1887

Chapter 127 : Mechanisms of Resistance to Antifungal Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Resistance to Antifungal Agents, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap127-1.gif /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap127-2.gif

Abstract:

This chapter describes the factors that contribute to a recalcitrant or resistant clinical infection. It focuses on the resistance of fungal isolates, as determined by their MIC. There are two types of resistance: intrinsic resistance, which is an inherited characteristic of a species or strain, and acquired resistance, which occurs when a previously susceptible isolate develops a resistant phenotype, usually as a result of prolonged treatment with antifungals. A section of the chapter concentrates on the mechanisms identified in , with discussion of mechanisms identified in other fungi when applicable. Several alterations in ERG11 have been associated with resistance in , including (i) point mutations in the coding regions, (ii) overexpression of the gene, (iii) gene amplification, and (iv) gene conversion or mitotic recombination. The interaction between the azoles and Erg11p can be altered by mutation or overexpression of the ERG11 gene. Alterations in other enzymes in ergosterol biosynthesis can also affect azole susceptibility. New azole drugs, such as posaconazole, need to be carefully monitored for their effect on strains that are resistant to fluconazole. An increased understanding of antifungal drug resistance should allow for the development of new diagnostic strategies to identify resistant clinical isolates in a patient, new treatment strategies to treat these resistant infections, and new prevention strategies that would forestall the development of antifungal drug resistance in these patient populations.

Citation: White T, Hoot S. 2011. Mechanisms of Resistance to Antifungal Agents, p 2008-2019. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch127

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.40438282
0.40438282
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Molecular mechanisms of azole resistance. See text for details. Gene products shown in the figure include Erg11p (pink sphere), the efflux pumps (green tubes) with ATP binding cassette domains (green spheres), the efflux pump (red tubes), and other ergosterol biosynthetic enzymes (spheres of assorted colors). Point mutations are shown as dark slices in pink and blue spheres. Reprinted with modification from reference with permission of the publisher.

Citation: White T, Hoot S. 2011. Mechanisms of Resistance to Antifungal Agents, p 2008-2019. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch127
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816728.chap127
1. Arendrup, M. C.,, G. Garcia-Effron,, C. Lass-Flörl,, A. G. Lopez,, J.-L. Rodriguez-Tudela,, M. Cuenca-Estrella,, and D. S. Perlin. 2010. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob. Agents Chemother. 54: 426 439.
2. Bruno, V. M.,, and A. P. Mitchell. 2005. Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Mol. Microbiol. 56: 559 573.
3. Coste, A.,, A. Selmecki,, A. Forche,, D. Diogo,, M.-E. Bougnoux,, C. d’Enfert,, J. Berman,, and D. Sanglard. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6: 1889 1904.
4. Coste, A.,, V. Turner,, F. Ischer,, J. Morschhauser,, A. Forche,, A. Selmecki,, J. Berman,, J. Bille,, and D. Sanglard. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 2139 2156.
5. Coste, A. T.,, M. Karababa,, F. Ischer,, J. Bille,, and D. Sanglard. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3: 1639 1652.
6. Cowen, L. E. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6: 187 198.
7. Cowen, L. E.,, and W. J. Steinbach. 2008. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot. Cell 7: 747 764.
8. Dunkel, N.,, J. Blass,, P. D. Rogers,, and J. Morschhauser. 2008. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69: 827 840.
9. Dunkel, N.,, T. T. Liu,, K. S. Barker,, R. Homayouni,, J. Morschhäuser,, and P. D. Rogers. 2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell 7: 1180 1190.
10. Ferreira, M. E.,, A. L. Colombo,, I. Paulsen,, Q. Ren,, J. Wortman,, J. Huang,, M. H. Goldman,, and G. H. Goldman. 2005. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med. Mycol. 43( Suppl 1): S313 S319.
10a.. Franz, R.,, S. L. Kelly,, D. C. Lamb,, D. E. Kelly,, M. Ruhnke,, and J. Morschhäuser. 1998. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob. Agents Chemother. 42: 3065 3072.
11. Garcia-Effron, G.,, S. Lee,, S. Park,, J. D. Cleary,, and D. S. Perlin. 2009. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-bd- glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob. Agents Chemother. 53: 3690 3699.
12. Harry, J. B.,, B. G. Oliver,, J. L. Song,, P. M. Silver,, J. T. Little,, J. Choiniere,, and T. C. White. 2005. Druginduced regulation of the MDR1 promoter in Candida albicans. Antimicrob. Agents Chemother. 49: 2785 2792.
13. Hiller, D.,, D. Sanglard,, and J. Morschhäuser. 2006. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob. Agents Chemother. 50: 1365 1371.
14. Hoot, S. J.,, B. G. Oliver,, and T. C. White. 2008. Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and -independent mechanisms. Microbiology 154: 2748 2756.
15. Howard, S. J.,, I. Webster,, C. B. Moore,, R. E. Gardiner,, S. Park,, D. S. Perlin,, and D. W. Denning. 2006. Multi-azole resistance in Aspergillus fumigatus. Int. J. Antimicrob. Agents 28: 450 453.
16. Kaur, R.,, I. Castano,, and B. P. Cormack. 2004. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob. Agents Chemother. 48: 1600 1613.
17. Manoharlal, R.,, N. A. Gaur,, S. L. Panwar,, J. Morschhäuser,, and R. Prasad. 2008. Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans. Antimicrob. Agents Chemother. 52: 1481 1492.
18. Mansfield, B. E.,, H. N. Oltean,, B. G. Oliver,, S. E. Leyde,, L. Hedstrom,, and T. C. White. 2010. Azole drug import requires a transporter in Candida albicans and other pathogenic fungi. Presented at the 10th ASM Conference on Candida and Candidiasis, Miami, Florida, March 23-26, 2010.
19. Marie, C.,, S. Leyde,, and T. C. White. 2008. Cytoplasmic localization of sterol transcription factors Upc2p and Ecm22p in S. cerevisiae. Fungal Genet. Biol. 45: 1430 1438.
20. Marie, C.,, and T. C. White. 2009. Genetic basis of antifungal drug resistance. Curr. Fungal Infect. Rep. 3: 163 169.
21. Morschhauser, J.,, K. S. Barker,, T. T. Liu,, B. W. J. Bla,, R. Homayouni,, and P. D. Rogers. 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3: e164.
22. Nett, J.,, L. Lincoln,, K. Marchillo,, R. Massey,, K. Holoyda,, B. Hoff,, M. VanHandel,, and D. Andes. 2007. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51: 510 520.
23. Odds, F. C.,, M. E. Bougnoux,, D. J. Shaw,, J. M. Bain,, A. D. Davidson,, D. Diogo,, M. D. Jacobsen,, M. Lecomte,, S. Y. Li,, A. Tavanti,, M. C. Maiden,, N. A. Gow,, and C. d’Enfert. 2007. Molecular phylogenetics of Candida albicans. Eukaryot. Cell 6: 1041 1052.
24. Oliver, B. G.,, P. M. Silver,, C. Marie,, S. J. Hoot,, S. E. Leyde,, and T. C. White. 2008. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology 154: 960 970.
25. Oliver, B. G.,, J. L. Song,, J. H. Choiniere,, and T. C. White. 2007. cis-acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot. Cell 6: 2231 2239.
26. Pfaller, M. A.,, and D. J. Diekema. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 42: 4419 4431.
27. Pfaller, M. A.,, D. J. Diekema,, M. A. Ghannoum,, J. H. Rex,, B. D. Alexander,, D. Andes,, S. D. Brown,, V. Chaturvedi,, A. Espinel-Ingroff,, C. L. Fowler,, E. M. Johnson,, C. C. Knapp,, M. R. Motyl,, L. Ostrosky-Zeichner,, D. J. Sheehan,, and T. J. Walsh. 2009. Wild-type MIC distribution and epidemiological cutoff values for Aspergillus fumigatus and three triazoles as determined by the Clinical and Laboratory Standards Institute broth microdilution methods. J. Clin. Microbiol. 47: 3142 3146.
28. Pfaller, M. A.,, D. J. Diekema,, L. Ostrosky-Zeichner,, J. H. Rex,, B. D. Alexander,, D. Andes,, S. D. Brown,, V. Chaturvedi,, M. A. Ghannoum,, C. C. Knapp,, D. J. Sheehan,, and T. J. Walsh. 2008. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J. Clin. Microbiol. 46: 2620 2629.
29. Pfaller, M. A.,, D. J. Diekema,, J. H. Rex,, A. Espinel- Ingroff,, E. M. Johnson,, D. Andes,, V. Chaturvedi,, M. A. Ghannoum,, F. C. Odds,, M. G. Rinaldi,, D. J. Sheehan,, P. Troke,, T. J. Walsh,, and D. W. Warnock. 2006. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J. Clin. Microbiol. 44: 819 826.
30. Rex, J. H.,, and M. A. Pfaller. 2002. Has antifungal susceptibility testing come of age? Clin. Infect. Dis. 35: 982 989.
31. Rex, J. H.,, M. A. Pfaller,, J. N. Galgiani,, M. S. Bartlett,, A. Espinel-Ingroff,, M. A. Ghannoum,, M. Lancaster,, F. C. Odds,, M. G. Rinaldi,, T. J. Walsh,, and A. L. Barry. 1997. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro- in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin. Infect. Dis. 24: 235 247.
32. Sanglard, D.,, and J. Bille,. 2002. Current understanding of the mode of action and of resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections, p. 349 383. In R. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington, DC.
33. Schubert, S.,, P. D. Rogers,, and J. Morschhäuser. 2008. Gain-of-function mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole-resistant Candida dubliniensis strains. Antimicrob. Agents Chemother. 52: 4274 4280.
34. Selmecki, A.,, A. Forche,, and J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313: 367 370.
35. Selmecki, A.,, M. Gerami-Nejad,, C. Paulson,, A. Forche,, and J. Berman. 2008. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68: 624 641.
36. Verweij, P. E.,, S. J. Howard,, W. J. Melchers,, and D. W. Denning. 2009. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist. Updates 12: 141 147.
37. Verweij, P. E.,, E. Snelders,, G. H. Kema,, E. Mellado,, and W. J. Melchers. 2009. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect. Dis. 9: 789 795.
38. Walker, L. A.,, C. A. Munro,, I. de Bruijn,, M. D. Lenardon,, A. McKinnon,, and N. A. Gow. 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 4: e1000040.
38a.. White, T. C. 1997. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistance 14α demethylase in Candida albicans. Antimicrob. Agents Chemother. 41: 1488 1494.
39. White, T. C., 2007. Mechanisms of resistance to antifungal agents, p. 1961 1971. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. L. Landry,, and M. A. Pfaller (ed.), Manual of Clinical Microbiology, 9th ed., vol. 2. ASM Press, Washington, DC.
40. White, T. C.,, J. B. Harry,, and B. G. Oliver,. 2004. Antifungal drug resistance: pumps and permutations, p. 319 338. In J. W. Domer, and G. S. Koybayashi (ed.), Human Fungal Pathogens, vol. XII. Springer, Berlin.
41. White, T. C.,, K. A. Marr,, and R. A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382 402.
42. Znaidi, S.,, S. Weber,, O. Z. Al-Abdin,, P. Bomme,, S. Saidane,, S. Drouin,, S. Lemieux,, X. De Deken,, F. Robert,, and M. Raymond. 2008. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot. Cell 7: 836 847.

Tables

Generic image for table
TABLE 1

Factors that contribute to clinical antifungal drug resistance

Citation: White T, Hoot S. 2011. Mechanisms of Resistance to Antifungal Agents, p 2008-2019. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch127
Generic image for table
TABLE 2

Clinical breakpoints for

For a more complete list of clinical breakpoints in other species, refer to chapter 128.

Includes caspofungin, anidulafungin, and micafungin.

Citation: White T, Hoot S. 2011. Mechanisms of Resistance to Antifungal Agents, p 2008-2019. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch127
Generic image for table
TABLE 3

Transcriptional regulation of resistance

Citation: White T, Hoot S. 2011. Mechanisms of Resistance to Antifungal Agents, p 2008-2019. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch127
Generic image for table
TABLE 4

Cellular phenotypes associated with resistance

Standard MIC at 48 h.

Citation: White T, Hoot S. 2011. Mechanisms of Resistance to Antifungal Agents, p 2008-2019. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch127

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error