. 2000. UV–induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl. Acad. Sci. USA 97:1050310508.
132. Schmickel, R. D.,, E. H. Chu,, J. E. Trosko, and, C. C. Chang. 1977. Cockayne syndrome: a cellular sensitivity to ultraviolet light. Pediatrics 60:135139.
133. Schweiger, M.,, B. Auer,, H. J. Burtscher,, M. Hirsch–Kauffmann,, H. Klocker, and, R. Schneider. 1987. The Fritz–Lipmann lecture. DNA repair in human cells. Biochemistry of the hereditary diseases Fanconi’s anaemia and Cockayne syndrome. Eur. J. Biochem. 165:235242.
134. Selby, C. P., and, A. Sancar. 1997. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. USA 94:1120511209.
135. Selby, C. P., and, A. Sancar. 1997. Human transcription–repair coupling factor CSB/ERCC6 is a DNA–stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272:18851890.
136. Selby, C. P., and, A. Sancar. 1993. Molecular mechanism of transcription–repair coupling. Science 260:5358.
137. Selzer, R. R.,, S. Nyaga,, J. Tuo,, A. May,, M. Muftuoglu,, M. Christiansen,, E. Citterio,, R. M. Brosh, Jr., and, V. A. Bohr. 2002. Differential requirement for the ATP ase domain of the Cockayne syndrome group B gene in the processing of UV–induced DNA damage and 8–oxoguanine lesions in human cells. Nucleic Acids Res. 30:782793.
138. Shiomi, N.,, S. Kito,, M. Oyama,, T. Matsunaga,, Y. N. Harada,, M. Ikawa,, M. Okabe, and, T. Shiomi. 2004. Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA–mediated knock–in method. Mol. Cell. Biol. 24:37123719.
139. Spivak, G.,, T. Itoh,, T. Matsunaga,, O. Nikaido,, P. Hanawalt, and, M. Yamaizumi. 2002. Ultraviolet–sensitive syndrome cells are defective in transcription–coupled repair of cyclobutane pyrimidine dimers. DNA Repair 1:629643.
140. Stary, A., and, A. Sarasin. 1996. The genetic basis of xeroderma pigmentosum and trichothiodystrophy syndromes. Cancer Surv. 26:155171.
141. Stefanini, M.,, H. Fawcett,, E. Botta,, T. Nardo, and, A. R. Lehmann. 1996. Genetic analysis of twenty–two patients with Cockayne syndrome. Hum. Genet. 97:418423.
142. Stefanini, M.,, P. Lagomarsini,, C. F. Arlett,, S. Marioni,, C. Barrone,, F. Crovato,, G. Trevisan,, G. Cordone, and, F. Nuzzo. 1986. Xeroderma pigmentosum (complementation group D) mutation is present in patients affected by trichothiodystrophy with photosensitivity. Hum. Genet. 74:107112.
143. Stefanini, M.,, P. Lagomarsini,, S. Giliani,, T. Nardo,, E. Botta,, A. Peserico,, W. J. Kleijer,, A. R. Lehmann, and, A. Sarasin. 1993. Genetic heterogeneity of the excision repair defect associated by trichothiodystrophy. Carcinogenesis 14:11011105.
144. Stefanini, M.,, W. Vermeulen,, G. Weeda,, S. Giliani,, T. Nardo,, M. Mezzina,, A. Sarasin,, J. I. Harper,, C. F. Arlett,, J. H. Hoeijmakers, et al., 1993. A new nucleotide–excision–repair gene associated with the disorder trichothiodystrophy. Am. J. Hum. Genet. 53:817821.
145. Stevnsner, T.,, S. Nyaga,, N. C. de Souza–Pinto,, G. T. van der Horst,, T. G. Gorgels,, B. A. Hogue,, T. Thorslund, and, V. A. Bohr. 2002. Mi– tochondrial repair of 8–oxoguanine is deficient in Cockayne syndrome group B. Oncogene 21:86758682.
146. Sugita, K.,, N. Suzuki,, T. Kojima,, Y. Tanabe,, H. Nakajima,, A. Hayashi, and, M. Arima. 1987. Cockayne syndrome with delayed recovery of RNA synthesis after ultraviolet irradiation but normal ultraviolet survival. Pediatr. Res. 21:3437.
147. Sunesen, M.,, T. Stevnsner,, R. M. Brosh, Jr.,, G. L. Dianov, and, V. A. Bohr. 2002. Global genome repair of 8–oxoG in hamster cells requires a functional CSB gene product. Oncogene 21:35713578.
148. Suthers, G. K., and, K. E. Davies. 1992. Phenotypic heterogeneity and the single gene. Am. J. Hum. Genet. 50:887891.
149. Takayama, K.,, E. P. Salazar,, A. Lehmann,, M. Stefanini,, L. H. Thompson, and, C. A. Weber. 1995. Defects in the DNA repair and transcription gene ERCC2 in the cancer–prone disorder xeroderma pigmento–sum group D. Cancer Res. 55:56565663.
150. Tanaka, K.,, K. Kawai,, Y. Kumahara,, M. Ikenaga, and, Y. Okada. 1981. Genetic complementation groups in cockayne syndrome. Somatic Cell Genet. 7:445455.
151. Tantin, D., 1998. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J. Biol. Chem. 273:2779427799.
152. Tantin, D.,, A. Kansal, and, M. Carey. 1997. Recruitment of the putative transcription–repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17:68036814.
153. Taylor, E. M.,, B. C. Broughton,, E. Botta,, M. Stefanini,, A. Sarasin,, N. G. Jaspers,, H. Fawcett,, S. A. Harcourt,, C. F. Arlett, and, A. R. Lehmann. 1997. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc. Natl. Acad. Sci. USA 94:86588663.
154. Thompson, M. W.,, R. D. McInnes, and, H. Willard (ed.)., 1991. Thompson and Thompson—Genetics in Medicine, 5th ed. The W. B. Saunders Co., Philadelphia, Pa.
155. Tornaletti, S., and, G. P. Pfeifer. 1994. Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263:14361438.
156. Reference deleted.
157. Troelstra, C.,, A. van Gool,, J. de Wit,, W. Vermeulen,, D. Bootsma, and, J. H. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71:939953.
158. Tu, Y.,, S. Bates, and, G. P. Pfeifer. 1998. The transcription–repair coupling factor CSA is required for efficient repair only during the elongation stages of RNA polymerase II transcription. Mutat. Res. 400:143151.
159. Tuo, J.,, P. Jaruga,, H. Rodriguez,, M. Dizdaroglu, and, V. A. Bohr. 2002. The Cockayne syndrome group B gene product is involved in cellular repair of 8–hydroxyadenine in DNA. J. Biol. Chem. 277:3083230837.
160. Tuo, J.,, M. Muftuoglu,, C. Chen,, P. Jaruga,, R. R. Selzer,, R. M. Brosh, Jr.,, H. Rodriguez,, M. Dizdaroglu, and, V. A. Bohr. 2001. The Cockayne syndrome group B gene product is involved in general genome base excision repair of 8–hydroxyguanine in DNA. J. Biol. Chem. 276:4577245779.
161. van der Horst, G. T.,, L. Meira,, T. G. Gorgels,, J. de Wit,, S. Ve–lasco–Miguel,, J. A. Richardson,, Y. Kamp,, M. P. Vreeswijk,, B. Smit,, D. Bootsma,, J. H. Hoeijmakers, and, E. C. Friedberg. 2002. UVB radiation–induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair 1:143157.
162. van der Horst, G. T.,, H. van Steeg,, R. J. Berg,, A. J. van Gool,, J. de Wit,, G. Weeda,, H. Morreau,, R. B. Beems,, C. F. van Kreijl,, F. R. de Gruijl,, D. Bootsma, and, J. H. Hoeijmakers. 1997. Defective transcription–coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89:425435.
163. van Gool, A. J.,, E. Citterio,, S. Rademakers,, R. van Os,, W. Vermeulen,, A. Constantinou,, J. M. Egly,, D. Bootsma, and, J. H. Hoeijmak–ers. 1997. The Cockayne syndrome B protein, involved in transcription–coupled DNA repair, resides in an RNA polymerase II–containing complex. EMBO J. 16:59555965.
164. van Gool, A. J.,, G. T. van der Horst,, E. Citterio, and, J. H. Hoeijmakers. 1997. Cockayne syndrome: defective repair of transcription? EMBO J. 16:41554162.
165. van Hoffen, A.,, A. T. Natarajan,, L. V. Mayne,, A. A. van Zeeland,, L. H. Mullenders, and, J. Venema. 1993. Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res. 21:58905895.
166. Venema, J.,, L. H. Mullenders,, A. T. Natarajan,, A. A. van Zee–land, and, L. V. Mayne. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV–induced DNA damage in tran– scriptionally active DNA. Proc. Natl. Acad. Sci. USA 87:47074711.
167. Vermeulen, W.,, E. Bergmann,, J. Auriol,, S. Rademakers,, P. Frit,, E. Appeldoorn,, J. H. Hoeijmakers, and, J. M. Egly. 2000. Sublimiting con– centration of TFIIH transcription/DNA repair factor causes TTD–A trichothiodystrophy disorder. Nat. Genet. 26:307313.
168. Vermeulen, W.,, S. Rademakers,, N. G. Jaspers,, E. Appeldoorn,, A. Raams,, B. Klein,, W. J. Kleijer,, L. K. Hansen, and, J. H. Hoeijmakers. 2001. A temperature–sensitive disorder in basal transcription and DNA repair in humans. Nat. Genet. 27:299303.
169. Vermeulen, W.,, A. J. van Vuuren,, M. Chipoulet,, L. Schaeffer,, E. Appeldoorn,, G. Weeda,, N. G. Jaspers,, A. Priestley,, C. F. Arlett,, A. R. Lehmann, et al., 1994. Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harb. Symp. Quant. Biol. 59:317329.
170. Viprakasit, V.,, R. J. Gibbons,, B. C. Broughton,, J. L. Tolmie,, D. Brown,, P. Lunt,, R. M. Winter,, S. Marinoni,, M. Stefanini,, L. Brueton,, A. R. Lehmann, and, D. R. Higgs. 2001. Mutations in the general transcription factor TFIIH result in beta–thalassaemia in individuals with tri–chothiodystrophy. Hum. Mol. Genet. 10:27972802.
171. Vreeswijk, M. P.,, M. W. Overkamp,, B. E. Westland,, S. van Hees–Stuivenberg,, H. Vrieling,, M. Z. Zdzienicka,, A. A. van Zeeland, and, L. H. Mullenders. 1998. Enhanced UV–induced mutagenesis in the UV61 cell line, the Chinese hamster homologue of Cockayne’s syndrome B, is associated with defective transcription coupled repair of cyclobutane pyrim–idine dimers. Mutat. Res. 409:4956.
172. Wade, M. H., and, E. H. Y. Chu. 1978. Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome, p., 667670. In P. C. Hanawalt,, E. C. Friedberg, and, C. F. Fox (ed.), DNA Repair Mechanisms. Academic Press, Inc., New York, N.Y.
173. Wade, M. H., and, E. H. Chu. 1979. Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome. Mutat. Res. 59:4960.
174. Wang, X. W.,, H. Yeh,, L. Schaeffer,, R. Roy,, V. Moncollin,, J. M. Egly,, Z. Wang,, E. C. Freidberg,, M. K. Evans,, B. G. Taffe, et al., 1995. p53 modulation of TFIIH –associated nucleotide excision repair activity. Nat. Genet. 10:188195.
175. Wijnhoven, S. W.,, H. J. Kool,, C. T. van Oostrom,, R. B. Beems,, L. H. Mullenders,, A. A. van Zeeland,, G. T. van der Horst,, H. Vrieling, and, H. van Steeg. 2000. The relationship between benzo[a]pyrene–induced mutagenesis and carcinogenesis in repair–deficient Cockayne syndrome group B mice. Cancer Res. 60:56815687.
176. Yu, A.,, H. Y. Fan,, D. Liao,, A. D. Bailey, and, A. M. Weiner. 2000. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 5:801810.
177. Zafeiriou, D. I.,, F. Thorel,, A. Andreou,, W. J. Kleijer,, A. Raams,, V. H. Garritsen,, N. Gombakis,, N. G. Jaspers, and, S. G. Clarkson. 2001. Xeroderma pigmentosum group G with severe neurological involvement and features of Cockayne syndrome in infancy. Pediatr. Res. 49:407412.

Tables

Generic image for table
Table 25–1

Effect of anti-XAB2 antiserum microinjection on DNA repair (UDS and RRS) and transcription

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25
Generic image for table
Table 25–2

Complementation analysis of heterokaryons obtained by fusion of TTD and other human fibroblasts

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA, p 895-918. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error