Chapter 27 : Diseases Associated with Disordered DNA Helicase Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in

Diseases Associated with Disordered DNA Helicase Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555816704/9781555813192_Chap27-2.gif


This chapter begins with a brief review of the biochemistry of RecQ helicases and is followed by a discussion of biological data obtained from the study of less complex organisms such as and yeast. The genomes of these organisms bear single gene homologs, and isolated mutants have provided insights into the general function of this family of proteins. The chapter then talks about human diseases that are characterized by defects in the human . The gene defective in was the first of the disease genes to be identified as a member of this human gene family. This was followed by identification of the gene mutated in . Analysis of two additional homologs, and , revealed gene mutations in some (but not all) patients with the cancer-prone human disorder and in patients with . In contrast to xeroderma pigmentosum, where mutations in any one of a number of different genes that function in nucleotide excision repair yield the same clinical phenotypes, the disorders described in the chapter exhibit distinct clinical and cellular features, suggesting that these similar proteins function at different stages of DNA metabolism. Each of the disorders is considered separately in the chapter, with a concluding summary of key similarities and differences.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27

Key Concept Ranking

DNA Synthesis
Genetic Recombination
RNA Polymerase II
Hepatitis C virus
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 27–1
Figure 27–1

(A) The RecQ helicase has a claw-like structure consisting of two RecA-like domains of mixed α-β structure and a C-terminal α-helical region ( ). DNA-binding residues are located in the cleft between the RecA domains, and movements of these domains coupled to ATP hydrolysis power the separation of DNA strands by the helicase (compare Fig. 27–3 and 27-4 ). (B) The nucleotide-binding site of RecQ comprises residues on the edge of the central β-sheet within one of the RecA-like domains. These residues include Walker type I and II motifs, which are present in a wide variety of ATPases. A divalent metal ion (grey sphere) assists ATP hydrolysis, presumably by positioning the nucleotide and counteracting a buildup of negative charge on the γ-phosphate leaving group.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–2
Figure 27–2

The arginine finger and regulation of ATPase activity. The coupling of ATP hydrolysis with the DNA-unwinding activity of helicases involves a conformationally sensitive switch in ATPase activity mediated by a residue known as an arginine finger. (A) The Rep helicase binds ATP in the cleft between RecA-like domains ( )(compare Fig. 27–1 ). Most ATP-binding residues are located on one of the RecA domains, and a catalytically essential arginine (the arginine finger) is donated by the apposing RecA domain. An enlarged image of the dashed box is shown in (B). (B) Movements of the RecA domains in response to DNA binding and translocation are thought to position the arginine finger (Arg-finger) alternately in an active position contacting the γ-phosphate of ATP and an inactive conformation that allows ATP binding but not hydrolysis. In this way, the release of energy from ATP hydrolysis can be coordinated with movement of the helicase along DNA and DNA-unwinding activity.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–3
Figure 27–3

PcrA unwinds DNA by an inchworm mechanism. A series of crystal structures of the PcrA helicase bound to ATP and DNA substrates show an inchworm-like mechanism of DNA unwinding ( )(compare Fig. 27–4 ). The helicase moves in a 3’ →5’ direction along one DNA strand, separating it from the complementary strand. The 3’ tail of the DNA substrate binds in the cleft between RecA-like domains and presumably is drawn through the cleft during translocation. Interactions with the junction between single-stranded and double-stranded DNA (top of figure) are thought to destabilize base pairing and further promote DNA unwinding.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–4
Figure 27–4

Mechanisms of helicase-catalyzed DNA unwinding. Many mechanisms have been proposed for the DNA-unwinding activity of helicases, but most include elements of the active-rolling or inchworm mechanisms ( ). (A) The active-rolling model proposed as the mechanism of DNA unwinding by the dimeric Rep helicase ( ) involves the alternating binding of two Rep subunits to the single-stranded DNA/double-stranded DNA junction. Binding by the leading subunit promotes melting of DNA strands, and then a conformational change positions the other subunit in the leading position to advance the unwinding reaction. (B) The inchworm mechanism illustrated by crystal structures of the PcrA helicase ( ) (compare Fig. 27–3 ) involves conformational changes within a helicase monomer that slide the protein along the DNA in a processive manner. (C) The inchworm mechanism is analogous to the movement of two hands along a rod-shaped object. The hands alternate their grip on the rod as the hands slide apart and then back together, inching along the rod, as illustrated by the motion from 1A to 2A. These sliding motions involve conformational changes in the helicase that are coupled to the energy of ATP hydrolysis.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–5
Figure 27–5

DNA remodeling and double-stranded DNA translocation activities of ring-shaped helicases. A gel-based assay showed that the ring-shaped helicases DnaB and T7 gp4 can translocate on double-stranded DNA without strand separation occurring ( ). After the helicase loads on the 5’ single-stranded DNA tail, translocation on double-stranded DNA remodels a four-way DNA junction (Holliday junction), resulting in the products shown alongside the gel diagrammed here. (Individual strands identified as I to IV. Asterisks denote radiolabeled end.) DNA unwinding requires a substrate with an unpaired 3’ tail that is diverted to the outside of the helicase ring so that the strands are separated during movement of the helicase on the opposite strand in a 5’ → 3’ direction.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–6
Figure 27–6

Remodeling of a stalled replication fork by helicases such as RecG. (A) Structure of the RecG helicase on a DNA template with positioning of the leading and lagging strands and ADP as shown. (B) Helicases such as RecG catalyze the reversal of stalled replication forks, creating a four-way junction termed a “chicken foot” that is subject to excision repair or recombination ( ).

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–7
Figure 27–7

Technique used to evaluate SCE frequency. Cells are grown in the presence of BrdU for 24 h and, on average, have replicated their DNA once, resulting in one DNA strand on each chromatid having incorporated BrdU (unifiliarly). Each of these chromatids segregates to a new cell, and after another 24 h they have undergone another round of DNA replication. The chromosome then has one chromatid that has both strands of DNA labeled with BrdU (bifiliarly) and the other chromatid DNA strand unifiliarly labeled with BrdU. Individual DNA strands are shown for each chromosome or chromatid across the top of the figure. Chromosome spreads prepared from these cells are stained for detection of the unifiliarly labeled strand and can be visualized on a light microscope. After staining, double-stranded chromatids are shown as they would be visualized without individual DNA strands being identified. For every SCE, there is a change in the chromatids containing the stained DNA. This occurs occasionally in control cells and frequently in BS cells.

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–8
Figure 27–8

Mitotic interallelic recombination. In mitotic cells, genetic recombination between homologs should be inconsequential since identical material is present on both. However, when the homologs contain different alleles, there can be consequences from interallelic recombination. While this was thought to be infrequent in mitotic cells, BS cells carrying two different mutations can reconstitute a wild-type allele both in vivo and in vitro following recombination. Depicted are the two different mutant alleles for the gene—one on each chromosome 15. The two different gene mutations are designated BLM-A and BLM-B, with the wild-type sequence at each of these sites represented by a + sign. For convenience, this patient is considered to be heterozygous for alleles at flanking polymorphic loci with the genotypes Aa, Bb, and Cc and alleles distributed on the two chromosomes as shown (top). A chromosome 15 bearing a wild-type locus and requisite flanking markers (designated a++BC) can be generated following interallelic recombination. This cell and all of its progeny will express normal BLM protein. Loss of heterozygosity for distal markers is illustrated for the cells in the dashed boxes at the bottom. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–9
Figure 27–9

Comparison of the RecQ helicases found in different organisms. The number of amino acid (aa) residues in each protein is indicated on the right. The conserved helicase (dark gold box) and nonconserved terminal domains (light grey box) are indicated. The region of homology C-terminal to the helicase domain is indicated as a light gold box. The exonuclease domains of WRN and FFA-1 are shown as dark grey boxes. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–10
Figure 27–10

Diagram of the distribution of wild-type BLM protein and mutant alleles using current nomenclature as defined at the Human Genome Variation Society website (http://www. HGVS.org). Stop codons are indicated by an X after the codon number. Domain organization and location are indicated under the diagram. N, N terminus; C, C terminus; NLS, nuclear localization signal. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–11
Figure 27–11

(A) Helicase substrates on which BLM and WRN can function. The lengths of the features of the substrate are indicated. All substrates are drawn with the 5’ end of the upper strand of the duplex on the left. (B) Graph of the comparative unwinding activity of BLM and WRN on the substrates. WRN is discussed later in this chapter. k is the pseudo-first-order rate constant of DNA unwinding. Gold bars indicate BLM protein unwinding, and grey bars indicate WRN protein unwinding. nt, nucleotide. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–12
Figure 27–12

Generation of a substrate containing a double Holliday junction. (A) Diagram representing the oligonucleotides and steps used in the construction of double Holliday junctions. (B) Diagram representing strand intertwinings that result in the formation of a topological link between oligonucleotides B1 and R1 present in double Holliday junctions. (C) Denaturing polyacrylamide gel electrophoresis (8% polyacrylamide) confirming the structure of the double Holliday junction in which oligonucleotide B1 is labeled (asterisk). Representations of the label in different molecules and their relative electrophoretic mobilities are shown. Lanes: 1, labeled B1 oligonucleotide; 2, double Holliday junction; 3 and 4, double Holliday junction digested with HhaI; 5 and 6, double Holliday junction digested with RsaI. The products in lanes 4 and 6 were treated with ExoI. (D) Denaturing polyacrylamide gel electrophoresis (8% polyacrylamide) confirming the structure of the double Holliday junction in which oligonucleotide R1 was labeled. Lane designations are as in panel C. The asterisks denote position of the radiolabel. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–13
Figure 27–13

BLM and TOP3A can convert double Holliday junctions into circular products. (A) A double Holliday junction was incubated alone (lane 3) or with increasing concentrations of BLM, as indicated. TOP3A was included in lanes 9 to 14. Labeled linear R1 and circular R1, as released by HhaI digestion of the double Holliday junction, were run as markers in lanes 1 and 2, respectively. The position of product P is indicated. (B) The reaction requires catalytically active TOP3A. The double Holliday junction was incubated alone (lane 2) or with increasing concentrations of either TOP3A (lanes 4 to 9) or TOP3A(Y337F) (lanes 10 to 15), as indicated. BLM was included in lanes 3 to 8 and 10 to 14, as indicated. Labeled linear R1 and circular R1 were run together in lane 1 as markers. Lanes labeled R1 or H denote RsaI or HhaI digestion, respectively, of the double Holliday junction complex with the labeled, single-stranded molecule running as shown. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–14
Figure 27–14

Relative number of apoptotic cells as a function of WRN genotype and camptothecin concentration. Cells were cultured in the presence or absence of camptothecin for 24 h. Solid lines represent WRN mutant cells, and dotted lines represent wild-type siblings from the same families. The degree of shading identifies sibling pairs. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27–15
Figure 27–15

Gene structure of and known mutations in RAPADILINO syndrome and RTS. The genomic structure of the helicase gene contains 21 exons and has a typical housekeeping promoter. The known RTS mutations are presented in the genomic sequence or in the cDNA sequence; stop codons are indicated by an X. In the figure, the helicase domain is indicated in dark gold. (Adapted from reference .)

Citation: Errol C, Graham C, Wolfram S, Richard D, Roger A, Tom E. 2006. Diseases Associated with Disordered DNA Helicase Function, p 947-978. In DNA Repair and Mutagenesis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816704.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abrahams, J. P.,, A. G. Leslie,, R. Lutter, and, J. E. Walker. 1994. Structure at 2.8 Å resolution of F1–ATPase from bovine heart mitochondria. Nature 370:621628.
2. Adams, M. D.,, M. McVey, and, J. J. Sekelsky. 2003. Drosophila BLM in double–strand break repair by synthesis–dependent strand annealing. Science 299:265267.
3. Ahmad, F.,, C. D. Kaplan, and, E. Stewart. 2002. Helicase activity is only partially required for Schizosaccharomyces pombe Rqh1p function. Yeast 19:13811398.
4. Alhadeff, B.,, M. Velivasakis,, I. Pagan–Charry,, W. C. Wright, and, M. Siniscalco. 1980. High rate of sister chromatid exchanges of Bloom’s chromosomes is corrected in rodent human somatic cell hybrids. Cyto– genet. Cell Genet. 27:823.
5. Arase, S.,, H. Nakanishi,, S. Kodama, and, K. Ishizaki. 1990. Liquid–holding recovery of sister chromatid exchanges in UV–irradiated normal and xeroderma pigmentosum complementation groups A and F fibroblasts. Arch. Dermatol. Res. 282:6870.
6. Bailis, J. M., and, S. L. Forsburg. 2004. MCM proteins: DNA damage, mutagenesis and repair. Curr. Opin. Genet. Dev. 14:1721.
7. Balajee, A. S.,, A. Machwe,, A. May,, M. D. Gray,, J. Oshima,, G. M. Martin,, J. O. Nehlin,, R. Brosh,, D. K. Orren, and, V. A. Bohr. 1999. The Werner syndrome protein is involved in RNA polymerase II transcription. Mol. Biol. Cell 10:26552668.
8. Balraj, P.,, P. Concannon,, R. Jamal,, A. Beghini,, T. S. Hoe,, A. S. Khoo, and, L. Volpi. 2002. An unusual mutation in RECQ4 gene leading to Rothmund–Thomson syndrome. Mutat. Res. 508:99105.
9. Barnes, D. E.,, A. E. Tomkinson,, A. R. Lehmann,, A. D. Webster, and, T. Lindahl. 1992. Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA–damaging agents. Cell 69:495503.
10. Beall, E. L., and, D. C. Rio. 1996. Drosophila IRBP/Ku p70 corresponds to the mutagen–sensitive mus309 gene and is involved in P–element excision in vivo. Genes Dev. 10:921933.
11. Beamish, H.,, P. Kedar,, H. Kaneko,, P. Chen,, T. Fukao,, C. Peng,, S. Beresten,, N. Gueven,, D. Purdie,, S. Lees–Miller,, N. Ellis,, N. Kondo, and, M. F. Lavin. 2002. Functional link between BLM defective in Bloom’s syndrome and the ataxia–telangiectasia–mutated protein, ATM. J. Biol. Chem. 277:3051530523.
12. Bennett, R. J.,, J. L. Keck, and, J. C. Wang. 1999. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J. Mol. Biol. 289:235248.
13. Bennett, S. E.,, A. Umar,, J. Oshima,, R. J. Monnat, Jr., and, T. A. Kunkel. 1997. Mismatch repair in extracts of Werner syndrome cell lines. Cancer Res. 57:29562960.
14. Bernstein, D. A.,, M. C. Zittel, and, J. L. Keck. 2003. High–resolution structure of the E. coli RecQ helicase catalytic core. EMBO J. 22: 49104921.
15. Bertazzoni, U.,, A. I. Scovassi,, M. Stefanini,, E. Giulotto,, S. Spadari, and, A. M. Pedrini. 1978. DNA polymerases alpha beta and gamma in inherited diseases affecting DNA repair. Nucleic Acids Res. 5:21892196.
16. Bezzubova, O.,, A. Silbergleit,, Y. Yamaguchi–Iwai,, S. Takeda, and, J. M. Buerstedd. 1997. Reduced X–ray resistance and homologous recombination frequencies in a RAD54–/– mutant of the chicken DT40 cell line. Cell 89:185193.
17. Bielfeld, V.,, M. Weichenthal,, M. Roser,, E. Breitbart,, J. Berger,, E. Seemanova, and, H. Rudiger. 1989. Ultraviolet–induced chromosomal instability in cultured fibroblasts of heterozygote carriers or xeroderma pigmentosum. Cancer Genet. Cytogenet. 43:219226.
18. Bird, L. E.,, H. S. Subramanya, and, D. B. Wigley. 1998. Helicases: a unifying structural theme? Curr. Opin. Struct. Biol. 8:1418.
19. Bischof, O.,, S. H. Kim,, J. Irving,, S. Beresten,, N. A. Ellis, and, J. Campisi. 2001. Regulation and localization of the Bloom syndrome protein in response to DNA damage. J. Cell Biol. 153:367380.
20. Blander, G.,, J. Kipnis,, J. F. Leal,, C. E. Yu,, G. D. Schellenberg, and, M. Oren. 1999. Physical and functional interaction between p53 and the Werner’s syndrome protein. J. Biol. Chem. 274:2946329469.
21. Bloom, D., 1954. Congenital telangiectatic erythem resembling lupus erytematosus in dwarfs. Am. J. Dis. Child 88:754.
22. Bohr, V. A., 2002. Human premature aging syndromes and genomic instability. Mech. Ageing Dev. 123:987993.
23. Bohr, V. A.,, M. Cooper,, D. Orren,, A. Machwe,, J. Piotrowski,, J. Sommers,, P. Karmakar, and, R. Brosh. 2000. Werner syndrome protein: biochemical properties and functional interactions. Exp. Gerontol. 35:695702.
24. Boyd, J. B.,, M. D. Golino,, K. E. Shaw,, C. J. Osgood, and, M. M. Green. 1981. Third–chromosome mutagen–sensitive mutants of Drosophila melanogaster. Genetics 97:607623.
25. Brooks–Wilson, A. R.,, M. J. Emond, and, R. J. Monnat, Jr., 1997. Unexpectedly low loss of heterozygosity in genetically unstable Werner syndrome cell lines. Genes Chromosomes Cancer 18:133142.
26. Brosh, R. M., Jr., and, V. A. Bohr. 2002. Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp. Gerontol. 37:491506.
27. Brosh, R. M., Jr.,, D. K. Orren,, J. O. Nehlin,, P. H. Ravn,, M. K. Kenny,, A. Machwe, and, V. A. Bohr. 1999. Functional and physical interaction between WRN helicase and human replication protein A. J. Biol. Chem. 274:1834118350.
28. Bryant, E. M.,, H. Hoehn, and, G. M. Martin. 1979. Normalisation of sister chromatid exchange frequencies in Bloom’s syndrome by euploid cell hybridisation. Nature 279:795796.
29. Bujalowski, W., 2003. Expanding the physiological role of the hexameric DnaB helicase. Trends Biochem. Sci. 28:116118.
30. Caria, H.,, A. Quintas,, T. Chaveca, and, J. Rueff. 1997. The role of poly(ADP–ribose)polymerase in the induction of sister chromatid exchanges and micronuclei by mitomycin C in Down’s syndrome cells as compared to euploid cells. Mutat. Res. 377:269277.
31. Chan, J. Y.,, F. F. Becker,, J. German, and, J. H. Ray. 1987. Altered DNA ligase I activity in Bloom’s syndrome cells. Nature 325:357359.
32. Changela, A.,, K. Perry,, B. Taneja, and, A. Mondragon. 2003. DNA manipulators: caught in the act. Curr. Opin. Struct. Biol. 13:1522.
33. Cheng, R. Z.,, S. Murano,, B. Kurz, and, R. J. Shmookler Reis. 1990. Homologous recombination is elevated in some Werner–like syndromes but not during normal in vitro or in vivo senescence of mammalian cells. Mutat. Res. 237:259269.
34. Cheng, W.,, J. Hsieh,, K. M. Brendza, and, T. M. Lohman. 2001. E. coli Rep oligomers are required to initiate DNA unwinding in vitro. J. Mol. Biol. 310:327350.
35. Chester, N.,, F. Kuo,, C. Kozak,, C. D. O’Hara, and, P. Leder. 1998. Stage–specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom’s syndrome gene. Genes Dev. 12:33823393.
36. Cleary, S. P.,, W. Zhang,, N. Di Nicola,, M. Aronson,, J. Aube,, A. Steinman,, R. Haddad,, M. Redston,, S. Gallinger,, S. A. Narod, and, R. Gryfe. 2003. Heterozygosity for the BLM<Ash> mutation and cancer risk. Cancer Res. 63:17691771.
37. Cobb, J. A.,, L. Bjergbaek,, K. Shimada,, C. Frei, and, S. M. Gasser. 2003. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22:43254336.
38. Collister, M.,, D. P. Lane, and, B. L. Kuehl. 1998. Differential expression of p53, p21waf1/cip1 and hdm2 dependent on DNA damage in Bloom’s syndrome fibroblasts. Carcinogenesis 19:21152120.
39. Cooper, M. P.,, A. Machwe,, D. K. Orren,, R. M. Brosh,, D. Rams–den, and, V. A. Bohr. 2000. Ku complex interacts with and stimulates the Werner protein. Genes Dev. 14:907912.
40. Davey, S.,, C. S. Han,, S. A. Ramer,, J. C. Klassen,, A. Jacobson, and, A. Eisenberger. 1998. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom’s syndrome disease gene. Mol. Cell. Biol. 18:27212728.
41. Dehazya, P., and, M. A. Sirover. 1986. Regulation of hypoxanthine DNA glycosylase in normal human and Bloom’s syndrome fibroblasts. Cancer Res. 46:37563761.
42. Der Kaloustian, V. M.,, J. J. McGill,, M. Vekemans, and, H. R. Kopelman. 1990. Clonal lines of aneuploid cells in Rothmund–Thomson syndrome. Am. J. Med. Genet. 37:336339.
43. Dillingham, M. S., and, S. C. Kowalczykowski. 2001. A step backward in advancing DNA replication: rescue of stalled replication forks by RecG. Mol. Cell 8:734736.
44. Dutta, A.,, J. M. Ruppert,, J. C. Aster, and, E. Winchester. 1993. Inhibition of DNA replication factor RPA by p53. Nature 365:7982.
45. Egelman, E. H., 1998. Bacterial helicases. J. Struct. Biol. 124:123128.
46. Elli, R.,, L. Chessa,, A. Antonelli,, P. Petrinelli,, R. Ambra, and, L. Marcucci. 1996. Effects of topoisomerase II inhibition in lymphoblasts from patients with progeroid and “chromosome instability” syndromes. Cancer Genet. Cytogenet. 87:112116.
47. Ellis, N. A.,, J. Groden,, T. Z. Ye,, J. Straughen,, D. J. Lennon,, S. Ciocci,, M. Proytcheva, and, J. German. 1995. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655666.
48. Ellis, N. A.,, D. J. Lennon,, M. Proytcheva,, B. Alhadeff,, E. E. Henderson, and, J. German. 1995. Somatic intragenic recombination within the mutated locus BLM can correct the high sister–chromatid exchange phenotype of Bloom syndrome cells. Am. J. Hum. Genet. 57:10191027.
49. Ellis, N. A.,, A. M. Roe,, J. Kozloski,, M. Proytcheva,, C. Falk, and, J. German. 1994. Linkage disequilibrium between the FES, D15S127, and BLM loci in Ashkenazi Jews with Bloom syndrome. Am. J. Hum. Genet. 55:453460.
50. Epstein, C. J.,, G. M. Martin,, A. L. Schultz, and, A. G. Motulsky. 1966. Werner’s syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45:177222.
51. Faragher, R. G.,, I. R. Kill,, J. A. Hunter,, F. M. Pope,, C. Tannock, and, S. Shall. 1993. The gene responsible for Werner syndrome may be a cell division “counting” gene. Proc. Natl. Acad. Sci. USA 90:1203012034.
52. Fischer, C. J., and, T. M. Lohman. 2004. ATP–dependent translocation of proteins along single–stranded DNA: models and methods of analysis of pre–steady state kinetics. J. Mol. Biol. 344:12651286.
53. Forterre, P., 2002. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile–specific protein. Trends Genet. 18:236237.
54. Foucault, F.,, J. Buard,, F. Praz,, C. Jaulin,, D. Stoppa–Lyonnet,, G. Vergnaud, and, M. Amor–Gueret. 1996. Stability of microsatellites and minisatellites in Bloom syndrome, a human syndrome of genetic instability. Mutat. Res. 362:227236.
55. Foucault, F.,, C. Vaury,, A. Barakat,, D. Thibout,, P. Planchon,, C. Jaulin,, F. Praz, and, M. Amor–Gueret. 1997. Characterization of a new BLM mutation associated with a topoisomerase II alpha defect in a patient with Bloom’s syndrome. Hum. Mol. Genet. 6:14271434.
56. Frei, C., and, S. M. Gasser. 2000. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S–phase–specific foci. Genes Dev. 14:8196.
57. Fritz, E.,, S. H. Elsea,, P. I. Patel, and, M. S. Meyn. 1997. Overexpression of a truncated human topoisomerase III partially corrects multiple aspects of the ataxia–telangiectasia phenotype. Proc. Natl. Acad. Sci. USA 94:45384542.
58. Fry, M., and, L. A. Loeb. 1999. Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. Chem. 274:1279712802.
59. Fukuchi, K.,, G. M. Martin, and, R. J. Monnat, Jr., 1989. Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA 86:58935897.
60. Fukuchi, K.,, K. Tanaka,, Y. Kumahara,, K. Marumo,, M. B. Pride,, G. M. Martin, and, R. J. Monnat, Jr., 1990. Increased frequency of 6–thioguanine–resistant peripheral blood lymphocytes in Werner syndrome patients. Hum. Genet. 84:249252.
61. Fukuchi, K.,, K. Tanaka,, J. Nakura,, Y. Kumahara,, T. Uchida, and, Y. Okada. 1985. Elevated spontaneous mutation rate in SV40–transformed Werner syndrome fibroblast cell lines. Somatic Cell Mol. Genet. 11:303308.
62. Gangloff, S.,, J. P. McDonald,, C. Bendixen,, L. Arthur, and, R. Rothstein. 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:83918398.
63. German, J., 1983. Bloom syndrome X. The cancer proneness points to chromosome mutation as a crucial event in human neoplasia, p., 347357. In J. German (ed.), Chromosome Mutation and Neoplasia. Alan R. Liss, Inc., New York, N.Y.
64. German, J., 1969. Bloom’s syndrome. I. Genetical and clinical observations in the first twenty–seven patients. Am. J. Hum. Genet. 21:196227.
65. German, J., 1997. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet. Cytogenet. 93:100106.
66. German, J., 1964. Cytological evidence for crossing–over in vitro in human lymphoid cells. Science 144:298301.
67. German, J.,, D. Bloom, and, E. Passarge. 1977. Bloom’s syndrome. V. Surveillance for cancer in affected families. Clin. Genet. 12:162168.
68. German, J.,, D. Bloom, and, E. Passarge. 1979. Bloom’s syndrome. VII. Progress report for 1978. Clin. Genet. 15:361367.
69. German, J.,, L. P. Crippa, and, D. Bloom. 1974. Bloom’s syndrome. III. Analysis of the chromosome aberration characteristic of this disorder. Chromosoma 48:361366.
70. German, J., and, E. Passarge., 1989. Bloom’s syndrome. XII. Report from the Registry for 1987. Clin. Genet. 35:5769.
71. German, J.,, A. M. Roe,, M. F. Leppert, and, N. A. Ellis. 1994. Bloom syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1. Proc. Natl. Acad. Sci. USA 91:66696673.
72. German, J., and, H. Takebe. 1989. Bloom’s syndrome. XIV. The disorder in Japan. Clin. Genet. 35:93110.
73. Giesler, T.,, K. Baker,, B. Zhang,, L. D. McDaniel, and, R. A. Schultz. 1997. Correction of the Bloom syndrome cellular phenotypes. Somatic Cell Mol. Genet. 23:303312.
74. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko, and, V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:47134730.
75. Goss, K. H.,, M. A. Risinger,, J. J. Kordich,, M. M. Sanz,, J. E. Straughen,, L. E. Slovek,, A. J. Capobianco,, J. German,, G. P. Boivin, and, J. Groden. 2002. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297:20512053.
76. Goto, M.,, R. W. Miller,, Y. Ishikawa, and, H. Sugano. 1996. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomarkers Prev. 5:239246.
77. Goto, M.,, M. Rubenstein,, J. Weber,, K. Woods, and, D. Drayna. 1992. Genetic linkage of Werner’s syndrome to five markers on chromosome 8. Nature 355:735738.
78. Goto, M.,, K. Tanimoto,, Y. Horiuchi, and, T. Sasazuki. 1981. Family analysis of Werner’s syndrome: a survey of 42 Japanese families with a review of the literature. Clin. Genet. 19:815.
79. Grant, S. G.,, S. L. Wenger,, J. J. Latimer,, D. Thull, and, L. W. Burke. 2000. Analysis of genomic instability using multiple assays in a patient with Rothmund–Thomson syndrome. Clin. Genet. 58:209215.
80. Gray, M. D.,, J. C. Shen,, A. S. Kamath–Loeb,, A. Blank,, B. L. Sopher,, G. M. Martin,, J. Oshima, and, L. A. Loeb. 1997. The Werner syndrome protein is a DNA helicase. Nat. Genet. 17:100103.
81. Gray, M. D.,, L. Wang,, H. Youssoufian,, G. M. Martin, and, J. Os–hima. 1998. Werner helicase is localized to transcriptionally active nucle–oli of cycling cells. Exp. Cell Res. 242:487494.
82. Groden, J., and, J. German. 1992. Bloom’s syndrome. XVIII. Hypermutability at a tandem–repeat locus. Hum. Genet. 90:360367.
83. Gruber, S. B.,, N. A. Ellis,, K. K. Scott,, R. Almog,, P. Kolachana,, J. D. Bonner,, T. Kirchhoff,, L. P. Tomsho,, K. Nafa,, H. Pierce,, M. Low,, J. Satagopan,, H. Rennert,, H. Huang,, J. K. Greenson,, J. Groden,, B. Rapa–port,, J. R. Shia,, S. Johnson,, P. K. Gregersen, et al., 2002. BLM heterozy–gosity and the risk of colorectal cancer. Science 297:2013.
84. Gupta, P. K., and, M. A. Sirover. 1984. Altered temporal expression of DNA repair in hypermutable Bloom’s syndrome cells. Proc. Natl. Acad. Sci. USA 81:757761.
85. Ha, T.,, I. Rasnik,, W. Cheng,, H. P. Babcock,, G. H. Gauss,, T. M. Lohman, and, S. Chu. 2002. Initiation and re–initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419:638641.
86. Hanada, K.,, T. Ukita,, Y. Kohno,, K. Saito,, J. Kato, and, H. Ikeda. 1997. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 94:38603865.
87. Hand, R., and, J. German. 1975. A retarded rate of DNA chain growth in Bloom’s syndrome. Proc. Natl. Acad. Sci. USA 72:758762.
88. Harmon, F. G.,, R. J. DiGate, and, S. C. Kowalczykowski. 1999. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol. Cell 3:611620.
89. Harmon, F. G., and, S. C. Kowalczykowski. 2001. Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ he– licase. J. Biol. Chem. 276:232243.
90. Harmon, F. G., and, S. C. Kowalczykowski. 1998. RecQ helicase, in concert with RecA and SSB proteins initiates and disrupts DNA recombination. Genes Dev. 12:11341144.
91. Heartlein, M. W.,, H. Tsuji, and, S. A. Latt. 1987., 5–Bromo–deoxyuridine–dependent increase in sister chromatid exchange formation in Bloom’s syndrome is associated with reduction in topoisomerase II activity. Exp. Cell Res. 169:245254.
92. Henderson, L. M.,, C. F. Arlett,, S. A. Harcourt,, A. R. Lehmann, and, B. C. Broughton. 1985. Cells from an immunodeficient patient (46BR) with a defect in DNA ligation are hypomutable but hypersensitive to the induction of sister chromatid exchanges. Proc. Natl. Acad. Sci. USA 82:20442048.
93. Hirschi, M.,, M. S. Netrawali,, J. F. Remsen, and, P. A. Cerutti. 1981. Formation of DNA single–strand breaks by near–ultraviolet and gamma–rays in normal and Bloom’s syndrome skin fibroblasts. Cancer Res. 41:20032007.
94. Hoki, Y.,, R. Araki,, A. Fujimori,, T. Ohhata,, H. Koseki,, R. Fuku–mura,, M. Nakamura,, H. Takahashi,, Y. Noda,, S. Kito, and, M. Abe. 2003. Growth retardation and skin abnormalities of the Rec<j14–deficient mouse. Hum. Mol. Genet. 12:22932299.
95. Hook, G. J.,, E. Kwok, and, J. A. Heddle. 1984. Sensitivity of Bloom syndrome fibroblasts to mitomycin C. Mutat. Res. 131:223230.
96. Hu, P.,, S. F. Beresten,, A. J. van Brabant,, T. Z. Ye,, P. P. Pandolfi,, F. B. Johnson,, L. Guarente, and, N. A. Ellis. 2001. Evidence for BLM and topoisomerase IIIα interaction in genomic stability. Hum. Mol. Genet. 10:12871298.
97. Huang, S.,, S. Beresten,, B. Li,, J. Oshima,, N. A. Ellis, and, J. Campisi. 2000. Characterization of the human and mouse WRN 3’ → 5’ exonuclease. Nucleic Acids Res. 28:23962405.
98. Huang, S. R.,, B. M. Li,, M. D. Gray,, J. Oshima,, S. I. Mian, and, J. Campisi. 1998. The premature ageing syndrome protein, WRN, is a A 3’–5 ’ exonuclease. Nat. Genet. 20:114116.
99. Huschtscha, L. I.,, K. V. Thompson, and, R. Holliday. 1986. The susceptibility of Werner’s syndrome and other human skin fibroblasts to SV40–induced transformation and immortalization. Proc. R. Soc. Lond. Ser. B 229:112.
100. Ichikawa, K.,, T. Noda, and, Y. Furuichi. 2002. Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund–Thomson syndrome caused by the mutation of DNA helicases. Nippon Yakurigaku Zasshi 119:219226.
101. Imamura, O.,, K. Fujita,, A. Shimamoto,, H. Tanabe,, S. Takeda,, Y. Furuichi, and, T. Matsumoto. 2001. Bloom helicase is involved in DNA surveillance in early S phase in vertebrate cells. Oncogene 20:11431151.
102. Ishizaki, K.,, Y. Ejima,, T. Matsunaga,, R. Hara,, A. Sakamoto,, M. Ikenaga,, Y. Ikawa, and, S. Aizawa. 1994. Increased UV–induced SCEs but normal repair of DNA damage in p53–deficient mouse cells. Int. J. Cancer 58:254257.
103. Ishov, A. M.,, A. G. Sotnikov,, D. Negorev,, O. V. Vladimirova,, N. Neff,, T. Kamitani,, E. T. Yeh,, J. F. Strauss III, and, G. G. Maul. 1999. PML is critical for ND10 formation and recruits the PML–interacting protein daxx to this nuclear structure when modified by SUMO–1. J. Cell Biol. 147:221234.
104. Iyer, L. M.,, D. D. Leipe,, E. V. Koonin, and, L. Aravind. 2004. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146:1131.
105. Jam, K.,, M. Fox, and, B. F. Crandall. 1999. RAPADILINO syndrome: a multiple malformation syndrome with radial and patellar aplasia. Teratology 60:3738.
106. Johnson, F. B.,, D. B. Lombard,, N. F. Neff,, M. A. Mastrangelo,, W. Dewolf,, N. A. Ellis,, R. A. Marciniak,, Y. Yin,, R. Jaenisch, and, L. Guarente. 2000. Association of the Bloom syndrome protein with topoisomerase IIIα in somatic and meiotic cells. Cancer Res. 60:11621167.
107. Kamath–Loeb, A. S.,, E. Johansson,, P. M. Burgers, and, L. A. Loeb. 2000. Functional interaction between the Werner syndrome protein and DNA polymerase delta. Proc. Natl. Acad. Sci. USA 97:46034608.
108. Kamath–Loeb, A. S.,, J. C. Shen,, L. A. Loeb, and, M. Fry. 1998. Werner syndrome protein. II. Characterization of the integral 3’ → 5’ DNA exonuclease. J. Biol. Chem. 273:3414534150.
109. Kaneko, H.,, R. Inoue,, Y. Yamada,, K. Sukegawa,, T. Fukao,, H. Tashita,, T. Teramoto,, K. Kasahara,, T. Takami, and, N. Kondo. 1996. Mi– crosatellite instability in B–cell lymphoma originating from Bloom syndrome. Int. J. Cancer 69:480483.
110. Kaneko, H.,, E. Matsui,, T. Fukao,, K. Kasahara,, W. Morimoto, and, N. Kondo. 1999. Expression of the BLM gene in human haematopoietic cells. Clin. Exp. Immunol. 118:285289.
111. Kant, S. G.,, M. Baraitser,, P. J. Milla, and, R. M. Winter. 1998. Ra– padilino syndrome—a non–Finnish case. Clin. Dysmorphol. 7:135138.
112. Kaplan, D. L., and, M. O’Donnell. 2002. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 10:647657.
113. Karow, J. K.,, R. K. Chakraverty, and, I. D. Hickson. 1997. The Bloom’s syndrome gene product is a 3’ –5’ DNA helicase. J. Biol. Chem. 272:3061130614.
114. Karow, J. K.,, A. Constantinou,, J. L. Li,, S. C. West, and, I. D. Hickson. 2000. The Bloom’s syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl. Acad. Sci. USA 97:65046508.
115. Kawabe, Y.,, M. Seki,, T. Seki,, W. S. Wang,, O. Imamura,, Y. Furuichi,, H. Saitoh, and, T. Enomoto. 2000. Covalent modification of the Werner’s syndrome gene product with the ubiquitin–related protein, SUMO–1. J. Biol. Chem. 275:2096320966.
116. Kennaugh, A. A.,, S. V. Butterworth,, R. Hollis,, R. Baer,, T. H. Rab– bitts, and, A. M. Taylor. 1986. The chromosome breakpoint at 14q32 in an ataxia telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitts and an inv(14) T cell lymphoma. Hum. Genet. 73:254259.
117. Kerr, B.,, G. S. Ashcroft,, D. Scott,, M. A. Horan,, M. W. Ferguson, and, D. Donnai. 1996. Rothmund–Thomson syndrome: two case reports show heterogeneous cutaneous abnormalities, an association with genetically programmed ageing changes, and increased chromosomal radiosensitivity. J. Med. Genet. 33:928934.
118. Kim, S.,, T. M. Vollberg,, J. Y. Ro,, M. Kim, and, M. A. Sirover. 1986. O6–Methyl guanine methyltransferase increases before S phase in nor– mal human cells but does not increase in hypermutable Bloom’s syndrome cells. Mutat. Res. 173:141145.
119. Kirkham, T. H., and, E. B. Werner. 1975. The ophthalmic manifestations of Rothmund’s syndrome. Can. J. Ophthalmol. 10:114.
120. Kitao, S.,, I. Ohsugi,, K. Ichikawa,, M. Goto,, Y. Furuichi, and, A. Shimamoto. 1998. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54:443452.
121. Kitao, S.,, A. Shimamoto,, M. Goto,, R. W. Miller,, W. A. Smith– son,, N. M. Lindor, and, Y. Furuichi. 1999. Mutations in RECQL4 cause a subset of cases of Rothmund–Thomson syndrome. Nat. Genet. 22:8284.
122. Korolev, S.,, J. Hsieh,, G. H. Gauss,, T. M. Lohman, and, G. Waksman. 1997. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single–stranded DNA and ADP. Cell 90:635647.
123. Kowalczykowski, S. C., 1991. Biochemical and biological function of Escherichia coli RecA protein. Biochimie 73:289304.
124. Kowalczykowski, S. C.,, D. A. Dixon,, A. K. Eggleston,, S. D. Lauder, and, W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58:401465.
125. Kozlowski, K.,, J. S. Scougall, and, R. K. Oates. 1980. Osteosar– coma in a boy with Rothmund–Thomson syndrome. Pediatr. Radiol. 10:4245.
126. Kraus, B. S.,, M. A. Gottlieb, and, H. R. Meliton. 1970. The dentition in Rothmund’s syndrome. J. Am. Dent. Assoc. 81:895915.
127. Kuhn, E. M., and, E. Therman. 1979. No increased chromosome breakage in three Bloom’s syndrome heterozygotes. J. Med. Genet. 16:219222.
128. Kurihara, T.,, K. Tatsumi,, H. Takahashi, and, M. Inoue. 1987. Sister–chromatid exchanges induced by ultraviolet light in Bloom’s syndrome fibroblasts. Mutat. Res. 183:197202.
129. Kurkulos, M.,, J. M. Weinberg,, D. Roy, and, S. M. Mount. 1994. P element–mediated in vivo deletion analysis of white–apricot: deletions between direct repeats are strongly favored. Genetics 136:10011011.
130. Kusano, K.,, D. M. Johnson–Schlitz, and, W. R. Engels. 2001. Sterility of Drosophila with mutations in the Bloom syndrome gene— complementation by Ku70. Science 291:26002602.
131. Kyoizumi, S.,, N. Nakamura,, H. Takebe,, K. Tatsumi,, J. German, and, M. Akiyama. 1989. Frequency of variant erythrocytes at the glycophorin–A locus in two Bloom’s syndrome patients. Mutat. Res. 214:215222.
132. Labib, K., and, J. F. Diffley. 2001. Is the MCM2–7 complex the eukaryotic DNA replication fork helicase? Curr. Opin. Genet. Dev. 11:6470.
133. Lane, H. E., and, D. T. Denhardt. 1974. The rep mutation. III. Altered structure of the replicating Escherichia coli chromosome. J. Bacteriol. 120:805814.
134. Lane, H. E., and, D. T. Denhardt. 1975. The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J. Mol. Biol. 97:99112.
135. Langland, G.,, J. Kordich,, J. Creaney,, K. H. Goss,, K. Lillard–Wetherell,, K. Bebenek,, T. A. Kunkel, and, J. Groden. 2001. The Bloom’s syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. J. Biol. Chem. 276:3003130035.
136. Langlois, R. G.,, W. L. Bigbee,, R. H. Jensen, and, J. German. 1989. Evidence for increased in vivo mutation and somatic recombination in Bloom’s syndrome. Proc. Natl. Acad. Sci. USA 86:670674.
137. Lanzov, V.,, I. Stepanova, and, G. Vinogradskaja. 1991. Genetic control of recombination exchange frequency in Escherichia coli K–12. Biochimie 73:305312.
138. Laursen, L. V.,, E. Ampatzidou,, A. H. Andersen, and, J. M. Murray. 2003. Role for the fission yeast RecQ helicase in DNA repair in G2. Mol. Cell. Biol. 23:36923705.
139. Lebel, M., 2001. Werner syndrome: genetic and molecular basis of a premature aging disorder. Cell. Mol. Life Sci. 58:857867.
140. Lebel, M., and, P. Leder. 1998. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Natl. Acad. Sci. USA 95:1309713102.
141. Lebel, M.,, E. A. Spillare,, C. C. Harris, and, P. Leder. 1999. The Werner syndrome gene product co–purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J. Biol. Chem. 274:3779537799.
142. LeBowitz, J. H., and, R. McMacken. 1986. The Escherichia coli dnaB replication protein is a DNA helicase. J. Biol. Chem. 261:47384748.
143. Lecka–Czernik, B.,, E. J. Moerman,, R. A. Jones, and, S. Goldstein. 1996. Identification of gene sequences overexpressed in senescent and Werner syndrome human fibroblasts. Exp. Gerontol. 31:159174.
144. Lehmann, A. R.,, A. E. Willis,, B. C. Broughton,, M. R. James, and, H. Steingrimsdottir. 1988. Relation between the human fibroblast strain 46BR and cell lines representative of Bloom’s syndrome. Cancer Res. 48:63436347.
145. Li, B., and, L. Comai. 2002. Displacement of DNA–PKcs from DNA ends by the Werner syndrome protein. Nucleic Acids Res. 30:36533661.
146. Li, L.,, C. Eng,, R. J. Desnick,, J. German, and, N. A. Ellis. 1998. Carrier frequency of the Bloom syndrome blmAsh mutation in the Ashkenazi Jewish population. Mol. Genet. Metab. 64:286290.
147. Lim, M.,, L. F. Liu,, D. Jacobson–Kram, and, J. R. Williams. 1986. Induction of sister chromatid exchanges by inhibitors of topoisomerases. Cell Biol. Toxicol. 2:485494.
148. Lin, M. S., and, O. S. Alfi. 1980. Chromosome fragility and susceptibility of Bloom’s syndrome fibroblasts to SV40 transformation. Expe– rientia 36:296297.
149. Lindahl, T.,, P. Karran, and, R. D. Wood. 1997. DNA excision repair pathways. Curr. Opin. Genet. Dev. 7:158169.
150. Lindor, N. M.,, E. M. Devries,, V. V. Michels,, C. R. Schad,, S. M. Jalal,, K. M. Donovan,, W. A. Smithson,, L. K. Kvols,, S. N. Thibodeau, and, G. W. Dewald. 1996. Rothmund–Thomson syndrome in siblings: evidence for acquired in vivo mosaicism. Clin. Genet. 49:124129.
151. Lindor, N. M.,, Y. Furuichi,, S. Kitao,, A. Shimamoto,, C. Arndt, and, S. Jalal. 2000. Rothmund–Thomson syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am. J. Med. Genet. 90:223228.
152. Lohman, T. M., and, K. P. Bjornson. 1996. Mechanisms of helicase–catalyzed DNA unwinding. Annu. Rev. Biochem. 65:169214.
153. Lonn, U.,, S. Lonn,, U. Nylen,, G. Winblad, and, J. German. 1990. An abnormal profile of DNA replication intermediates in Bloom’s syndrome. Cancer Res. 50:31413145.
154. Luo, G.,, I. Santoro,, L. D. McDaniel,, I. Nishijima,, M. Mills,, H. Youssoufian,, H. Vogel,, R. A. Schultz, and, A. Bradley. 2000. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26:424429.
155. Maluf, N. K.,, C. J. Fischer, and, T. M. Lohman. 2003. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J. Mol. Biol. 325:913935.
156. Mamada, A.,, S. Kondo, and, Y. Satoh. 1989. Different sensitivities to ultraviolet light–induced cytotoxicity and sister chromatid exchanges in xeroderma pigmentosum and Bloom’s syndrome fibroblasts. Photodermatology 6:124130.
157. Mao, Y.,, S. D. Desai, and, L. F. Liu. 2000. SUMO–1 conjugation to human DNA topoisomerase II isozymes. J. Biol. Chem. 275:2606626073.
158. Mao, Y.,, M. Sun,, S. D. Desai, and, L. F. Liu. 2000. SUMO–1 conjugation to topoisomerase I: a possible repair response to topoisomerase– mediated DNA damage. Proc. Natl. Acad. Sci. USA 97:40464051.
159. Marciniak, R. A.,, D. B. Lombard,, F. B. Johnson, and, L. Guarente. 1998. Nucleolar localization of the Werner syndrome protein in human cells. Proc. Natl. Acad. Sci. USA 95:68876892.
160. Marians, K. J., 2000. Crawling and wiggling on DNA: structural insights to the mechanism of DNA unwinding by helicases. Struct. Fold. Des. 8:R227R235.
161. Marin–Bertolin, S.,, J. Amorrortu–Velayos, and, A. Aliaga Boniche. 1998. Squamous cell carcinoma of the tongue in a patient with Rothmund–Thomson syndrome. Br. J. Plast. Surg. 51:646648.
162. Martin, G. M., 1991. Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann. N. Y. Acad. Sci. 621:401417.
163. Martin, R. H.,, A. Rademaker, and, J. German. 1994. Chromosomal breakage in human spermatozoa, a heterozygous effect of the Bloom syndrome mutation. Am. J. Hum. Genet. 55:12421246.
164. Matic, I.,, C. Rayssiguier, and, M. Radman. 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507515.
165. Matson, S. W.,, D. W. Bean, and, J. W. George. 1994. DNA heli– cases: enzymes with essential roles in all aspects of DNA metabolism. Bio–essays 16:1322.
166. Matuoka, K., and, T. Takenawa. 1998. Downregulated expression of the signaling molecules Nck, c–Crk, Grb2/Ash, PI 3–kinase p110 alpha and WRN during fibroblast aging in vitro. Biochim. Biophys. Acta 1401:211215.
167. McDaniel, L. D.,, N. Chester,, M. Watson,, A. D. Borowsky,, P. Leder, and, R. A. Schultz. 2003. Chromosome instability and tumor predisposition inversely correlate with BLM protein levels. DNA Repair 2:13871404.
168. McDaniel, L. D., and, R. A. Schultz. 1992. Elevated sister chromatid exchange phenotype of Bloom syndrome cells is complemented by human chromosome 15. Proc. Natl. Acad. Sci. USA 89:79687972.
169. Melaragno, M. I., and, M. A. Smith. 1990. Sister chromatid exchange and proliferation pattern in lymphocytes from newborns, elderly subjects and in premature aging syndromes. Mech. Ageing Dev. 54:4353.
170. Meyer–Siegler, K.,, D. J. Mauro,, G. Seal,, J. Wurzer,, J. K. deRiel, and, M. A. Sirover. 1991. A human nuclear uracil DNA glycosylase is the 37–kDa subunit of glyceraldehyde–3–phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 88:84608464.
171. Meyn, M. S.,, J. M. Lu–Kuo, and, L. B. Herzing. 1993. Expression cloning of multiple human cDNAs that complement the phenotypic defects of ataxia–telangiectasia group D fibroblasts. Am. J. Hum. Genet. 53:12061216.
172. Miki, T.,, J. Nakura,, L. Ye,, N. Mitsuda,, A. Morishima,, N. Sato,, K. Kamino, and, T. Ogihara. 1997. Molecular and epidemiological studies of Werner syndrome in the Japanese population. Mech. Ageing Dev. 98:255265.
173. Miozzo, M.,, P. Castorina,, P. Riva,, L. Dalpra,, A. M. Fuhrman Conti,, L. Volpi,, T. S. Hoe,, A. Khoo,, J. Wiegant,, C. Rosenberg, and, L. Larizza. 1998. Chromosomal instability in fibroblasts and mesenchymal tumors from 2 sibs with Rothmund–Thomson syndrome. Int. J. Cancer 77:504510.
174. Moens, P. B.,, R. Freire,, M. Tarsounas,, B. Spyropoulos, and, S. P. Jackson. 2000. Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom’s syndrome, suggest a role in recombination during meiotic prophase. J. Cell Sci. 113:663672.
175. Mohaghegh, P.,, J. K. Karow,, R. M. Brosh Jr.,, V. A. Bohr, and, I. D. Hickson. 2001. The Bloom’s and Werner’s syndrome proteins are DNA structure–specific helicases. Nucleic Acids Res. 29:28432849.
176. Monnat, R. J., 1992. Werner syndrome: molecular genetics and mechanistic hypotheses. Exp. Gerontol. 27:447453.
177. Mori, S.,, N. Kondo,, F. Motoyoshi,, S. Yamaguchi,, H. Kaneko, and, T. Orii. 1990. Diabetes mellitus in a young man with Bloom’s syndrome. Clin. Genet. 38:387390.
178. Moser, M. J.,, W. L. Bigbee,, S. G. Grant,, M. J. Emond,, R. G. Langlois,, R. H. Jensen,, J. Oshima, and, R. J. Monnat, Jr., 2000. Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes. Cancer Res. 60:24922496.
179. Moser, M. J.,, A. S. Kamath–Loeb,, J. E. Jacob,, S. E. Bennett,, J. Oshima, and, R. J. Monnat, Jr., 2000. WRN helicase expression in Werner syndrome cell lines. Nucleic Acids Res. 28:648654.
180. Moses, R. E., and, A. L. Beaudet. 1978. Apurinic DNA endonuclease activities in repair–deficient human cell lines. Nucleic Acids Res. 5:463473.
181. Murray, J. M.,, H. D. Lindsay,, C. A. Munday, and, A. M. Carr. 1997. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17:68686875.
182. Musgrave, D.,, X. Zhang, and, M. Dinger. 2002. Archaeal genome organization and stress responses: implications for the origin and evolution of cellular life. Astrobiology 2:241253.
183. Nakayama, H.,, K. Nakayama,, R. Nakayama,, N. Irino,, Y. Naka–yama, and, P. C. Hanawalt. 1984. Isolation and genetic characterization of a thymineless death–resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195:474480.
184. Nakayama, K.,, N. Irino, and, H. Nakayama. 1985. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol. Gen. Genet. 200:266271.
185. Nakura, J.,, T. Miki,, L. Ye,, N. Mitsuda,, Y. Zhao,, K. Kihara,, C. E. Yu,, J. Oshima,, K. I. Fukuchi,, E. M. Wijsman,, G. D. Schellenberg,, G. M. Martin,, S. Murano,, K. Hashimoto,, Y. Fujiwara, and, T. Ogihara. 1996. Narrowing the position of the Werner syndrome locus by homozigosity analysis: extension of the homozigosity analysis. Genomics 36:130141.
186. Nassif, N.,, J. Penney,, S. Pal,, W. R. Engels, and, G. B. Gloor. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P–element–induced gap repair. Mol. Cell. Biol. 14:16131625.
187. Neff, N. F.,, N. A. Ellis,, T. Z. Ye,, J. Noonan,, K. Huang,, M. Sanz, and, M. Proytcheva. 1999. The DNA helicase activity of BLM is necessary for the correction of the genomic instability of Bloom syndrome cells. Mol. Biol. Cell 10:665676.
188. Nicotera, T. M.,, J. Notaro,, S. Notaro,, J. Schumer, and, A. A. Sand–berg. 1989. Elevated superoxide dismutase in Bloom’s syndrome: a genetic condition of oxidative stress. Cancer Res. 49:52395243.
189. Reference deleted.
190. Ockey, C. H., and, R. Saffhill. 1986. Delayed DNA maturation, a possible cause of the elevated sister–chromatid exchange in Bloom’s syndrome. Carcinogenesis 7:5357.
191. Ogburn, C. E.,, J. Oshima,, M. Poot,, R. Chen,, K. E. Hunt,, K. A. Gollahon,, P. S. Rabinovitch, and, G. M. Martin. 1997. An apoptosis–inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild–type and homozygous mutants. Hum. Genet. 101:121125.
192. Okada, M.,, M. Goto,, Y. Furuichi, and, M. Sugimoto. 1998. Differential effects of cytotoxic drugs on mortal and immortalized B–lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol. Pharm. Bull. 21:235239.
193. Orstavik, K. H.,, N. McFadden,, J. Hagelsteen,, E. Ormerod, and, C. B. van der Hagen. 1994. Instability of lymphocyte chromosomes in a girl with Rothmund–Thomson syndrome. J. Med. Genet. 31:570572.
194. Oshima, J.,, J. Campisi,, T. C. Tannock, and, G. M. Martin. 1995. Regulation of c–fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J. Cell. Physiol. 162:277283.
195. Ouellette, M. M.,, L. D. McDaniel,, W. E. Wright,, J. W. Shay, and, R. A. Schultz. 2000. The establishment of telomerase–immortalized cell lines representing human chromosome instability syndromes. Hum. Mol. Genet. 9:403411.
196. Paques, F., and, J. E. Haber. 1999. Multiple pathways of recombination induced by double–strand breaks in Saccharomyces cerevisiae. Mi– crobiol. Mol. Biol. Rev. 63:349404.
197. Parker, V. P., and, M. W. Lieberman. 1977. Levels of DNA poly–merases alpha, beta, and gamma in control and repair–deficient human diploid fibroblasts 1. Nucleic Acids Res. 4:20292037.
198. Passarge, E., 1995. A DNA helicase in full Bloom. Nat. Genet. 11:356357.
199. Patel, S. S., and, K. M. Picha. 2000. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69:651697.
200. Pedrazzi, G.,, C. Perrera,, H. Blaser,, P. Kuster,, G. Marra,, S. L. Davies,, G. H. Ryu,, R. Freire,, I. D. Hickson,, J. Jiricny, and, I. Stagljar. 2001. Direct association of Bloom’s syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res. 29:43784386.
201. Petit, M. A.,, E. Dervyn,, M. Rose,, K. D. Entian,, S. McGovern,, S. D. Ehrlich, and, C. Bruand. 1998. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling–circle replication. Mol. Microbiol. 29:261–273.
202. Petrini, J. H.,, K. G. Huwiler, and, D. T. Weaver. 1991. A wild–type DNA ligase I gene is expressed in Bloom’s syndrome cells. Proc. Natl. Acad. Sci. USA 88:76157619.
203. Poot, M.,, K. A. Gollahon, and, P. S. Rabinovitch. 1999. Werner syndrome lymphoblastoid cells are sensitive to camptothecin–induced apoptosis in S–phase. Hum. Genet. 104:1014.
204. Poot, M.,, H. Hoehn,, T. M. Runger, and, G. M. Martin. 1992. Impaired S–phase transit of Werner syndrome cells expressed in lym– phoblastoid cell lines. Exp. Cell Res. 202:267273.
205. Puranam, K. L., and, P. J. Blackshear. 1994. Cloning and characterization of RECQ L, a potential human homologue of the Escherichia coli DNA helicase RecQ. J. Biol. Chem. 269:2983829845.
206. Rajendran, S.,, M. J. Jezewska, and, W. Bujalowski. 2000. Multiple–step kinetic mechanism of DNA–independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench–flow method. J. Mol. Biol. 303:773795.
207. Rasnik, I.,, S. Myong,, W. Cheng,, T. M. Lohman, and, T. Ha. 2004. DNA–binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single–molecule studies of fluorescently labeled enzymes. J. Mol. Biol. 336:395408.
208. Ray, J. H., and, J. German. 1983. The cytogenetics of the “chromosome–breakage syndromes,” p., 135167. In J. German (ed.), Chromosome Mutation and Neoplasia. Alan R. Liss, Inc., New York, N.Y.
209. Roa, B. B.,, C. V. Savino, and, C. S. Richards. 1999. Ashkenazi Jewish population frequency of the Bloom syndrome gene 2281 delta 6ins7 mutation. Genet. Test. 3:219221.
210. Rodriguez, A. C., 2003. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase. Biochemistry 42:59936004.
211. Rodriguez, A. C., 2002. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional “latch” in the mechanism of reverse gyrase. J. Biol. Chem. 277:2986529873.
212. Rong, S. B.,, J. Valiaho, and, M. Vihinen. 2000. Structural basis of Bloom syndrome (BS) causing mutations in the BLM helicase domain. Mol. Med. 6:155164.
213. Rothmund, A., 1868. Uber Cataracten in Verbindung mit einer eigenthumlichen Hautdegeneration. Arch. Klin. Exp. Ophthal. 4:159182.
214. Runger, T. M.,, C. Bauer,, B. Dekant,, K. Moller,, P. Sobotta,, C. Czerny,, M. Poot, and, G. M. Martin. 1994. Hypermutable ligation of plasmid DNA ends in cells from patients with Werner syndrome. J. Investig. Der– matol. 102:4548.
215. Runger, T. M., and, K. H. Kraemer. 1989. Joining of linear plasmid DNA is reduced and error–prone in Bloom’s syndrome cells. EMBO J. 8:14191425.
216. Salk, D.,, E. Bryant,, K. Au,, H. Hoehn, and, G. M. Martin. 1981. Systematic growth studies, cocultivation, and cell hybridization studies of Werner syndrome cultured skin fibroblasts. Hum. Genet. 58:310316.
217. Sambrook, J.,, T. Maniatis, and, E. F. Fritsch. 1989. Molecular Cloning : a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
218. Sawatski, A.,, D. Bloom, and, J. German. 1965. Chromosomal breakage and leukemia in congenital telangiectatic erythema and stunted growth. Blood 26:867.
219. Sawaya, M. R.,, S. Guo,, S. Tabor,, C. C. Richardson, and, T. Ellenberger. 1999. Crystal structure of the helicase domain from the replicative helicase–primase of bacteriophage T7. Cell 99:167177.
220. Scheffzek, K.,, M. R. Ahmadian,, W. Kabsch,, L. Wiesmuller,, A. Lautwein,, F. Schmitz, and, A. Wittinghofer. 1997. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333338.
221. Schulz, V. P.,, V. A. Zakian,, C. E. Ogburn,, J. McKay,, A. A. Jarzebowicz,, S. D. Edland, and, G. M. Martin. 1996. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet. 97:750754.
222. Schwartz, S.,, J. Astemborski,, A. Budacz,, J. Boughman,, S. Wasserman, and, M. Cohen. 1990. Repeated measurement of spontaneous and clastogen–induced sister–chromatid exchange. Mutat. Res. 234:5159.
223. Seal, G.,, K. Brech,, S. J. Karp,, B. L. Cool, and, M. A. Sirover. 1988. Immunological lesions in human uracil DNA glycosylase: association with Bloom syndrome. Proc. Natl. Acad. Sci. USA 85:23392343.
224. Seal, G.,, E. E. Henderson, and, M. A. Sirover. 1990. Immunological alteration of the Bloom’s syndrome uracil DNA glycosylase in Epstein–Barr virus–transformed human lymphoblastoid cells. Mutat. Res. 243:241248.
225. Shen, J. C., and, L. A. Loeb. 2000. The Werner syndrome gene: the molecular basis of RecQ helicase–deficiency diseases. Trends Genet. 16:213220.
226. Shinya, A.,, C. Nishigori,, S. Moriwaki,, H. Takebe,, M. Kubota,, A. Ogino, and, S. Imamura. 1993. A case of Rothmund–Thomson syndrome with reduced DNA repair capacity. Arch. Dermatol. 129:332336.
227. Shiraishi, Y.,, I. Kubonishi, and, A. A. Sandberg. 1983. Establishment of B–lymphoid cell lines retaining cytogenetic characteristics of Bloom syndrome. Cancer Genet. Cytogenet. 9:129138.
228. Shiraishi, Y., and, M. J. Li. 1990. Bromodeoxyuridine (BrdU) template and thymidine pool effects on high frequencies of sister–chromatid exchange (SCE) in Bloom syndrome cells and a mutant cell line (AsHa) originated from ataxia telangiectasia. Mutat. Res. 230:177186.
229. Shiraishi, Y.,, S. Matsui, and, A. A.