1887

Chapter 140 : Microsporidia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microsporidia , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap140-1.gif /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap140-2.gif

Abstract:

Recent genome-wide sequence and synteny analyses indicate that the parasites of the phylum Microsporidia belong to the kingdom of the Fungi. Direct zoonotic transmission of microsporidia infecting humans has not been verified but appears likely because many microsporidial species can infect both humans and animals. Microsporidiosis has been associated with abnormalities in structures and functions of infected organs, but the mechanisms of pathogenicity of the different microsporidial species are not sufficiently understood. The most robust technique for the diagnosis of microsporidial infection is light microscopic detection of the parasites themselves. Evaluation of patients with suspected intestinal microsporidiosis should begin with light microscopic examination of stool specimens, and microsporidia which cause systemic infection are best detected in urine sediments or other body fluids. Microsporidial species causing disseminated infection have been found in almost every organ system. Only highly experienced pathologists have reliably and consistently identified microsporidia in tissue sections by using routine techniques such as hematoxylin and eosin staining. The isolation of microsporidia has no relevance for diagnostic purposes but is an important research tool. Microsporidial ultrastructure is unique and pathognomonic for the phylum, and ultrastructural features can distinguish all microsporidial genera. Observational studies showed that an improvement of immune functions by potent antiretroviral combination therapy results in complete clinical response and normalization of intestinal architecture, which parallels the clearance of intestinal microsporidia. Furthermore, various microsporidial species may cause self-limited diarrhea or keratoconjunctivitis in immunocompetent and otherwise healthy persons.

Citation: Weber R, Deplazes P, Mathis A. 2011. Microsporidia , p 2190-2199. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch140

Key Concept Ranking

Lower Respiratory Tract Infections
0.43426344
Upper Respiratory Tract Infections
0.4197157
Infection and Immunity
0.4151732
Traveler's Diarrhea
0.40299052
0.43426344
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Generalized life cycle of microsporidia and identifying characteristics of the genera known to infect humans. Light stippling indicates merogonic stages; heavy stippling indicates sporogonic stages; no stippling indicates spores and sporoplasm. (A) Basic life cycle, illustrated by Development may occur in direct contact with host cell cytoplasm , , and or in isolation by host cell membranes and or a cyst-like sporophorous vesicle of parasite origin and . 1, Sporoplasm: the infective stage emergent from the spore. It may have unpaired nuclei (monokaryotic) or two nuclei in close apposition (diplokaryotic), depending on the genus. 2, Merogony: proliferative stage. It may have a simple plasma membrane, but a surface coat is present in , and . Division can be by binary or multiple fission into two or more individuals. 3, Sporont: the first stage of sporogony. If not already present, a surface coat is added (this step is delayed in ). 4, Sporogony: divisions culminating in spore production. Binary or multiple fissions give rise to sporoblasts. 5, Sporoblasts: end products of sporogony, which mature into spores. 6, Spores: resistant stages for transmission. Spores are characterized by an extrusion apparatus (polar tube), which serves to conduct the sporoplasm into a host cell. The polar tube may be of uniform diameter (isofilar) or show a sharp decrease in diameter in the most posterior coils (anisofilar). (B to G) Identifying characteristics of genera. (B) . Members of this genus are diplokaryotic and disporoblastic; the life cycle is like that of , but meronts are of bizarre shapes and possess a surface coat with vesiculotubular structures (vt) embedded in it and extended from it. (C) . Members of this genus are diplokaryotic and polysporoblastic; all stages, including spores, are isolated in a close-fitting, ribosome-studded cisterna of host endoplasmic reticulum (er). (D) . Members of this genus are monokaryotic and polysporoblastic; meronts and sporonts are multinucleate stages called plasmodia; a thick surface coat is already present on meronts and sporonts ( ); this coat separates from the sporogonial plasmodium to form a cyst-like vesicle, the sporophorous vesicle; the plasmodium divides within it to produce numerous spores ( ). (E) . Members of this genus are monokaryotic and polysporoblastic. The meront surface coat has branched extensions ( ); these are withdrawn when the coat separates to form the sporophorous vesicle around a uninucleate sporont; the sporont undergoes a series of binary fissions ( and ) and finally encloses numerous spores ( ). (F) . Members of this genus are monokaryotic and di- or tetrasporoblastic; all stages of the life cycle, developing from the sporoplasm, occur concurrently within a host cell vacuole (parasitophorous vacuole); merogonic stages are appressed against the vacuole wall; sporogonic stages are free; the vacuole is finally packed with spores, so that it superficially resembles a sporophorous vesicle. (G) . Members of this genus are monokaryotic and polysporoblastic; meronts ( ) have irregular nuclei and lucent clefts; sporonts ( ) are multinucleate with rounded nuclei and have highly characteristic electron-dense disks, which are polar tube precursors; all spore organelles are formed prematurely, so that constriction around the sets of organelles and a nucleus ( ) gives rise directly to almost mature spores. The surface coat is deposited only during constriction.

Citation: Weber R, Deplazes P, Mathis A. 2011. Microsporidia , p 2190-2199. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch140
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transmission electron micrograph showing the duodenal epithelium of an HIV-infected patient infected with . The different developmental stages between the enterocyte nuclei and the microvillus border include a proliferative plasmodium ( ), late sporogonial plasmodia ( ), and mature spores (arrow). Magnification, ×5,370. (Courtesy of M. A. Spycher, University Hospital, Zurich, Switzerland.)

Citation: Weber R, Deplazes P, Mathis A. 2011. Microsporidia , p 2190-2199. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch140
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Smear of a stool specimen from a patient with AIDS and chronic diarrhea, showing pinkish red-stained spores of that measure 0.7 to 1.0 by 1.1 to 1.6 μm. Chromotrope staining was used. Magnification, ×1,000 (oil immersion).

Citation: Weber R, Deplazes P, Mathis A. 2011. Microsporidia , p 2190-2199. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch140
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(Left) Terminal ileal tissue obtained by ileocolonoscopy from a patient with AIDS and chronic diarrhea due to infection. Gram-labile microsporidial spores, measuring 0.7 to 1.0 by 1.1 to 1.6 μm, are found at a supranuclear location within small intestinal enterocytes. Brown-Brenn stain was used. Magnification, ×1,000. (Middle) Cytospin preparation of bronchoalveolar lavage fluid from a patient with AIDS and intestinal infection, showing intracellular microsporidia. Giemsa stain was used. Magnification, ×1,000 (oil immersion). (Right) Urine sediment from a patient with AIDS and disseminated infection, showing pinkish red-stained microsporidial spores measuring 1.0 to 1.5 by 2.0 to 3.0 μm. Chromotrope stain was used. Magnification, ×1,000 (oil immersion).

Citation: Weber R, Deplazes P, Mathis A. 2011. Microsporidia , p 2190-2199. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch140
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816728.chap140
1. Accoceberry, I.,, M. Thellier,, I. Desportes-Livage,, A. Achbarou,, S. Biligui,, M. Danis,, and A. Datry. 1999. Production of monoclonal antibodies directed against the microsporidium Enterocytozoon bieneusi. J. Clin. Microbiol. 37: 4107 4112.
2. Akiyoshi, D. E.,, H. G. Morrison,, S. Lei,, X. Feng,, Q. Zhang,, N. Corradi,, H. Mayanja,, J. K. Tumwine,, P. J. Keeling,, L. M. Weiss,, and S. Tzipori. 2009. Genomic survey of the noncultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathog. 5: e1000261
3. Bart, A.,, E. M. Wentink-Bonnema,, E. R. Heddema,, J. Buijs,, and T. van Gool. 2008. Frequent occurrence of human-associated microsporidia in fecal droppings of urban pigeons in Amsterdam, The Netherlands. Appl. Environ. Microbiol. 74: 7056 7058.
4. Bornay-Llinares, F. J.,, A. J. da Silva,, H. Moura,, D. A. Schwartz,, G. S. Visvesvara,, N. J. Pieniazek,, A. Cruz-Lopez,, P. Hernandez-Jauregui,, J. Guerrero,, and F. J. Enriquez. 1998. Immunologic, microscopic, and molecular evidence of Encephalitozoon intestinalis (Septata intestinalis) infection in mammals other than humans. J. Infect. Dis. 178: 820 826.
5. Breton, J.,, E. Bart-Delabesse,, S. Biligui,, A. Carbone,, X. Seiller,, M. Okome-Nkoumou,, C. Nzamba,, M. Kombila,, I. Accoceberry,, and M. Thellier. 2007. New highly divergent rRNA sequence among biodiverse genotypes of Enterocytozoon bieneusi strains isolated from humans in Gabon and Cameroon. J. Clin. Microbiol. 45: 2580 2589.
6. Cali, A.,, D. P. Kotler,, and J. M. Orenstein. 1993. Septata intestinalis N. G., N. Sp., an intestinal microsporidian associated with chronic diarrhea and dissemination in AIDS patients. J. Eukaryot. Microbiol. 40: 101 112.
7. Cali, A.,, and P. M. Takvorian. 2003. Ultrastructure and development of Pleistophora ronneafiei n. sp., a microsporidium (Protista) in the skeletal muscle of an immune-compromised individual. J. Eukaryot. Microbiol. 50: 77 85.
8. Cali, A.,, P. M. Takvorian,, S. Lewin,, M. Rendel,, C. S. Sian,, M. Wittner,, H. B. Tanowitz,, E. Keohane,, and L. M. Weiss. 1998. Brachiola vesicularum, n. g., n. sp., a new microsporidium associated with AIDS and myositis. J. Eukaryot. Microbiol. 45: 240 251.
9. Cali, A.,, L. M. Weiss,, and P. M. Takvorian. 2004. An analysis of the microsporidian genus Brachiola, with comparisons of human and insect isolates of Brachiola algerae. J. Eukaryot. Microbiol. 51: 678 685.
10. Cama, V. A.,, J. Pearson,, L. Cabrera,, L. Pacheco,, R. Gilman,, S. Meyer,, Y. Ortega,, and L. Xiao. 2007. Transmission of Enterocytozoon bieneusi between a child and guinea pigs. J. Clin. Microbiol. 45: 2708 2710.
11. Canning, E. U., 1993. Microsporidia, p. 299 370. In J. P. Kreier (ed.), Parasitic Protozoa, vol. 6. Academic Press, London, United Kingdom.
12. Carr, A.,, D. Marriott,, A. Field,, E. Vasak,, and D. A. Cooper. 1998. Treatment of HIV-1-associated microsporidiosis and cryptosporidiosis with combination antiretroviral therapy. Lancet 351: 256 261.
13. Carville, A.,, K. Mansfield,, G. Widmer,, A. Lackner,, D. Kotler,, P. Wiest,, T. Gumbo,, S. Sarbah,, and S. Tzipori. 1997. Development and application of genetic probes for detection of Enterocytozoon bieneusi in formalin-fixed stools and in intestinal biopsy specimens from infected patients. Clin. Diagn. Lab. Immunol. 4: 405 408.
14. Chan, C. M.,, J. T. Theng,, L. Li,, and D. T. Tan. 2003. Microsporidial keratoconjunctivitis in healthy individuals: a case series. Ophthalmology 110: 1420 1425.
15. Cheney, S. A.,, N. J. Lafranchi-Tristem,, and E. U. Canning. 2000. Phylogenetic relationships of Pleistophora-like microsporidia based on small subunit ribosomal DNA sequences and implications for the source of Trachipleistophora hominis infections. J. Eukaryot. Microbiol. 47: 280 287.
16. Coyle, C. M.,, L. M. Weiss,, L. V. Rhodes III,, A. Cali,, P. M. Takvorian,, D. F. Brown,, G. S. Visvesvara,, L. Xiao,, J. Naktin,, E. Young,, M. Gareca,, G. Colasante,, and M. Wittner. 2004. Fatal myositis due to the microsporidian Brachiola algerae, a mosquito pathogen. N. Engl. J. Med. 351: 42 47.
17. da Silva, A. J.,, D. A. Schwartz,, G. S. Visvesvara,, H. de Moura,, S. B. Slemenda,, and N. J. Pieniazek. 1996. Sensitive PCR diagnosis of infections by Enterocytozoon bieneusi (microsporidia) using primers based on the region coding for small-subunit rRNA. J. Clin. Microbiol. 34: 986 987.
18. Deplazes, P.,, A. Mathis,, R. Baumgartner,, I. Tanner,, and R. Weber. 1996. Immunologic and molecular characteristics of Encephalitozoon-like microsporidia isolated from humans and rabbits indicate that Encephalitozoon cuniculi is a zoonotic parasite. Clin. Infect. Dis. 22: 557 559.
19. Deplazes, P.,, A. Mathis,, M. van Saanen,, A. Iten,, R. Keller,, I. Tanner,, M. P. Glauser,, R. Weber,, and E. U. Canning. 1998. Dual microsporidial infection due to Vittaforma corneae and Encephalitozoon hellem in a patient with AIDS. Clin. Infect. Dis. 27: 1521 1524.
20. Desportes, I.,, Y. Le Charpentier,, A. Galian,, F. Bernard,, B. Cochand-Priollet,, A. Lavergne,, P. Ravisse,, and R. Modigliani. 1985. Occurrence of a new microsporidan: Enterocytozoon bieneusi n.g., n. sp., in the enterocytes of a human patient with AIDS. J. Protozool. 32: 250 254.
21. Didier, E. S. 1997. Effects of albendazole, fumagillin, and TNP-470 on microsporidial replication in vitro. Antimicrob. Agents Chemother. 41: 1541 1546.
22. Didier, E. S. 2005. Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop. 94: 61 76.
23. Didier, E. S.,, L. Bowers,, M. E. Stovall,, D. Kuebler,, D. Mittleider,, P. J. Brindley,, and P. J. Didier. 2005. Antimicrosporidial activity of (fluoro)quinolones in vitro and in vivo. Folia Parasitol. (Prague) 52: 173 181.
24. Didier, E. S.,, P. J. Didier,, D. N. Friedberg,, S. M. Stenson,, J. M. Orenstein,, R. W. Yee,, F. O. Tio,, R. M. Davis,, C. Vossbrinck,, N. Millichamp, et al. 1991. Isolation and characterization of a new human microsporidian, Encephalitozoon hellem (n. sp.), from three AIDS patients with keratoconjunctivitis. J. Infect. Dis. 163: 617 621.
25. Didier, E. S.,, J. M. Orenstein,, A. Aldras,, D. Bertucci,, L. B. Rogers,, and F. A. Janney. 1995. Comparison of three staining methods for detecting microsporidia in fluids. J. Clin. Microbiol. 33: 3138 3145.
26. Didier, E. S.,, C. R. Vossbrinck,, M. D. Baker,, L. B. Rogers,, D. C. Bertucci,, and J. A. Shadduck. 1995. Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology 111: 411 421.
27. Didier, E. S.,, and L. M. Weiss. 2006. Microsporidiosis: current status. Curr. Opin. Infect. Dis. 19: 485 492.
28. Didier, P. J.,, J. N. Phillips,, D. J. Kuebler,, M. Nasr,, P. J. Brindley,, M. E. Stovall,, L. C. Bowers,, and E. S. Didier. 2006. Antimicrosporidial activities of fumagillin, TNP-470, ovalicin, and ovalicin derivatives in vitro and in vivo. Antimicrob. Agents Chemother. 50: 2146 2155.
29. Enriquez, F. J.,, O. Ditrich,, J. D. Palting,, and K. Smith. 1997. Simple diagnosis of Encephalitozoon sp. microsporidial infections by using a panspecific antiexospore monoclonal antibody. J. Clin. Microbiol. 35: 724 729.
30. Enriquez, F. J.,, D. Taren,, A. Cruz-Lopez,, M. Muramoto,, J. D. Palting,, and P. Cruz. 1998. Prevalence of intestinal encephalitozoonosis in Mexico. Clin. Infect. Dis. 26: 1227 1229.
31. Field, A. S.,, M. C. Hing,, S. T. Milliken,, and D. J. Marriott. 1993. Microsporidia in the small intestine of HIV-infected patients. A new diagnostic technique and a new species. Med. J. Aust. 158: 390 394.
32. Field, A. S.,, D. J. Marriott,, S. T. Milliken,, B. J. Brew,, E. U. Canning,, J. G. Kench,, P. Darveniza,, and J. L. Harkness. 1996. Myositis associated with a newly described microsporidian, Trachipleistophora hominis, in a patient with AIDS. J. Clin. Microbiol. 34: 2803 2811.
33. Franzen, C.,, E. S. Nassonova,, J. Scholmerich,, and I. V. Issi. 2006. Transfer of the members of the genus Brachiola (microsporidia) to the genus Anncaliia based on ultrastructural and molecular data. J. Eukaryot. Microbiol. 53: 26 35.
34. Garcia, L. S. 2002. Laboratory identification of the microsporidia. J. Clin. Microbiol. 40: 1892 1901.
35. Gill, E. E.,, and N. M. Fast. 2006. Assessing the microsporidia- fungi relationship: combined phylogenetic analysis of eight genes. Gene 375: 103 109.
36. Graczyk, T. K.,, A. C. Majewska,, and K. J. Schwab. 2008. The role of birds in dissemination of human waterborne enteropathogens. Trends Parasitol. 24: 55 59.
37. Hibbett, D. S.,, M. Binder,, J. F. Bischoff,, M. Blackwell,, P. F. Cannon,, O. E. Eriksson,, S. Huhndorf,, T. James,, P. M. Kirk,, R. Lucking,, H. Thorsten Lumbsch,, F. Lutzoni,, P. B. Matheny,, D. J. McLaughlin,, M. J. Powell,, S. Redhead,, C. L. Schoch,, J. W. Spatafora,, J. A. Stalpers,, R. Vilgalys,, M. C. Aime,, A. Aptroot,, R. Bauer,, D. Begerow,, G. L. Benny,, L. A. Castlebury,, P. W. Crous,, Y. C. Dai,, W. Gams,, D. M. Geiser,, G. W. Griffith,, C. Gueidan,, D. L. Hawksworth,, G. Hestmark,, K. Hosaka,, R. A. Humber,, K. D. Hyde,, J. E. Ironside,, U. Koljalg,, C. P. Kurtzman,, K. H. Larsson,, R. Lichtwardt,, J. Longcore,, J. Miadlikowska,, A. Miller,, J. M. Moncalvo,, S. Mozley-Standridge,, F. Oberwinkler,, E. Parmasto,, V. Reeb,, J. D. Rogers,, C. Roux,, L. Ryvarden,, J. P. Sampaio,, A. Schussler,, J. Sugiyama,, R. G. Thorn,, L. Tibell,, W. A. Untereiner,, C. Walker,, Z. Wang,, A. Weir,, M. Weiss,, M. M. White,, K. Winka,, Y. J. Yao,, and N. Zhang. 2007. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111: 509 547.
38. Hollister, W. S.,, E. U. Canning,, E. Weidner,, A. S. Field,, J. Kench,, and D. J. Marriott. 1996. Development and ultrastructure of Trachipleistophora hominis n.g., n.sp. after in vitro isolation from an AIDS patient and inoculation into athymic mice. Parasitology 112: 143 154.
39. Ignatius, R.,, M. Lehmann,, K. Miksits,, T. Regnath,, M. Arvand,, E. Engelmann,, U. Futh,, H. Hahn,, and J. Wagner. 1997. A new acid-fast trichrome stain for simultaneous detection of Cryptosporidium parvum and microsporidial species in stool specimens. J. Clin. Microbiol. 35: 446 449.
40. James, T. Y.,, F. Kauff,, C. L. Schoch,, P. B. Matheny,, V. Hofstetter,, C. J. Cox,, G. Celio,, C. Gueidan,, E. Fraker,, J. Miadlikowska,, H. T. Lumbsch,, A. Rauhut,, V. Reeb,, A. E. Arnold,, A. Amtoft,, J. E. Stajich,, K. Hosaka,, G. H. Sung,, D. Johnson,, B. O’Rourke,, M. Crockett,, M. Binder,, J. M. Curtis,, J. C. Slot,, Z. Wang,, A. W. Wilson,, A. Schussler,, J. E. Longcore,, K. O’Donnell,, S. Mozley-Standridge,, D. Porter,, P. M. Letcher,, M. J. Powell,, J. W. Taylor,, M. M. White,, G. W. Griffith,, D. R. Davies,, R. A. Humber,, J. B. Morton,, J. Sugiyama,, A. Y. Rossman,, J. D. Rogers,, D. H. Pfister,, D. Hewitt,, K. Hansen,, S. Hambleton,, R. A. Shoemaker,, J. Kohlmeyer,, B. Volkmann-Kohlmeyer,, R. A. Spotts,, M. Serdani,, P. W. Crous,, K. W. Hughes,, K. Matsuura,, E. Langer,, G. Langer,, W. A. Untereiner,, R. Lucking,, B. Budel,, D. M. Geiser,, A. Aptroot,, P. Diederich,, I. Schmitt,, M. Schultz,, R. Yahr,, D. S. Hibbett,, F. Lutzoni,, D. J. McLaughlin,, J. W. Spatafora,, and R. Vilgalys. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818 822.
41. Jedrzejewski, S.,, T. K. Graczyk,, A. Slodkowicz-Kowalska,, L. Tamang,, and A. C. Majewska. 2007. Quantitative assessment of contamination of fresh food produce of various retail types by human-virulent microsporidian spores. Appl. Environ. Microbiol. 73: 4071 4073.
42. Karanis, P.,, C. Kourenti,, and H. Smith. 2007. Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J. Water Health 5: 1 38.
43. Katinka, M. D.,, S. Duprat,, E. Cornillot,, G. Metenier,, F. Thomarat,, G. Prensier,, V. Barbe,, E. Peyretaillade,, P. Brottier,, P. Wincker,, F. Delbac,, H. El Alaoui,, P. Peyret,, W. Saurin,, M. Gouy,, J. Weissenbach,, and C. P. Vivares. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450 453.
44. Kester, K. E.,, G. W. Turiansky,, and P. L. McEvoy. 1998. Nodular cutaneous microsporidiosis in a patient with AIDS and successful treatment with long-term oral clindamycin therapy. Ann. Intern. Med. 128: 911 914.
45. Lanternier, F.,, D. Boutboul,, J. Menotti,, M. O. Chandesris,, C. Sarfati,, M. F. Mamzer Bruneel,, Y. Calmus,, F. Mechai,, J. P. Viard,, M. Lecuit,, M. E. Bougnoux,, and O. Lortholary. 2009. Microsporidiosis in solid organ transplant recipients: two Enterocytozoon bieneusi cases and review. Transpl. Infect. Dis. 11: 83 88.
46. Ledford, D. K.,, M. D. Overman,, A. Gonzalvo,, A. Cali,, S. W. Mester,, and R. F. Lockey. 1985. Microsporidiosis myositis in a patient with the acquired immunodeficiency syndrome. Ann. Intern. Med. 102: 628 630.
47. Lee, J. H. 2008. Molecular detection of Enterocytozoon bieneusi and identification of a potentially human-pathogenic genotype in milk. Appl. Environ. Microbiol. 74: 1664 1666.
48. Lee, S. C.,, N. Corradi,, E. J. Byrnes III,, S. Torres-Martinez,, F. S. Dietrich,, P. J. Keeling,, and J. Heitman. 2008. Microsporidia evolved from ancestral sexual fungi. Curr. Biol. 18: 1675 1679.
49. Margileth, A. M.,, A. J. Strano,, R. Chandra,, R. Neafie,, M. Blum,, and R. M. McCully. 1973. Disseminated nosematosis in an immunologically compromised infant. Arch. Pathol. 95: 145 150.
50. Mathis, A.,, M. Michel,, H. Kuster,, C. Muller,, R. Weber,, and P. Deplazes. 1997. Two Encephalitozoon cuniculi strains of human origin are infectious to rabbits. Parasitology 114: 29 35.
51. Mathis, A.,, R. Weber,, and P. Deplazes. 2005. Zoonotic potential of the microsporidia. Clin. Microbiol. Rev. 18: 423 445.
52. Menotti, J.,, B. Cassinat,, C. Sarfati,, O. Liguory,, F. Derouin,, and J. M. Molina. 2003. Development of a real-time PCR assay for quantitative detection of Encephalitozoon intestinalis DNA. J. Clin. Microbiol. 41: 1410 1413.
53. Menotti, J.,, M. Santillana-Hayat,, B. Cassinat,, C. Sarfati,, F. Derouin,, and J. M. Molina. 2005. Inhibitory activity of human immunodeficiency virus aspartyl protease inhibitors against Encephalitozoon intestinalis evaluated by cell culture-quantitative PCR assay. Antimicrob. Agents Chemother. 49: 2362 2366.
54. Molina, J. M.,, C. Chastang,, J. Goguel,, J. F. Michiels,, C. Sarfati,, I. Desportes-Livage,, J. Horton,, F. Derouin,, and J. Modai. 1998. Albendazole for treatment and prophylaxis of microsporidiosis due to Encephalitozoon intestinalis in patients with AIDS: a randomized double-blind controlled trial. J. Infect. Dis. 177: 1373 1377.
55. Molina, J. M.,, M. Tourneur,, C. Sarfati,, S. Chevret,, A. de Gouvello,, J. G. Gobert,, S. Balkan,, and F. Derouin. 2002. Fumagillin treatment of intestinal microsporidiosis. N. Engl. J. Med. 346: 1963 1969.
56. Moura, H.,, D. A. Schwartz,, F. Bornay-Llinares,, F. C. Sodre,, S. Wallace,, and G. S. Visvesvara. 1997. A new and improved “quick-hot Gram-chromotrope” technique that differentially stains microsporidian spores in clinical samples, including paraffinembedded tissue sections. Arch. Pathol. Lab. Med. 121: 888 893.
57. Muller, A.,, R. Bialek,, A. Kamper,, G. Fatkenheuer,, B. Salzberger,, and C. Franzen. 2001. Detection of microsporidia in travelers with diarrhea. J. Clin. Microbiol. 39: 1630 1632.
58. Nkinin, S. W.,, T. Asonganyi,, E. S. Didier,, and E. S. Kaneshiro. 2007. Microsporidian infection is prevalent in healthy people in Cameroon. J. Clin. Microbiol. 45: 2841 2846.
59. Santin, M.,, and R. Fayer. 2009. Enterocytozoon bieneusi genotype nomenclature based on the internal transcribed spacer sequence: a consensus. J. Eukaryot. Microbiol. 56: 34 38.
60. Silveira, H.,, and E. U. Canning. 1995. Vittaforma corneae n. comb. for the human microsporidium Nosema corneum Shadduck, Meccoli, Davis & Font, 1990, based on its ultrastructure in the liver of experimentally infected athymic mice. J. Eukaryot. Microbiol. 42: 158 165.
61. Thellier, M.,, and J. Breton. 2008. Enterocytozoon bieneusi in human and animals, focus on laboratory identification and molecular epidemiology. Parasite 15: 349 358.
62. Thomarat, F.,, C. P. Vivares,, and M. Gouy. 2004. Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency of fast-evolving genes. J. Mol. Evol. 59: 780 791.
63. van Gool, T.,, C. Biderre,, F. Delbac,, E. Wentink-Bonnema,, R. Peek,, and C. P. Vivares. 2004. Serodiagnostic studies in an immunocompetent individual infected with Encephalitozoon cuniculi. J. Infect. Dis. 189: 2243 2249.
64. van Gool, T.,, E. U. Canning,, and J. Dankert. 1994. An improved practical and sensitive technique for the detection of microsporidian spores in stool samples. Trans. R. Soc. Trop. Med. Hyg. 88: 189 190.
65. Vavra, J.,, R. Dahbiova,, W. S. Hollister,, and E. U. Canning. 1993. Staining of microsporidian spores by optical brighteners with remarks on the use of brighteners for the diagnosis of AIDS associated human microsporidioses. Folia Parasitol. (Prague) 40: 267 272.
66. Vavra, J.,, A. T. Yachnis,, J. A. Shadduck,, and J. M. Orenstein. 1998. Microsporidia of the genus Trachipleistophora—causative agents of human microsporidiosis: description of Trachipleistophora anthropophthera n. sp. (Protozoa: Microsporidia). J. Eukaryot. Microbiol. 45: 273 283.
67. Visvesvara, G. S. 2002. In vitro cultivation of microsporidia of clinical importance. Clin. Microbiol. Rev. 15: 401 413.
68. Visvesvara, G. S.,, M. Belloso,, H. Moura,, A. J. Da Silva,, I. N. Moura,, G. J. Leitch,, D. A. Schwartz,, P. Chevez-Barrios,, S. Wallace,, N. J. Pieniazek,, and J. D. Goosey. 1999. Isolation of Nosema algerae from the cornea of an immunocompetent patient. J. Eukaryot. Microbiol. 46: 10S.
69. Visvesvara, G. S.,, H. Moura,, G. J. Leitch,, D. A. Schwartz,, and L. X. Xiao. 2005. Public health importance of Brachiola algerae (Microsporidia)—an emerging pathogen of humans. Folia Parasitol. (Prague) 52: 83 94.
70. Vossbrinck, C. R.,, J. V. Maddox,, S. Friedman,, B. A. Debrunner-Vossbrinck,, and C. R. Woese. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411 414.
71. Weber, R.,, R. T. Bryan,, R. L. Owen,, C. M. Wilcox,, L. Gorelkin,, G. S. Visvesvara, and the Enteric Opportunistic Infections Working Group. 1992. Improved light-microscopical detection of microsporidia spores in stool and duodenal aspirates. N. Engl. J. Med. 326: 161 166.
72. Weber, R.,, R. T. Bryan,, D. A. Schwartz,, and R. L. Owen. 1994. Human microsporidial infections. Clin. Microbiol. Rev. 7: 426 461.
73. Weber, R.,, P. Deplazes,, M. Flepp,, A. Mathis,, R. Baumann,, B. Sauer,, H. Kuster,, and R. Luthy. 1997. Cerebral microsporidiosis due to Encephalitozoon cuniculi in a patient with human immunodeficiency virus infection. N. Engl. J. Med. 336: 474 478.
74. Weber, R.,, H. Kuster,, R. Keller,, T. Bachi,, M. A. Spycher,, J. Briner,, E. Russi,, and R. Luthy. 1992. Pulmonary and intestinal microsporidiosis in a patient with the acquired immunodeficiency syndrome. Am. Rev. Respir. Dis. 146: 1603 1605.
75. Weber, R.,, B. Ledergerber,, R. Zbinden,, M. Altwegg,, G. E. Pfyffer,, M. A. Spycher,, J. Briner,, L. Kaiser,, M. Opravil,, C. Meyenberger,, and M. Flepp. 1999. Enteric infections and diarrhea in human immunodeficiency virus-infected persons: prospective community-based cohort study. Arch. Intern. Med. 159: 1473 1480.
76. Weber, R.,, D. A. Schwartz,, and P. Deplazes,. 1999. Laboratory diagnosis of microsporidiosis, p. 315 362. In M. Wittner, and L. M. Weiss (ed.), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC.
77. Weiss, L. M.,, and C. R. Vossbrinck,. 1999. Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia, p. 129 171. In M. Wittner, and L. M. Weiss (ed.), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC.
78. Wichro, E.,, D. Hoelzl,, R. Krause,, G. Bertha,, F. Reinthaler,, and C. Wenisch. 2005. Microsporidiosis in travel-associated chronic diarrhea in immune-competent patients. Am. J. Trop. Med. Hyg. 73: 285 287.
79. Williams, B. A.,, R. P. Hirt,, J. M. Lucocq,, and T. M. Embley. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865 869.
80. Williams, B. A.,, R. C. Lee,, J. J. Becnel,, L. M. Weiss,, N. M. Fast,, and P. J. Keeling. 2008. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics 9: 200.
81. Xiao, L.,, L. Li,, H. Moura,, I. Sulaiman,, A. A. Lal,, S. Gatti,, M. Scaglia,, E. S. Didier,, and G. S. Visvesvara. 2001. Genotyping Encephalitozoon hellem isolates by analysis of the polar tube protein gene. J. Clin. Microbiol. 39: 2191 2196.
82. Xiao, L.,, L. Li,, G. S. Visvesvara,, H. Moura,, E. S. Didier,, and A. A. Lal. 2001. Genotyping Encephalitozoon cuniculi by multilocus analyses of genes with repetitive sequences. J. Clin. Microbiol. 39: 2248 2253.
83. Yachnis, A. T.,, J. Berg,, A. Martinez-Salazar,, B. S. Bender,, L. Diaz,, A. M. Rojiani,, T. A. Eskin,, and J. M. Orenstein. 1996. Disseminated microsporidiosis especially infecting the brain, heart, and kidneys. Report of a newly recognized pansporoblastic species in two symptomatic AIDS patients. Am. J. Clin. Pathol. 106: 535 543.

Tables

Generic image for table
TABLE 1

Microsporidial species pathogenic in humans, and clinical manifestations

has been detected using PCR among persons with traveler's diarrhea and coinfection with sp. ( ); thus, the pathogenic role of remains unknown. Microscopic detection of spores in stool has not been reported so far.

is a collective generic name for microsporidia that cannot be classified because available information is not sufficient.

Citation: Weber R, Deplazes P, Mathis A. 2011. Microsporidia , p 2190-2199. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch140

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error