1887

Chapter 69 : Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap69-1.gif /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap69-2.gif

Abstract:

Commercial antimicrobial susceptibility testing (AST) systems were introduced into clinical microbiology laboratories during the 1980s and have been used in the majority of laboratories since the 1990s. Manual and semiautomated broth microdilution systems are utilized for small volumes of susceptibility testing, while larger laboratories often choose an automated broth microdilution system. The AST systems include data management software that may be interfaced with a laboratory information system (LIS) and offer various levels of expert system and epidemiological analyses. This chapter focuses primarily on commercial susceptibility testing systems currently available in the United States. It discusses advantages and disadvantages of automated systems. Reports of AST performance for detecting problematic resistance phenotypes are also discussed. Expert systems to assist in the critical review of AST results are available for all commercial susceptibility systems currently marketed in the United States. Most expert systems use a rules-based approach focusing on AST results for one drug at a time without considering results for other agents tested simultaneously. Factors to consider when selecting an AST system include cost, performance, work flow, data management capabilities, and manufacturer technical support. Future advances in the development of AST systems may increase their clinical impact with the incorporation of molecular techniques that dramatically shorten the time required for results.

Citation: Richter S, Ferraro M. 2011. Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, p 1144-1154. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch69

Key Concept Ranking

Gram-Negative Bacteria
0.6489514
Antimicrobial Susceptibility Testing
0.64895135
Gram-Positive Bacteria
0.6077139
Gram-Positive Cocci
0.6003704
Staphylococcus aureus
0.5894855
0.6489514
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816728.chap69
1. Andrew, J. M.,, F. J. Boswell,, and R. Wise. 2000. Evaluation of the Oxoid Aura image system for measuring zones of inhibition with the disc diffusion technique. J. Antimicrob. Chemother. 46: 535 540.
2. Barenfanger, J.,, C. Drake,, and G. Kacich. 1999. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J. Clin. Microbiol. 37: 1415 1418.
3. Barry, J.,, A. Brown,, V. Ensor,, U. Lakhani,, D. Petts,, C. Warren,, and T. Winstanley. 2003. Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals. J. Antimicrob. Chemother. 51: 1191 1202.
4. Berke, I.,, and P. M. Tierno, Jr. 1996. Comparison of efficacy and cost-effectiveness of BIOMIC VIDEO and VITEK antimicrobial susceptibility test systems for use in the clinical microbiology laboratory. J. Clin. Microbiol. 34: 1980 1984.
5. Bert, F.,, M. Juvin,, Z. Ould-Hocine,, G. Clarebout,, E. Keller,, N. Lambert,, and G. Arlet. 2005. Evaluation and updating of the Osiris expert system for identification of Escherichia coli b-lactam resistance phenotypes. J. Clin. Microbiol. 43: 1846 1850.
6. Bert, F.,, Z. Ould-Hocine,, M. Juvin,, V. Dubois,, V. Loncle-Provot,, V. LeFranc,, C. Quentin,, N. Lambert,, and G. Arlet. 2003. Evaluation of the Osiris expert system for identification of β-lactam phenotypes in isolates of Pseudomonas aeruginosa. J. Clin. Microbiol. 41: 3712 3718.
7. Blondel-Hill, E.,, C. Hetchler,, D. Andrews,, and L. Lapointe. 2003. Evaluation of VITEK 2 for analysis of Enterobacteriaceae using the Advanced Expert System (AES) versus interpretive susceptibility guidelines used at Dynacare Kasper Medical Laboratories, Edmonton, Alberta. Clin. Microbiol. Infect. 9: 1091 1103.
8. Bratu, S.,, D. Landman,, R. Haag,, R. Recco,, A. Eramo,, M. Alam,, and J. Quale. 2005. Rapid spread of carbapenemresistant Klebsiella pneumoniae in New York City. Arch. Intern. Med. 165: 1430 1435.
9. Brigante, G. R.,, F. A. Luzzaro,, B. Pini,, G. Lombardi,, G. Sokeng,, and A. Q. Toniolo. 2007. Drug susceptibility testing of clinical isolates of streptococci and enterococci by the Phoenix automated microbiology system. BMC Microbiol. 7: 46 52.
10. Burns, J. L.,, L. Saiman,, S. Whittier,, J. Krzewinski,, Z. Liu,, D. Larone,, S. A. Marshall,, and R. N. Jones. 2001. Comparison of two commercial systems (VITEK and MicroScan-WalkAway) for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Diagn. Microbiol. Infect. Dis. 39: 257 260.
11. Carroll, K. C.,, A. P. Borek,, C. Burger,, B. Glanz,, H. Bhally,, S. Henciak,, and S. C. Flayhart. 2006. Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of staphylococci and enterococci. J. Clin. Microbiol. 44: 2072 2077.
12. Centers for Disease Control and Prevention. 2004. Vancomycin-resistant Staphylococcus aureus—New York, 2004. MMWR Morb. Mortal. Wkly. Rep. 53: 322323.
13. Chapin, K. C.,, and M. C. Musgnug. 2003. Validation of the automated reading and incubation system with Sensititre plates for antimicrobial susceptibility testing. J. Clin. Microbiol. 41: 1951 1956.
14. Chapin, K. C.,, and M. C. Musgnug. 2004. Evaluation of Sensititre automated system for automated reading of Sensititre broth microdilution susceptibility plates. J. Clin. Microbiol. 42: 909 911.
15. Chen, H. M.,, J. J. Wu,, P. F. Tsai,, J. Y. Wann,, and J. J. Yan. 2009. Evaluation of the capability of the VITEK 2 system to detect extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumonia isolates, in particular with the coproduction of AmpC enzymes. Eur. J. Clin. Microbiol. Infect. Dis. 28: 871 874.
16. Chen, Y.-S.,, S. A. Marshall,, P. L. Winokur,, S. L. Coffman,, W.W. Wilkie,, P. R. Murray,, C. A. Spiegel,, M. A. Pfaller,, G. V. Doern,, and R. N. Jones. 1998. Use of molecular and reference susceptibility testing methods in a multicenter evaluation of MicroScan dried overnight gram-positive MIC panels for detection of vancomycin and high-level aminoglycoside resistances in enterococci. J. Clin. Microbiol. 36: 2996 3001.
17. Clinical and Laboratory Standards Institute. 2008. Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters, Approved Guideline M23-A3, 3rd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
18. Clinical and Laboratory Standards Institute. 2009. Methods for Dilution Antimicrobial Susceptibility Testing for Bacteria That Grow Aerobically, Approved Standard M07-A8, 8th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
19. Clinical and Laboratory Standards Institute. 2010. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI document M100-S20. Clinical and Laboratory Standards Institute, Wayne, PA.
20. d’Azevedo, P. A.,, C. A.G. Dias,, A. L. S. Goncalves,, F. Rowe,, and L. M. Teixeira. 2001. Evaluation of an automated system for the identification and antimicrobial susceptibility testing of enterococci. Diagn. Microbiol. Infect. Dis. 40: 157 161.
21. Del’Alamo, L.,, R. F. Cereda,, I. Tosin,, E. A. Miranda,, and H. S. Sader. 1999. Antimicrobial susceptibility of coagulasenegative staphylococci and characterization of isolates with reduced susceptibility to glycopeptides. Diagn. Microbiol. Infect. Dis. 34: 185 191.
22. Doern, G. V.,, R. Vautour,, M. Gaudet,, and B. Levy. 1994. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J. Clin. Microbiol. 32: 1757 1762.
23. Donaldson, H.,, M. McCalmont,, D. M. Livermore,, P. J. Rooney,, G. Ong,, E. McHenry,, R. Campbell,, and R. McMullan. 2008. Evaluation for the VITEK 2 AST N-054 test card for the detection of extended-spectrum b-lactamase production in Escherichia coli with CTX-M phenotypes. J. Antimicrob. Chemother. 62: 1015 1017.
24. Donay, J.-L.,, D. Mathieu,, P. Fernandes,, C. Pregermain,, P. Bruel,, A. Wargnier,, I. Casin,, F. X. Weill,, P. H. Lagrange,, and J. L. Herrmann. 2004. Evaluation of the automated Phoenix system for potential routine use in the clinical microbiology laboratory. J. Clin. Microbiol. 42: 1542 1546.
25. Eigner, U.,, A. Schmid,, U. Wild,, D. Bertsch,, and A.-M. Fahr. 2005. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems . J. Clin. Microbiol. 43: 3829 3834.
26. Endimiani, A.,, F. Luzzaro,, A. Tamborini,, G. Lombardi,, V. Elia,, R. Belloni,, and A. Toniolo. 2002. Identification and antimicrobial susceptibility testing of clinical isolates of nonfermenting gram-negative bacteria by the Phoenix automated microbiology system. Microbiologica 25: 323 329.
27. Fahr, A. M.,, U. Eigner,, M. Armbrust,, A. Caganic,, G. Dettori,, C. Chezzi,, L. Bertoncini,, M. Benecchi,, and M. G. Menozzi. 2003. Two-center collaborative evaluation of the performance of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterococcus spp. and Staphylococcus spp . J. Clin. Microbiol. 41: 1135 1142.
28. Federal Register. 1992. Clinical Laboratory Improvement Amendments of 1988; final rule. Fed. Regist. 57: 7164.
29. Felten, A.,, B. Grandry,, P. H. Lagrange,, and I. Casin. 2002. Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a diskdiffusion method with cefoxitin and moxalactam, the VITEK 2 system, and the MRSA-screen latex agglutination test. J. Clin. Microbiol. 40: 2766 2771.
30. Food and Drug Administration. 2003. Establishment Registration and Device Listing for Manufacturers and Initial Importers of Devices. 21 CFR 807. Food and Drug Administration, Rockville, MD.
31. Food and Drug Administration. June 2009. Guidance for Industry: Updating Labeling for Susceptibility Test Information in Systemic Antibacterial Drug Products and Antimicrobial Susceptibility Testing Devices. Food and Drug Administration, Rockville, MD.
32. Food and Drug Administration. 28 August 2009. Class II Special Controls Guidance Document: Antimicrobial Susceptibility Test (AST) Systems; Guidance for Industry and FDA. Food and Drug Administration, Rockville, MD.
33. Garcia-Garrote, F.,, E. Cercenado,, and E. Bouza. 2000. Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. J. Clin. Microbiol. 38: 2108 2111.
34. Geiss, H. K.,, and U. E. Klar. 2000. Evaluation of the BIOMIC video reader system for routine use in the clinical microbiology laboratory. Diagn. Microbiol. Infect. Dis. 37: 151 155.
35. Goessens, W. H. F.,, N. Lemmens-den Toom,, J. Hageman,, P. W. M. Hermans,, M. Sluijter,, R. de Groot,, and H. A. Verbrugh. 2000. Evaluation of the VITEK 2 system for susceptibility testing of Streptococcus pneumoniae isolates. Eur. J. Clin. Microbiol. Infect. Dis. 19: 618 622.
35a. Gosnell, C.,, C. Yu,, D. Turner,, and J. Reuben. 2008. 18th Eur. Congr. Clin. Microbiol. Infect. Dis., abstr. P854.
36. Guthrie, L. L.,, S. Banks,, W. Setiawan,, and K. B. Waites. 1999. Comparison of MicroScan MICroSTREP, Pasco, and Sensititre MIC panels for determining antimicrobial susceptibilities of Streptococcus pneumoniae. Diagn. Microbiol. Infect. Dis. 33: 267 273.
37. Horstkotte, M. A.,, J. K.-M. Knobloch,, H. Rohde,, S. Dobinsky,, and D. Mack. 2002. Rapid detection of methicillin resistance in coagulase-negative staphylococci with the VITEK 2 system. J. Clin. Microbiol. 40: 3291 3295.
38. Horstkotte, M. A.,, J. K.-M. Knobloch,, H. Rohde,, S. Dobinsky,, and D. Mack. 2004. Evaluation of the BD PHOENIX automated system for detection of methicillin resistance in coagulase-negative staphylococci. J. Clin Microbiol. 42: 5041 5046.
39. Hussain, Z.,, L. Stoakes,, M. A. John,, S. Garrow,, and V. Fitzgerald. 2002. Detection of methicillin resistance in primary blood culture isolates of coagulase-negative staphylococci by PCR, slide agglutination, disk diffusion, and a commercial method. J. Clin. Microbiol. 40: 2251 2253.
40. Hussain, Z.,, L. Stoakes,, V. Massey,, D. Diagre,, V. Fitzgerald,, S. El Sayed,, and R. Lannigan. 2000. Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative staphylococci. J. Clin. Microbiol. 38: 752 754.
41. John, M. A.,, J. Burden,, J. I. Stuart,, R. C. Reyes,, R. Lannigan,, S. Milburn,, D. Diagre,, B. Wilson,, and Z. Hussain. 2009. Comparison of three phenotypic techniques for detection of methicillin resistance in Staphylococcus spp. Reveals a species-dependent performance. J. Antimicrob. Chemother. 63: 493 496.
42. Jones, R. N. 2001. Method preferences and test accuracy of antimicrobial susceptibility testing: updates from the College of American Pathologists Microbiology Survey Program ( 2000 ). Arch. Pathol. Lab. Med. 125: 1285 1289.
43. Jorgensen, J. H. 1993. Selection criteria for an antimicrobial susceptibility testing system. J. Clin. Microbiol. 31: 2841 2844.
44. Jorgensen, J. H.,, A. L. Barry,, M. M. Traczewski,, D. F. Sahm,, M. L. McElmeel,, and S. A. Crawford. 2000. Rapid automated antimicrobial susceptibility testing of Streptococcus pneumoniae by use of the bioMerieux VITEK 2. J. Clin. Microbiol. 38: 2814 2818.
45. Jorgensen, J. H.,, and M. J. Ferraro. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49: 1749 1755.
46. Jorgensen, J. H.,, and M. J. Ferraro. 2000. Antimicrobial susceptibility testing: special needs for fastidious organisms and difficult-to-detect resistance mechanisms. Clin. Infect. Dis. 30: 799 808.
47. Jorgensen, J. H.,, S. A. Crawford,, L. M. McElmeel,, and C. G. Whitney. 2004. Detection of resistance to gatifloxacin and moxifloxacin in Streptococcus pneumoniae with the VITEK 2 instrument. J. Clin. Microbiol. 42: 5928 5930.
48. Jorgensen, J. H.,, S. A. Crawford,, M. L. McElmeel,, and K. R. Fiebelkorn. 2004. Detection of inducible clindamycin resistance in conjunction with performance of automated broth susceptibility testing. J. Clin. Microbiol. 42: 1800 1802.
49. Joyanes, P.,, M. D. C. Conejo,, L. Martinez-Martinez,, and E. J. Perea. 2001. Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. J. Clin. Microbiol. 39: 3247 3253.
50. Junkins, A. D.,, S. R. Lockhart,, K. P. Heilmann,, C. L. Dohrn,, D. L. Von Stein,, P. L. Winokur,, G. V. Doern,, and S. S. Richter. 2009. BD Phoenix and Vitek 2 detection of mecA-mediated resistance in Staphylococcus aureus with cefoxitin. J. Clin. Microbiol. 47: 2879 2882.
50a. Junkins, A. D.,, S. S. Arbefeville,, W. J. Howard,, and S. S. Richter. 2010. Comparison of BD Phoenix AP workflow with Vitek 2. J. Clin. Microbiol. 48: 1929 1931.
51. Juretschko, S.,, V. J. LaBombardi,, S. A. Lerner,, P. C. Schreckenberger, and the Pseudomonas AST Study Group. 2007. Accuracies of b-lactam susceptibility test results for Pseudomonas aeruginosa with four automated systems (BD Phoenix, MicroScan WalkAway, Vitek, and Vitek 2). J. Clin. Microbiol. 45: 1339 1342.
52. Kaase, M.,, B. Baars,, S. Friedrich,, F. Szabados,, and S. G. Gatermann. 2009. Performance of MicroScan WalkAway and VITEK 2 for detection of oxacillin resistance in a set of methicillin-resistant Staphylococcus aureus isolates with diverse genetic backgrounds. J. Clin. Microbiol. 47: 2623 2625.
53. Kaase, M.,, S. Lena,, S. Friedrich,, F. Szabados,, T. Sakinc,, B. Kleine,, and S. G. Gatermann. 2008. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin. Microbiol. Infect. 14: 614 616.
54. Karlowsky, J. A.,, M. K. Weaver,, C. Thornsberry,, M. J. Dowzicky,, M. E. Jones,, and D. F. Sahm. 2003. Comparison of four antimicrobial susceptibility testing methods to determine the in vitro activities of piperacillin and piperacillintazobactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 41: 3339 3343.
55. Kolbert, M.,, F. Chegrani,, and P. M. Shah. 2004. Evaluation of the OSIRIS video reader as an automated measurement system for the agar disk diffusion technique. Clin. Microbiol. Infect. 10: 416 420.
56. Komatsu, M.,, M. Aihara,, K. Shimakawa,, M. Iwasaki,, Y. Nagasaka,, S. Fukuda,, S. Matsuo,, and Y. Iwatani. 2003. Evaluation of MicroScan ESBL confirmation panel for Enterobacteriaceae-producing, extended-spectrum b-lactamases isolated in Japan. Diagn. Microbiol. Infect. Dis. 46: 125 130.
57. Korgenski, E. K.,, and J. A. Daly. 1998. Evaluation of the BIOMIC video reader system for determining interpretive categories of isolates on the basis of disk diffusion susceptibility results. J. Clin. Microbiol. 36: 302 304.
58. Kulah, C.,, E. Aktas,, F. Comert,, N. Ozlu,, I. Akyar,, and H. Ankarali. 2009. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, MicroScan WalkAway, Vitek 2); high error rates with MicroScan WalkAway. BMC Infect. Dis. 9: 30 37.
58a.. LeClercq, R.,, A. Boulanger,, F. Doucet-Populaire,, S. Galopin,, M. Ploy,, and C. Poyart. 2009. Abstr. 49th Intersci. Conf. Antimicrob. Agents Chemother., abstr. D-797.
59. Lestari, E. S.,, J. A. Severin,, P. M. G. Filius,, K. Kuntaman,, D. O. Duerink,, U. Hadi,, H. Wahjono,, and H. A. Verbrugh. 2008. Comparison of the accuracy of disk diffusion zone diameters obtained by manual zone measurements to that by automated zone measurements to determine antimicrobial susceptibility. J. Microbiol. Methods 75: 177 181.
60. Leverstein-van Hall, M.,, A. C. Fluit,, A. Paauw,, A. T. A. Box,, S. Brisse,, and J. Verhoef. 2002. Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extended-spectrum beta-lactamases in multiresistant Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 40: 3703 3711.
61. Ligozzi, M.,, C. Bernini,, M. G. Bonora,, M. de Fatima,, J. Zuliani,, and R. Fontana. 2002. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J. Clin. Microbiol. 40: 1681 1686.
62. Linscott, A. J.,, and W. J. Brown. 2005. Evaluation of four commercially available extended-spectrum beta-lactamase phenotypic confirmation tests. J. Clin. Microbiol. 43: 1081 1085.
63. Livermore, D. M.,, M. Struelens,, J. Amorin,, F. Baquero,, J. Bille,, R. Canton,, S. Henning,, S. Gatermann,, A. Marchese,, H. Mittermayer,, C. Nonhoff,, K. J. Oakton,, F. Praplan,, H. Ramos,, G. C. Schito,, J. Van Eldere,, J. Verhaegen,, J. Verhoef,, and M. R. Visser. 2002. Multicentre evaluation of the VITEK 2 Advanced Expert System for interpretive reading of antimicrobial resistance tests. J. Antimicrob. Chemother. 49: 289 300.
64. Livermore, D. M.,, T. G. Winstanley,, and K. P. Shannon. 2001. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J. Antimicrob. Chemother. 47 (Suppl. 1): 87 102.
65. Mazzariol, A.,, M. Aldegheri,, M. Ligozzi,, G. L. Cascio,, R. Koncan,, and R. Fontana. 2008. Performance of Vitek 2 in antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates with different mechanisms of b-lactam resistance. J. Clin. Microbiol. 46: 2095 2098.
66. Medeiros, A. A.,, and J. Crellin. 2000. Evaluation of the Sirscan automated zone reader in a clinical microbiology laboratory. J. Clin. Microbiol. 38: 1688 1693.
67. Munro, S.,, R. M. Mulder,, S. M. Farnham,, and B. Grinius,. 2004. Evaluating antimicrobial susceptibility test systems, p. 5.17.1 5.17.9. In H. D. Isenberg (ed.), Clinical Microbiology Procedures Handbook, 2nd ed. ASM Press, Washington, DC.
68. Murdoch, D. R.,, S. Mirrett,, L. J. Harrell,, S. M. Donabedian,, M. J. Zervos,, and L. B. Reller. 2003. Comparison of MicroScan broth microdilution, synergy quad plate agar dilution, and disk diffusion screening methods for detection of high-level aminoglycoside resistance in Enterococcus species. J. Clin. Microbiol. 41: 2703 2705.
69. Nakasone, I.,, T. Kinjo,, N. Yamane,, K. Kisanuki,, and C. M. Shiohira. 2007. Laboratory-based evaluation of the colorimetric VITEK-2 Compact system for species identification and of the Advanced Expert System for detection of antimicrobial resistances: VITEK-2 Compact system identification and antimicrobial susceptibility testing. Diagn. Microbiol. Infect. Dis. 58: 191 198.
70. Nijs, A.,, R. Cartuyvels,, A. Mewis,, V. Peeters,, J. L. Rummens,, and K. Magerman. 2003. Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility systems in the clinical microbiology laboratory. J. Clin. Microbiol. 41: 3627 3630.
71. Pfaller, M. A.,, and R. N. Jones. 2006. Performance accuracy of antibacterial and antifungal susceptibility test methods: report from the College of American Pathologists Microbiology Surveys Program (2001-2003). Arch. Pathol. Lab. Med. 130: 767 778.
72. Richter, S. S.,, W. J. Howard,, M. P. Weinstein,, D. A. Bruckner,, J. F. Hindler,, M. Saubolle,, and G. V. Doern. 2007. Multicenter evaluation of the BD Phoenix automated microbiology system for antimicrobial susceptibility testing of Streptococcus species. J. Clin. Microbiol. 45: 2863 2871.
73. Roisin, S.,, C. Nonhoff,, O. Denis,, and M. J. Struelens. 2008. Evaluation of new VITEK 2 card and disk diffusion method for determining susceptibility of Staphylococcus aureus to oxacillin. J. Clin. Microbiol. 46: 2525 2528.
74. Rolain, J. M.,, M. N. Mallet,, P. E. Fournier,, and D. Raoult. 2004. Real-time PCR for universal antibiotic susceptibility testing. J. Antimicrob. Chemother. 54: 538 541.
75. Rosenberg, J.,, F. C. Tenover,, J. Wong,, W. Jarvis,, and D. J. Vugia. 1997. Are clinical laboratories in California accurately reporting vancomycin-resistant enterococci? J. Clin. Microbiol. 35: 2526 2530.
76. Sader, H. S.,, T. R. Fritsche,, and R. N. Jones. 2006. Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J. Clin. Microbiol. 44: 1101 1104.
77. Sakoulas, G.,, H. S. Gold,, L. Venkataraman,, P. C. Degirolami,, G. M. Eliopoulos,, and Q. Qian. 2001. Methicillin- resistant Staphylococcus aureus: comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J. Clin. Microbiol. 39: 3946 3951.
78. Sanchez, M. A.,, B. Sanchez del Saz,, E. Loza,, F. Baquero,, and R. Canton. 2001. Evaluation of the OSIRIS video reader for disk diffusion susceptibility test reading. Clin. Microbiol. Infect. 7: 352 357.
79. Sanders, C. C.,, M. Peyret,, E. S. Moland,, C. Shubert,, K. S. Thomson,, J.-M. Boeufgras,, and W. E. Sanders. 2000. Ability of the VITEK 2 Advanced Expert System to identify β-lactam phenotypes in isolates of Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 38: 570 574.
80. Sanders, C. C.,, M. Peyret,, E. S. Moland,, S. J. Cavalieri,, C. Shubert,, K. S. Thomson,, J.-M. Boeufgras,, and W. E. Sanders. 2001. Potential impact of the VITEK 2 System and the Advanced Expert System on the clinical laboratory of a university-based hospital. J. Clin. Microbiol. 39: 2379 2385.
81. Sanguinetti, M.,, B. Posteraro,, T. Spanu,, D. Ciccaglione,, L. Romano,, B. Fiori,, G. Nicoletti,, S. Zanetti,, and G. Fadda. 2003. Characterization of clinical isolates of Enterobacteriaceae from Italy by the Phoenix extended-spectrum β-lactamase detection method. J. Clin. Microbiol. 41: 1463 1468.
82. Sorlozano, A.,, J. Gutierrez,, G. Piedrola,, and M. J. Soto. 2005. Acceptable performance of VITEK 2 system to detect extended-spectrum b-lactamases in clinical isolates of Escherichia coli: a comparative study of phenotypic commercial methods and NCCLS guidelines. Diagn. Microbiol. Infect. Dis. 51: 191 193.
83. Spanu, T.,, M. Sanguinetti,, M. Tumbarello,, T. D’Inzeo,, B. Fiori,, B. Posteraro,, R. Santangelo,, R. Cauda,, and G. Fadda. 2006. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates . J. Clin. Microbiol. 44: 3257 3262.
84. Spanu, T.,, M. Sanguinetti,, T. D’Inzeo,, D. Ciccaglione,, L. Romano,, F. Leone, P Mazzella, and G. Fadda. 2004. Identification of methicillin-resistant isolates of Staphylococcus aureus and coagulase-negative staphylococci responsible for bloodstream infections with the Phoenix™ system. Diagn. Microbiol. Infect. Dis. 48: 221 227.
85. Stefaniuk, E.,, A. Baraniak,, M. Gniadkowski,, and W. Hryniewicz. 2003. Evaluation of the BD Phoenix automated identification and susceptibility testing system in clinical microbiology laboratory practice. Eur. J. Clin. Microbiol. Infect. Dis. 22: 479 485.
86. Steward, C. D.,, J. M. Mohammed,, J. M. Swenson,, S. A. Stocker,, P. P. Williams,, R. P. Gaynes,, J. E. McGowan,, and F. C. Tenover. 2003. Antimicrobial susceptibility testing of carbapenems: multicenter validity and accuracy levels of five antimicrobial test methods for detecting resistance in Enterobacteriaceae and Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 41: 351 358.
87. Sturenburg, E.,, I. Sobottka,, H.-H. Feucht,, D. Mack,, and R. Laufs. 2003. Comparison of BD Phoenix and VITEK 2 automated antimicrobial susceptibility test systems for extended-spectrum beta-lactamase detection in Escherichia coli and Klebsiella species clinical isolates. Diagn. Microbiol. Infect. Dis. 45: 29 34.
88. Sturenburg, E.,, M. Lang,, M. A. Horstkotte,, R. Laufs,, and D. Mack. 2004. Evaluation of the MicroScan ESBL plus confirmation panel for detection of extended-spectrum β-lactamases in clinical isolates of oxyimino-cephalosporinresistant gram-negative bacteria . J. Antimicrob. Chemother. 54: 870 875.
89. Swenson, J. M.,, D. Lonsway,, S. McAllister,, A. Thompson,, L. Jevitt,, W. Zhu,, and J. B. Patel. 2007. Detection of mecAmediated resistance using reference and commercial testing methods in a collection of Staphylococcus aureus expressing borderline oxacillin MICs. Diagn. Microbiol. Infect. Dis. 58: 33 39.
90. Swenson, J. M.,, K. F. Anderson,, D. R. Lonsway,, A. Thompson,, S. K. McAllister,, B. M. Limbago,, R. B. Carey,, F. C. Tenover,, and J. B. Patel. 2009. Accuracy of commercial and reference susceptibility testing methods for detecting vancomycin-intermediate Staphylococcus aureus. J. Clin. Microbiol. 47: 2013 2017.
91. Tenover, F. C.,, J. M. Swensen,, C. M. O’Hara,, and S. A. Stocker. 1995. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J. Clin. Microbiol. 33: 1524 1527.
92. Tenover, F. C.,, L. M. Weigel,, P. C. Appelbaum,, L. K. McDougal,, J. Chaitram,, S. McAllister,, N. Clark,, G. Killgore,, C. M. O’Hara,, L. Jevitt,, J. B. Patel,, and B. Bozdogan. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48: 275 280.
93. Tenover, F. C.,, M. V. Lancaster,, B. C. Hill,, C. D. Steward,, S. A. Stocker,, G. A. Hancock,, C. M. O’Hara,, N. C. Clark,, and K. Hiramatsu. 1998. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J. Clin. Microbiol. 36: 1020 1027.
94. Tenover, F. C.,, P. P. Williams,, S. Stocker,, A. Thompson,, L. A. Clark,, B. Limbago,, R. B. Carey,, S. M. Poppe,, D. Shinabarger,, and J. E. McGowan. 2007. Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J. Clin. Microbiol. 45: 2917 2922.
95. Tenover, F. C.,, R. K. Kalsi,, P. P. Williams,, R. C. Carey,, S. Stocker,, D. Lonsway,, J. K. Rasheed,, J. W. Biddle,, J. E. McGowan,, and B. Hanna. 2006. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing . Emerg. Infect. Dis. 12: 1209 1213.
96. Thomson, K. S.,, N. E. Cornish,, S. G. Hong,, K. Hemrick,, C. Herdt,, and E. S. Moland. 2007. Comparison of Phoenix and VITEK 2 extended-spectrum-β-lactamase detection tests for analysis of Escherichia coli and Klebsiella isolates with well-characterized b-lactamases. J. Clin. Microbiol. 45: 2380 2384.
97. Tsakris, A.,, A. Pantazi,, S. Pournaras,, A. Maniatis,, A. Polyzou,, and D. Sofianou. 2000. Pseudo-outbreak of imipenem-resistant Acinetobacter baumannii resulting from false susceptibility testing by a rapid automated system. J. Clin. Microbiol. 38: 3505 3507.
98. Turnidge, J. D.,, and J. M. Bell,. 2005. Antimicrobial susceptibility on solid media, p. 8 60. In V. Lorin (ed.), Antibiotics in Laboratory Medicine, 5th ed. The Williams & Wilkins Co., Baltimore, MD.
99. Van Den Braak, N.,, W. Goessens,, A. van Belkum,, H. A. Verbrugh,, and H. P. Endtz. 2001. Accuracy of the VITEK 2 system to detect glycopeptide resistance in enterococci. J. Clin. Microbiol. 39: 351 353.
100. Weissmann, D.,, J. Spargo,, C. Wennersten,, and M. J. Ferrarro. 1991. Detection of enterococcal high-level aminoglycoside resistance with MicroScan freeze-dried panels containing newly modified medium and VITEK gram-positive susceptibility cards. J. Clin. Microbiol. 29: 1232 1235.
101. White, R. L.,, M. B. Kays,, L. V. Friedrich,, E. W. Brown,, and J. R. Koonce. 1991. Pseudoresistance of Pseudomonas aeruginosa resulting from degradation of imipenem in an automated susceptibility testing system with predried panels . J. Clin. Microbiol. 29: 398 400.
102. Winstanley, T. G.,, H. K. Parsons,, M. A. Horstkotte,, I. Sobottka,, and E. Sturenburg. 2005. Phenotypic detection of β-lactamase-mediated resistance to oxyimino-cephalosporins in Enterobacteriaceae: evaluation of the Mastacan Elite Expert System. J. Antimicrob. Chemother. 56: 292 296.
103. Woods, G. L.,, B. DiGiovanni,, M. Levison,, P. Pitsakis,, and D. LaTemple. 1993. Evaluation of MicroScan rapid panels for detection of high-level aminoglycoside resistance in enterococci. J. Clin. Microbiol. 31: 2786 2787.

Tables

Generic image for table
TABLE 1

Overview of manual and semiautomated susceptibility testing instrumentation

Bio-Rad, Hercules, CA, http://bio-rad.com; i2a, Montpellier, France; Mast, Bootle, United Kingdom, http://www.mastascan.com; Oxoid, Basingstoke, United Kingdom, http://www.oxoid.com. See text for other manufacturers.

Not currently available within the United States.

Citation: Richter S, Ferraro M. 2011. Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, p 1144-1154. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch69
Generic image for table
TABLE 2

Overview of automated broth microdilution susceptibility testing instrumentation

neg, negative; ON, overnight; pos, positive; RUO, research use only.

Citation: Richter S, Ferraro M. 2011. Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, p 1144-1154. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch69
Generic image for table
TABLE 3

Unusual resistance phenotypes

Resistance phenotypes that are rare or have not yet been detected may represent technical errors.

Citation: Richter S, Ferraro M. 2011. Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, p 1144-1154. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch69
Generic image for table
TABLE 4

Gram-negative organisms with expected resistance to commonly tested antimicrobial agents

Implementation of the revised (2010) cephalosporin and aztreonam CLSI breakpoints for makes routine ESBL testing unnecessary unless there is consideration of using the agents listed. If ESBL testing is performed and results are positive, the organisms should be reported as resistant to these drugs.

Citation: Richter S, Ferraro M. 2011. Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, p 1144-1154. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch69
Generic image for table
TABLE 5

Antimicrobial agents that may appear active in vitro but lack clinical efficacy

Implementation of the revised (2010) cephalosporin and aztreonam CLSI breakpoints for makes routine ESBL testing unnecessary unless there is consideration of using the agents listed. If ESBL testing is performed and results are positive, the organisms should be reported as resistant to these drugs.

Citation: Richter S, Ferraro M. 2011. Susceptibility Testing Instrumentation and Computerized Expert Systems for Data Analysis and Interpretation, p 1144-1154. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch69

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error