1887

Chapter 73 : Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap73-1.gif /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap73-2.gif

Abstract:

This chapter includes a description of nonradioactive broth culture systems and rapid molecular systems for detection of drug resistance, as well as the standard agar proportion method. The antimicrobial agents that are used in the treatment of mycobacterial infections are discussed in the chapter for the most commonly encountered species. The Clinical and Laboratory Standards Institute (CLSI) document on drug susceptibility testing of mycobacteria currently recommends that first-line testing include ethambutol (EMB), RMP, INH, and pyrazinamide (PZA). The chapter describes drug susceptibility testing of complex. Broth microdilution is the method recommended by the CLSI for susceptibility testing of nontuberculous mycobacteria (NTM). The CLSI provides guidelines for testing complex (MAC), , , and the rapidly growing mycobacteria. General recommendations regarding the broth microdilution method and QC that apply to all NTM are discussed in the chapter. The chapter describes specific details related to MAC, , , and the rapidly growing mycobacteria. It also talks about incubation temperature and time for each species or group. The chapter explains that spp. and other aerobic actinomycetes (, , , , and rarely spp.) can cause serious disease in immunocompromised and occasionally even healthy hosts. The recommended method for testing and other aerobic actinomycetes is broth microdilution.

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73

Key Concept Ranking

Clinical and Public Health
1.5787995
Bacteria
0.41603705
Viruses
0.4134951
Highly Active Antiretroviral Therapy
0.4004447
1.5787995
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816728.chap73
1. Agterof, M. J.,, T. van der Bruggen,, M. Tersmette,, E. J. ter Borg,, J. M. M. van den Bosch,, and D. H. Biesma. 2007. Nocardiosis: a case series and a mini review of clinical and microbiological features. Neth. J. Med. 65: 199 202.
2. Alcaide, F.,, G. E. Pfyffer,, and A. Telenti. 1997. Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob. Agents Chemother. 41: 2270 2273.
3. Amsden, G. W. 1996. Erythromycin, clarithromycin, and azithromycin: are the differences real? Clin. Ther. 18: 56 72.
4. Andreis, K.,, P. Verhasselt,, J. Guillemont,, H. W. Gohleman,, J. M. Neefs,, H. Winkler,, J. Van Gestel,, P. Timmerman,, M. Zhu,, E. Lee,, P. Williams,, D. De Chaffoy,, E. Huitric,, S. Hoffner,, E. Cambau,, C. Truffot-Pernot,, N. Lounis,, and V. Jarlier. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223 227.
5.Anonymous. 1998. Priftin (Rifapentine) Prescribing Information. Hoechst Marion Roussel, Inc., Kansas City, MO.
6.Anonymous. 2008. Capreomycin. Tuberculosis (Edinburgh) 88: 8991.
7. Banerjee, A.,, E. Dubnau,, A. Quemard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle,, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227 230.
8. Barnard, M.,, H. Albert,, G. Coetzee,, R. O’Brien,, and M. E. Bosman. 2008. Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am. J. Respir. Crit. Care Med. 177: 787 792.
8a.. Beaty, S.,, S. Siddiqi,, and M. Gnacek. 1992. Abstr. 92nd Gen. Meet. Am. Soc. Microbiol. 1992, abstr. U-102. American Society for Microbiology, Washington, DC.
9. Bémer, P.,, F. Palicova,, S. Rüsch-Gerdes,, S. H. Siddiqi,, H. B. Drugeon,, and G. E. Pfyffer. 2002. Multicenter evaluation of fully-automated BACTEC Mycobacteria Growth Indicator Tube 960 System for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 40: 150 154.
10. Benson, C. 1997. Critical drug interactions with agents used for prophylaxis and treatment of Mycobacterium avium infections. Am. J. Med. 102: 32 36.
11. Bergmann, J. S.,, and G. L. Woods. 1998. Evaluation of the ESP culture system II for testing susceptibilities of Mycobacterium tuberculosis isolates to four primary antituberculous drugs. J. Clin. Microbiol. 36: 2940 2943.
12. Bernard, E. M.,, F. F. Edwards,, T. E. Kiehn,, S. T. Brown,, and D. Armstrong. 1993. Activities of antimicrobial agents against clinical isolates of Mycobacterium haemophilum. Antimicrob. Agents Chemother. 37: 2323 2326.
13. Berning, S. E.,, L. Madsen,, M. D. Iseman,, and C. A. Peloquin. 1995. Long-term safety of ofloxacin and ciprofloxacin in the treatment of mycobacterial infections. Am. J. Respir. Crit. Care Med. 151: 2006 2009.
14. Blaschke, A. J.,, J. Bender,, C. L. Byington,, K. Korgenski,, J. Daly,, C. A Petti,, A. T. Pavia,, and K. Ampofo. 2007. Gordonia species: emerging pathogens in pediatric patients that are identified by 16S ribosomal RNA gene sequencing. Clin. Infect. Dis. 45: 483 486.
15. Bodmer, T.,, G. Zurcher,, P. Imboden,, and A. Telenti. 1995. Mutation position and type of substitution in the betasubunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother. 35: 345 348.
16. Bouza, E.,, A. Perez-Parra,, M. Rosal,, P. Martin-Rabadan,, M. Rodriguez-Creixems,, and M. Marin. 2009. Tsukamurella: a cause of catheter-related bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 28: 203 210.
17. Bozeman, L.,, W. Burman,, B. Metchock,, L. Welch,, M. Weiner, and the Tuberculosis Trials Consortium. 2005. Fluoroquinolone susceptibility among Mycobacterium tuberculosis isolates from the United States and Canada. J. Infect. Dis. 40: 386 391.
18. Brown-Elliott, B. A.,, J. Brown,, P. S. Conville,, and R. J. Wallace. 2006. Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin. Microbiol. Rev. 19: 259 282.
19. Brown-Elliott, B. A.,, and R. J. Wallace, Jr. 2002. Clinical and taxonomic status of pathogenic nonpigmented or latepigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 15: 716 746.
20. Brunello, F.,, and R. Fontana. 2000. Reliability of the MB/ BacT system for testing susceptibility of Mycobacterium tuberculosis complex isolates to antituberculous drugs. J. Clin. Microbiol. 38: 872 873.
21. Burman, W. J. 1997. The value of in vitro drug activity and pharmacokinetics in predicting the effectiveness of antimycobacterial therapy: a critical review. Am. J. Med. Sci. 313: 355 363.
22. Canetti, G. 1965. Present aspects of bacterial resistance in tuberculosis. Am. Rev. Respir. Dis. 92: 687 702.
23. Canetti, G.,, W. Fox,, A. Khomenko,, H. T. Mahler,, N. K. Menon,, D. A. Mitchison,, N. Rist,, and N. A. Smelev. 1969. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programs. Bull. W. H. O. 41: 21 43.
24. Canetti, G.,, S. Froman,, J. Grosset,, P. Hauduroy,, M. Lagerova,, H. T. Mahler,, G. Meissner,, D. A. Mitchison,, and L. Sula. 1963. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull. W. H. O. 29: 565 578.
25. Centers for Disease Control and Prevention. 2006. Revised definition of extensively drug-resistance tuberculosis. MMWR Morb. Mortal. Wkly. Rep. 55: 1176.
26. Chaisson, R. E.,, C. A. Benson,, M. P. Dube,, L. B. Heifets,, J. A. Korvick,, S. Elkin,, T. Smith,, J. C. Craft,, F. R. Sattler, and the AIDS Clinical Trials Group Protocol 157 Study Team. 1994. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease. Ann. Intern. Med. 121: 905 911.
27. Chaisson, R. E.,, P. Keiser,, M. Pierce,, W. J. Fessel,, J. Ruskin,, C. Lahart,, C. A. Benson,, K. Meek,, N. Siepman,, and J. C. Craft. 1997. Clarithromycin and ethambutol with or without clofazimine for the treatment of bacteremic Mycobacterium avium complex disease in patients with HIV infection. AIDS 11: 311 317.
28. Chiu, J.,, J. Nussbaum,, S. Bozette,, J. G. Tilles,, L. S. Young,, J. Leedom,, P. N. R. Heseltine,, and A. McCutchan. 1990. Treatment of disseminated Mycobacterium avium complex infection in AIDS with amikacin, ethambutol, rifampin, and ciprofloxacin. Ann. Intern. Med. 113: 358 361.
29. Choi, J. H.,, K. W. Lee,, H. R. Kang,, Y. I. Hwang,, S. Jang,, D. G. Kim,, C. H. Kim,, I. G. Hyun,, T. R. Shin,, S. M. Park,, M. G. Lee,, C. Y. Lee,, Y. B. Park,, and K. S. Jung. 2010. Clinical efficacy of direct DNA sequencing analysis on sputum specimens for early detection of drug-resistant Mycobacterium tuberculosis in a clinical setting. Chest 137: 393 400.
30. Clinical and Laboratory Standards Institute. 2000. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—8th Ed. CLSI Document M7-A8. Clinical and Laboratory Standards Institute, Wayne, PA.
30a.. Clinical and Laboratory Standards Institute. 2010. Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement. CLSI Document M100-S20. Clinical and Laboratory Standards Institute, Wayne, PA.
31. Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard—2nd Ed. CLSI Document M24-2A, in press. Clinical and Laboratory Standards Institute, Wayne, PA.
32. Crofton, J.,, and D. A. Mitchison. 1948. Streptomycin resistance in pulmonary tuberculosis. Br. Med. J. 2: 1009 1015.
33. David, H. L. 1970. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl. Microbiol. 20: 810 814.
34. Davis, W. B.,, and M. M. Weber. 1977. Specificity of isoniazid on growth inhibition and competition for an oxidized nicotiniamide adenine dinucleotide regulatory site on the electron transport pathway in Mycobacterium phlei. Antimicrob. Agents Chemother. 12: 213 218.
35. Deretic, V.,, W. Philipp,, S. Dhandayuthapani,, M. H. Mudd,, R. Curcic,, T. Garbe,, B. Heym,, L. E. Via,, and S. T. Cole. 1995. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol. Microbiol. 17: 889 900.
36. Diacon, A. H.,, A. Pym,, M. Grosbusch,, R. Patientia,, R. Rustomjeee,, L. Page-Shipp,, C. Pistorius,, R. Krause,, M. Bogoshi,, G. Churchyard,, A. Venter,, J. Allen,, J. C. Palomino,, T. DeMarez,, R. P. G. van Heeswijk,, N. Lounis,, P. Meyvisch,, J. Verbeek,, W. Parys,, K. de Beule,, K. Andries,, and D. F. McNeeley. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360: 2397 2405.
37. Diaz-Infantes, M. S.,, M. J. Ruiz-Serrano,, L. Martinez- Sanchez,, A. Ortega,, and E. Bouza. 2000. Evaluation of the MB/BacT Mycobacterium Detection System for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 38: 1988 1989.
38. Dorman, S. E.,, J. L. Johnson,, S. Goldberg,, G. Muzanye,, N. Padayatchi,, L. Bozeman,, C. M. Heilig,, J. Bernardo,, S. Choudhri,, J. H. Grosset,, E. Guy,, P. Guyadeen,, M. C. Leus,, G. Maltas,, D. Menzies,, E. L. Nuermberger,, M. Villarino,. A. Vernon,, and R. E. Chaisson. 2009. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 180: 273 280.
39. Drobniewski, F.,, S. Hoffner,, K. M. Kam,, S. J. Kim,, S. Labelle,, M. Raviglione,, J. Ridderhof,, S. Rusch-Gerdes,, S. Selvakumar,, T. Shinnick,, A. Sloutsky,, V. Vincent,, K. Weyer,, A. Wright,, and M. Zignol. 2007. Policy guidance on TB drug susceptibility testing (DST) of second-line drugs (SLD). http://www.who.int/tb/features_archive/xdr_mdr_policy_ guidance/en/print.html..
40. Dukes, C. S.,, J. Sugarman,, J. P. Cegielski,, G. J. Lallinger,, and D. H. Mwakyusa. 1992. Severe cutaneous hypersensitivity reactions during treatment of tuberculosis in patients with HIV infection in Tanzania. Trop. Geogr. Med. 44: 308 311.
41. Felmlee, T. A.,, Q. Liu,, A. C. Whelen,, D. Williams,, S. S. Sommer,, and D. H. Persing. 1995. Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J. Clin. Microbiol. 33: 1617 1623.
42. Finken, M.,, P. Kirschner,, A. Meier,, A. Wrede,, and E. C. Böttger. 1993. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9: 1239 1246.
43. Franzblau, S. G.,, R. S. Witzig,, J. C. McLaughlin,, P. Torres,, G. Madico,, A. Hernandez,, M. T. Degnan,, M. B. Cook,, V. K. Quenzer,, R. M. Ferguson,, and R. H. Gilman. 1998. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 36: 362 366.
44. Garcia, L.,, M. Alonso-Sanz,, M. J. Rebollo,, J. C. Tercero,, and F. Chaves. 2001. Mutations in the rpoB gene of rifampinresistant Mycobacterium tuberculosis isolates in Spain and their rapid detection by PCR-enzyme-linked immunosorbent assay. J. Clin. Microbiol. 39: 1813 1818.
45. Ginsburg, A. S.,, J. H. Grosset,, and W. R. Bishai. 2003. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis. 3: 432 442.
46. Griffith, D. E.,, T. Aksamit,, B. Brown-Elliott,, A. Catanzaro,, C. Daley,, F. Gordin,, S. M. Holland,, R. Horsburgh,, G. Huitt,, M. F. Iademarco,, M. Iseman,, K. Olivier,, S. Ruoss,, C. F. von Reyn,, R. J. Wallace,, and K. Winthrop. 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175: 367 416.
47. Grosset, J. H. 1992. Treatment of tuberculosis in HIV infection. Tubercle Lung Dis. 73: 378 383.
48. Guthertz, L. S.,, M. E. Griffith,, E. G. Ford,, J. M. Janda,, and T. F. Midura. 1988. Quality control of individual components used in Middlebrook 7H10 medium for mycobacterial susceptibility testing. J. Clin. Microbiol. 26: 2338 2342.
49. Hacek, D., 1992. Modified proportion agar dilution test for slowly growing mycobacteria, p. 5.13.1 5.13.15. In H. D. Isenberg (ed.), Clinical Microbiology Procedures Handbook, vol. 1. American Society for Microbiology, Washington, DC.
50. Hanna, B. A.,, A. Ebrahimzadeh,, L. B. Elliott,, M. A. Morgan,, S. M. Novak,, S. Rüsch-Gerdes,, M. Acio,, D. F. Dunbar,, T. M. Holmes,, C. H. Rexer,, C. Savthyakumar,, and A. M. Vannier. 1999. Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria. J. Clin. Microbiol. 37: 748 752.
51. Havlir, D. V.,, M. P. Dube,, F. R. Sattler,, D. N. Forthal,, C. A. Kemper,, M. W. Dunne,, D. M. Parenti,, J. P. Lavelle,, A. White,, M. D. Witt,, S. A. Bozzette,, J. A. McCutchan, and the California Collaborative Treatment Group. 1996. Prophylaxis against disseminated Mycobacterium avium complex with weekly azithromycin, daily rifabutin, or both. N. Engl. J. Med. 335: 392 398.
52. Hawkins, J. E., 1984. Drug susceptibility testing, p. 177 193. In G. P. Kubica, and L. G. Wayne (ed.), The Mycobacteria: a Sourcebook, part A. Marcel Dekker, Inc., New York, NY.
53. Hawkins, J. E. 1986. Non-weekend schedule for BACTEC susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 23: 934 937.
54. Hazbon, M. D.,, M. Brimacombe,, M. Bobadilla del Valle,, M. Cavatore,, M. Imiride Guerrero,, M. Varma-Basil,, H. Billman- Jacobe,, C. Lavender,, J. Fyfe,, L. Garcia-Garcia,, C. Ines Leon,, M. Bose,, F. Chaves,, M. Murray,, K. D. Eisenach,, J. Sifuentes-Osornio,, M. D. Cave,, A. Ponce de Leon,, and D. Alland. 2006. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 50: 2640 2649.
55. Heep, M.,, B. Brandstätter,, U. Rieger,, N. Lehn,, E. Richter,, S. Rüsch-Gerdes,, and S. Niemann. 2001. Frequency of rpoB mutations inside and outside the cluster I region in rifampinresistant clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 39: 107 110.
56. Heifets, L.,, and G. Cangelosi,. 2009. Drug resistance assays for Mycobacterium tuberculosis, p. 1161 1170. In D. L. Mayers (ed.), Antimicrobial Drug Resistance. Humana Press, Totowa, NJ.
57. Heifets, L.,, J. Simon,, and V. Pham. 2005. Capreomycin is active against non-replicating M. tuberculosis. Ann. Clin. Microbiol. Antimicrob. 4: 6.
58. Heifets, L. B. 1991. Drug Susceptibility in the Chemotherapy of Mycobacterial Infections, p. 212. CRC Press, Inc., Boca Raton, FL.
59. Heym, B.,, Y. Zhang,, S. Poulet,, D. Young,, and S. T. Cole. 1993. Characterization of the katG gene encoding a catalaseperoxidase required for isoniazid susceptibility of Mycobacterium tuberculosis. J. Bacteriol. 175: 4255 4259.
60. Hillemann, D.,, S. Rusch-Gerdes,, and E. Richter. 2009. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J. Clin. Microbiol. 47: 1767 1772.
61. Hoffner, S. E.,, S. B. Svenson,, and A. E. Beezer. 1990. Microcalorimetric studies of the initial interaction between antimycobacterial drugs and Mycobacterium avium. J. Antimicrob. Chemother. 25: 353 359.
62. Howard, W. L.,, F. Maresh,, E. E. Mueller,, S. A. Yanitelli,, and G. F. Woodruff. 1949. The role of pulmonary cavitation in the development of bacterial resistance to streptomycin. Am. Rev. Tuberc. 59: 391 401.
63. Howlett, H. S.,, J. B. O’Connor,, J. F. Sadusk,, J. E. Swift,, and F. A. Beardsley. 1949. Sensitivity of tubercle bacilli to streptomycin: the influence of various factors upon the emergence of resistant strains. Am. Rev. Tuberc. 59: 402 414.
64. Hu, Y.,, A. R. Coates,, and D. A. Mitchison. 2003. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47: 653 657.
65. Hunt, J. M.,, G. D. Roberts,, L. Stockman,, T. A. Felmlee,, and D. H. Persing. 1994. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens. Diagn. Microbiol. Infect. Dis. 18: 219 227.
66. Inderlied, C. B.,, C. A. Kemper,, and L. E. M. Bermudez. 1993. The Mycobacterium avium complex. Clin. Microbiol. Rev. 6: 266 310.
67. Inderlied, C. B.,, P. T. Kolonski,, M. Wu,, and L. S. Young. 1989. In vitro and in vivo activity of azithromycin (CP 62,993) against the Mycobacterium avium complex. J. Infect. Dis. 159: 994 997.
68. Inderlied, C. B.,, and K. A. Nash,. 1996. Antimycobacterial agents: in vitro susceptibility testing, spectra of activity, mechanisms of action and resistance, and assays for activity in biologic fluids, p. 127 175. In V. Lorian (ed.), Antibiotics in Laboratory Medicine, 4th ed. The Williams & Wilkins Co., Baltimore, MD.
69. Inderlied, C. B.,, and K. A. Nash,. 2005. Antimycobacterial agents: in vitro susceptibility testing and mechanisms of action and resistance, p. 155 225. In V. Lorian (ed.), Antibiotics in Laboratory Medicine. Lippincott Williams & Wilkins, Philadelphia, PA.
70. Jannat-Khah, D. P.,, E. S. Halsey,, B. A. Lasker,, A. G. Steigerwalt,, H. P. Hinrikson,, and J. M. Brown. 2009. Gordonia araii infection associated with an orthopedic device and review of the literature on medical device-associated Gordonia infections. J. Clin. Microbiol. 47: 499 502.
71. Jureen, P.,, J. Werngren,, J.-C. Toro,, and S. Hoffner. 2008. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 52: 1852 1854.
72. Källenius, G.,, S. G. Svenson,, and S. E. Hoffner. 1989. Ethambutol: a key for Mycobacterium avium complex chemotherapy. Am. Rev. Respir. Dis. 140: 264.
73. Kapur, V.,, L. L. Li,, S. Iordanescu,, M. R. Hamrick,, A. Wanger,, B. N. Kreiswirth,, and J. M. Musser. 1994. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J. Clin. Microbiol. 32: 1095 1098.
74. Kasperbauer, S. H.,, and C. L. Daley. 2008. Diagnosis and treatment of infections due to Mycobacterium avium complex. Semin. Respir. Care Med. 29: 569 576.
75. Kelley, C. L.,, D. A. Rouse,, and S. L. Morris. 1997. Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 41: 2057 2058.
76. Kenney, T. J.,, and G. Churchward. 1994. Cloning and sequence analysis of the rpsL and rpsG genes of Mycobacterium smegmatis and characterization of mutations causing resistance to streptomycin. J. Bacteriol. 176: 6153 6156.
77. Kent, P. T.,, and G. P. Kubica. 1985. Public Health Mycobacteriology— a Guide for the Level III Laboratory. U.S. Department of Health and Human Services, Centers for Disease Control, Atlanta, GA.
78. Koh, W. J.,, O. J. Kwon,, H. Gwak,, J. W. Chung,, S. N. Cho,, W. S. Kim,, and T. S. Shim. 2009. Daily 300 mg dose of linezolid for the treatment of intractable multidrug-resistant and extensively drug-resistant tuberculosis. J. Antimicrob. Chemother. 64: 388 391.
79. Koletar S. L.,, A. J. Berry,, M. H. Cynamon,, J. Jacobson,, J. S. Currier,, R. R. MacGregor,, M. W. Dunne,, and O. J. Williams. 1999. Azithromycin as treatment for disseminated Mycobacterium avium complex in AIDS patients. Antimicrob. Agents Chemother. 43: 2869 2872.
80. Kruuner, A.,, M. D. Yates,, and F. A. Drobniewski. 2006. Evaluation of MGIT 960-based antimicrobial testing and determination of critical concentrations of first- and secondline antimicrobial drugs with drug-resistant clinical strains of Mycobacterium tuberculosis. J. Clin. Microbiol. 44: 811 818.
81. Kubica, G. P.,, and W. E. Dye. 1967. Laboratory Methods for Clinical and Public Health Mycobacteriology. U.S. Government Printing Office, Washington, DC.
82. Lin, S. Y.,, W. Probert,, M. Lo,, and E. Desmond. 2004. Rapid detection of isoniazid and rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures or smearpositive sputa by use of molecular beacons. J. Clin. Microbiol. 42: 4204 4208.
83. Lin, S.-Y. G.,, E. Desmond,, D. Bonato,, W. Gross,, and S. Siddiqui. 2009. Multicenter evaluation of BACTEC MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex. J. Clin. Microbiol. 47: 3630 3634.
84. Ling, D. I.,, A. A. Zwerling,, and M. Pai. 2008. Rapid diagnosis of drug-resistant TB using line probe assays; from evidence to policy. Expert Rev. Respir. Med. 2: 583 588.
85. LoBue, P.,, C. Sizemore,, and K. G. Castro. 2009. Plan to combat extensively drug-resistant tuberculosis: recommendations of the Federal tuberculosis task force. MMWR Recommend. Rep. 58( RR-03): 1 43.
86. Martin, A.,, A. von Groll,, K. Fissette,, J. C. Palomino,, F. Varaine,, and F. Portaels. 2008. Rapid detection of Mycobacterium tuberculosis resistance to second-line drugs by use of the manual Mycobacterium Growth Indicator Tube system. J. Clin. Microbiol. 46: 3952 3956.
87. Masur, H. 1993. Recommendations on prophylaxis and therapy for disseminated Mycobacterium avium complex disease in patients infected with the human-immunodeficiency-virus. N. Engl. J. Med. 329: 898 904.
88. Maus, C. E.,, B. B. Plikaytis,, and T. M. Shinnick. 2005. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49: 3192 3197.
89. Maus, C. E.,, B. B. Plikaytis,, and T. M. Shinnick. 2005. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49: 572 577.
90. Mdluli, K.,, D. R. Sherman,, M. J. Hickey,, B. N. Kreiswirth,, S. Morris,, C. K. Stover,, and C. Barry III. 1996. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J. Infect. Dis. 174: 1085 1090.
91. Mdluli, K.,, R. A. Slayden,, Y. Zhu,, S. Ramaswamy,, X. Pan,, D. Mead,, D. D. Crane,, J. M. Musser,, and C. E. Barry III. 1998. Inhibition of a Mycobacterium tuberculosis-ketoacyl ACP synthase by isoniazid. Science 280: 1607 1610.
92. Mdluli, K.,, J. Swanson,, E. Fischer,, R. E. Lee,, and C. E. Barry III. 1998. Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium. Mol. Microbiol. 27: 1223 1233.
93. Meier, A.,, P. Kirschner,, B. Springer,, V. A. Steingrube,, B. A. Brown,, R. J. Wallace, Jr.,, and E. C. Böttger. 1994. Identification of mutations in 23S rRNA gene of clarithromycin- resistant Mycobacterium intracellulare. Antimicrob. Agents Chemother. 38: 381 384.
94. Migliori, G. B.,, A. Matteelli,, D. Cirillo,, and M. Pai. 2008. Diagnosis of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: current standards and challenges. Can. J. Infect. Dis. Med. Microbiol. 19: 169 172.
95. Mikhailovich, V. M.,, S. A. Lapa,, D. A. Gryadunov,, B. N. Strizhkov,, A. Y. Sobolev,, O. L. Skotnikova,, O. A. I. Rtuganova,, A. M. Moroz,, V. I. Litvinov,, L. K. Shipina,, M. A. Vladimirskii,, L. N. Chernousova,, V. V. Erokhin,, and A. D. Mirzabekov. 2001. Detection of rifampicin-resistant Mycobacterium tuberculosis strains by hybridization polymerase chain reaction on a specialized TB-microchip. Bull. Exp. Biol. Med. 131: 94 98.
96. Mitchison, D. A. 1979. Basic mechanisms of chemotherapy. Chest 76( Suppl.): 771 781.
97. Mitnick, C. D.,, B. McGee,, and C. A. Peloquin. 2009. Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opin. Pharmacother. 10: 381 401.
98. Moore, A. V.,, S. M. Kirk,, S. M. Callister,, G. H. Mazurek,, and R. F. Schell. 1999. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J. Clin. Microbiol. 37: 479 483.
99. Moore, D. A.,, C. A. W. Evans,, R. H. Gilman,, L. Caviedes,, J. Coronel,, A. Vivar,, E. Sanchez,, Y. Pinedo,, J. C. Saravia,, C. Salazar,, R. Oberhelman,, M.-G. Hollm- Delgado,, D. LaChira,, A. R. Escombe,, and J. S. Friedland. 2007. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N. Engl. J. Med. 355: 1539 1550.
100. Musser, J. M. 1995. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8: 496 514.
101. Nair, J.,, D. A. Rouse,, G. H. Bai,, and S. L. Morris. 1993. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol. Microbiol. 10: 521 527.
102. Nash, K. A.,, A. Gaytan,, and C. B. Inderlied. 1997. Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J. Infect. Dis. 176: 533 536.
103. Nash, K. A.,, and C. B. Inderlied. 1995. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob. Agents Chemother. 39: 2625 2630.
104. Nightingale, S. D.,, W. D. Cameron,, F. M. Gordin,, P. M. Sullam,, D. L. Cohn,, R. E. Chaisson,, L. J. Eron,, P. D. Saprti,, B. Bihari,, D. L. Kaufman,, J. J. Stern,, D. D. Pearce,, W. G. Weinberg,, A. LaMarca,, and F. P. Siegel. 1993. Two controlled trials of rifabutin prophylaxis against Mycobacterium avium complex infection in AIDS. N. Engl. J. Med. 329: 828 833.
105. Nitta, A. T.,, P. T. Davidson,, M. L. de Koning,, and R. J. Kilman. 1996. Misdiagnosis of multidrug-resistant tuberculosis possibly due to laboratory-related errors. JAMA 276: 1980 1983.
106. Ntziora, F.,, and M. E. Falagas. 2007. Linezolid for the treatment of patients with mycobacterial infections: a systematic review. Int. J. Tuberc. Lung Dis. 11: 606 611.
107. Nunn, P.,, J. Porter,, and P. Winstanley. 1993. Thiacetazone —avoid like poison or use with care. Trans. R. Soc. Trop. Med. Hyg. 87: 578 582.
108. O’Riordan, P.,, U. Schwab,, S. Logan,, G. Cooke,, R. J. Wilkinson,, R. N. Davidson,, P. Bassett,, R. Wall,, G. Pasvol,, and K. L. Flanagan. 2008. Rapid molecular detection of rifampicin resistance facilitates early diagnosis and treatment of multidrug-resistant tuberculosis: case control study. PLoS ONE 3: e3173.
109. Palomino, J. C. 2009. Molecular detection, identification, and drug-resistance detection in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 2009: 1 9.
110. Parsons, L. M.,, A. Somoskovi,, R. Urbanczik,, and M. Salfinger. 2004. Laboratory diagnostic aspects of drug resistant tuberculosis. Front. Biosci. 9: 2086 2105.
111. Pfyffer, G. E.,, D. A. Bonato,, A. Ebrahimzadeh,, W. Gross,, J. Hotaling,, J. Kornblum,, A. Laszlo,, G. Roberts,, M. Salfinger,, F. Wittwer,, and S. Siddiqi. 1999. Multicenter laboratory validation of susceptibility testing of Mycobacterium tuberculosis against classical second-line and newer antimicrobial drugs by using the radiometric BACTEC 460 technique and the proportion method with solid media. J. Clin. Microbiol. 37: 3179 3186.
112. Pfyffer, G. E.,, F. Palicova,, and S. Rüsch-Gerdes. 2002. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide with the nonradiometric BACTEC MGIT 960 system. J. Clin. Microbiol. 40: 1670 1674.
113. Pfyffer, G. E.,, H. M. Welscher,, P. Kissling,, C. Cieslak,, M. J. Casal,, J. Gutierrez,, and S. Rüsch-Gerdes. 1997. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J. Clin. Microbiol. 35: 364 368.
114. Piatek, A. S.,, A. Telenti,, M. R. Murray,, H. El-Hajj,, W. R. Jacobs, Jr., F. R. Kramer, and D. Alland. 2000. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob. Agents Chemother. 44: 103 110.
115. Pierce, M.,, S. Crampton,, D. Henry,, L. Heifets,, A. LaMarca,, M. Montecalvo,, G. P. Wormser,, H. Jablonowski,, J. Jemsek,, M. Cynamon,, B. G. Yangco,, G. Notario,, and J. C. Craft. 1996. A randomized trial of clarithromycin as prophylaxis against disseminated Mycobacterium avium complex infection in patients with advanced acquired immunodeficiency syndrome. N. Engl. J. Med. 335: 384 391.
116. Pyle, M. 1947. Relative number of resistant tubercle bacilli in sputa of patients before and during treatment with streptomycin. Proc. Mayo Clin. 22: 465 473.
117. Pym, A.,, and S. Cole,. 2002. Drug resistance and tuberculosis chemotherapy—from concept to genomics, p. 355 403. In K. Lewis (ed.), Bacterial Resistance to Antimicrobials. Marcel Dekker, New York, NY.
118. Revel Viravau, V.,, Q. C. Truong,, N. Moreau,, V. Jarlier,, and W. Sougakoff. 1996. Sequence analysis, purification, and study of inhibition by 4-quinolones of the DNA gyrase from Mycobacterium smegmatis. Antimicrob. Agents Chemother. 40: 2054 2061.
118a.. Ridderhof, J.,, I. George,, and W. Gross. 1991. Abstr. Intersci. Conf. Antimicrob. Agents Chemother., 1999, abstr. 865.
119. Rinder, H.,, K. Feldmann,, E. Tortoli,, J. Grosset,, M. Casal,, E. Richter,, M. Rifai,, V. Jarlier,, M. Vaquero,, S. Rüsch- Gerdes,, E. Cambau,, J. Gutierrez,, and T. Loscher. 1999. Culture-independent prediction of isoniazid resistance in Mycobacterium tuberculosis by katG gene analysis directly from sputum samples. Mol. Diagn. 4: 145 152.
120. Riska, P. F.,, Y. Su,, S. Bardarov,, L. Freundlich,, G. Sarkis,, G. Hatfull,, C. Carriere,, V. Kumar,, J. Chan,, and W. R. Jacobs, Jr. 1999. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J. Clin. Microbiol. 37: 1144 1149.
121. Rodrigues, C.,, J. Jani,, S. Shenai,, P. Thakker,, S. Siddiqui,, and A. Mehta. 2008. Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs using the Bactec MGIT 960 system. Int. J. Tuberc. Lung. Dis. 12: 1449 1455.
122. Ruiz, M.,, M. J. Torres,, A. C. Llanos,, A. Arroyo,, J. C. Palomares,, and J. Aznar. 2004. Direct detection of rifampin-and-isoniazid-resistant Mycobacterium tuberculosis in auramine-rhodamine-positive sputum specimens by realtime PCR . J. Clin. Microbiol. 42: 1585 1589.
123. Ruiz, P.,, F. J. Zerolo,, and M. J. Casal. 2000. Comparison of susceptibility testing of Mycobacterium tuberculosis using the ESP culture system II with that using the BACTEC method. J. Clin. Microbiol. 38: 4663 4664.
124. Rüsch-Gerdes, S.,, C. Domehl,, G. Nardi,, M. R. Gismondo,, H. M. Welscher,, and G. E. Pfyffer. 1999. Multicenter evaluation of the mycobacteria growth indicator tube for testing susceptibility of Mycobacterium tuberculosis to first-line drugs. J. Clin. Microbiol. 37: 45 48.
125. Rusch-Gerdes, S.,, G. E. Pfyffer,, M. Casal,, M. Chadwick,, and S. Siddiqui. 2006. Multicenter laboratory validation of the Bactec MGIT 960 techniques for testing susceptibilities of Mycobacterium tuberculosis to classical secondline drugs and new antimicrobials. J. Clin Microbiol. 44: 688 692.
126. Russel, W. R.,, and G. Middlebrook. 1961. Chemotherapy of Tuberculosis. Charles C. Thomas, Springfield, IL.
127. Safi, H.,, B. Sayers,, M. H. Hazbon,, and D. Alland. 2008. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifmapin. Antimicrob. Agents Chemother. 52: 2027 2034.
128. Saito, H.,, K. Sato,, and H. Tomioka. 1988. Comparative in vitro and in vivo activity of rifabutin and rifampicin against Mycobacterium avium complex. Tubercle 69: 187 192.
129. Sanders, C. A.,, R. R. Nieda,, and E. P. Desmond. 2004. Validation of the use of Middlebrook 7H10 agar, BACTEC MGIT 960, and BACTEC 460 12B media for testing the susceptibility of Mycobacterium tuberculosis to levofloxacin. J. Clin. Microbiol. 42: 5225 5228.
130. Scarparo, C.,, P. Ricordi,, G. Ruggiero,, and P. Piccoli. 2004. Evaluation of the fully automated BACTEC MGIT 960 System for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB. J. Clin. Microbiol. 42: 1109 1114.
131. Schentag, J. J.,, and C. H. Ballow. 1991. Tissue-directed pharmacokinetics. Am. J. Med. 91: 5S 11S.
132. Scorpio, A.,, D. Collins,, D. Whipple,, D. Cave,, J. Bates,, and Y. Zhang. 1997. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J. Clin. Microbiol. 35: 106 110.
133. Scorpio, A.,, P. Lindholm Levy,, L. Heifets,, R. Gilman,, S. Siddiqi,, M. Cynamon,, and Y. Zhang. 1997. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 41: 540 543.
134. Shafran, S. D.,, J. Singer,, D. P. Zarowny,, P. Phillips,, I. Salit,, S. L. Walmsley,, I. W. Fong,, M. J. Gill,, A. R. Rachlis,, R. G. Lalonde,, M. M. Fanning,, C. M. Tsoukas, and the Canadian HIV Trials Network Protocol 010 Study Group. 1996. A comparison of two regimens for the treatment of Mycobacterium avium complex bacteremia in AIDS: rifabutin, ethambutol, and clarithromycin versus rifampin, ethambutol, clofazimine, and ciprofloxacin. N. Engl. J. Med. 335: 377 383.
135. Sheng, W. H.,, Y. T. Huang,, S. C. Chang,, and P. R. Hsueh. 2009. Brain abscess caused by Tsukamurella tyrosinosolvens in an immunocompetent patient. J. Clin. Microbiol. 47: 1602 1604.
136. Singh, R.,, U. Manjunatha,, H. I. Boshoff,, Y. H. Ha,, P. Niyomrattanakit,, R. Ledwidge,, C. S. Dowd,, I. Y. Lee,, P. Kim,, L. Zhang,, T. H. Keller,, J. Jiricek,, and C. E. Barry. 2008. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322: 1337 1338.
137. Sirgel, F. A.,, F. J. Botha,, D. P. Parkin,, B. W. Van de Wal,, R. Schall,, P. R. Donald,, and D. A. Mitchison. 1997. The early bactericidal activity of ciprofloxacin in patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 156: 901 905.
138. Sison, J. P.,, Y. Yao,, C. A. Kemper,, J. R. Hamilton,, E. Brummer,, D. A. Stevens,, and S. C. Deresinski. 1996. Treatment of Mycobacterium avium complex infection: do the results of in vitro susceptibility tests predict therapeutic outcome in humans? J. Infect. Dis. 173: 677 683.
139. Sreevatsan, S.,, X. Pan,, Y. Zhang,, V. Deretic,, and J. M. Musser. 1997. Analysis of the oxyR-ahpC region in isoniazid- resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob. Agents Chemother. 41: 600 606.
140. Sreevatsan, S.,, X. Pan,, Y. Zhang,, B. N. Kreiswirth,, and J. M. Musser. 1997. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob. Agents Chemother. 41: 636 640.
141. Sreevatsan, S.,, K. E. Stockbauer,, X. Pan,, B. N. Kreiswirth,, S. L. Moghazeh,, W. Jacobs, Jr.,, A. Telenti,, and J. M. Musser. 1997. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother. 41: 1677 1681.
142. Starks, A.,, A. Gumusboga,, B. B. Plikaytis,, T. M. Shinnick,, and J. E. Posey. 2009. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 53: 1061 1066.
143. Takayama, K.,, and J. O. Kilburn. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33: 1493 1499.
144. Takiff, H. E.,, L. Salazar,, C. Guerrero,, W. Philipp,, W. M. Huang,, B. Kreiswirth,, S. T. Cole,, W. Jacobs, Jr., and A. Telenti. 1994. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother. 38: 773 780.
145. Tasneen, R.,, S. Tyagi,, K. Williams,, J. Grosset,, and E. Nuermberger. 2008. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother. 52: 3664 3668.
146. Telenti, A.,, N. Honore,, C. Bernasconi,, J. March,, A. Ortega,, B. Heym,, H. E. Takiff,, and S. T. Cole. 1997. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J. Clin. Microbiol. 35: 719 723.
147. Telenti, A.,, P. Imboden,, F. Marchesi,, T. Schmidheini,, and T. Bodmer. 1993. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob. Agents Chemother. 37: 2054 2058.
148. Tenover, F. C.,, J. T. Crawford,, R. E. Huebner,, L. J. Geiter,, C. R. Horsburgh,, and R. C. Good. 1993. The resurgence of tuberculosis: is your laboratory ready? J. Clin. Microbiol. 31: 767 770.
149. Troesch, A.,, H. Nguyen,, C. G. Miyada,, S. Desvarenne,, T. R. Gingeras,, P. M. Kaplan,, P. Cros,, and C. Mabilat. 1999. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J. Clin. Microbiol. 37: 49 55.
150. Urbanczik, R.,, and H. L. Reider. 2009. Scaling up tuberculosis culture services: a precautionary note. Int. J. Tuberc. Lung Dis. 13: 799 800.
151. Verma, P.,, J. M. Brown,, V. H. Nunez,, R. E. Morey,, A. G. Steigerwalt,, G. J. Pellegrini,, and H. A. Kessler. 2006. Native valve endocarditis due to Gordonia polyisoprenivorans: case report and review of literature of bloodstream infections caused by Gordonia species. J. Clin. Microbiol. 44: 1905 1908.
152. Vernon, A. A., 2003. Rifamycin antibiotics, with focus on newer agents, p. 759 771. In W. M. Rom, and S. M. Garay (ed.), Tuberculosis, 2nd ed. Lippincott Williams & Wilkins, New York, NY.
153. Vilcheze, C.,, and W. R. Jacobs. 2007. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol. 61: 35 50.
154. Wade, M. M.,, and Y. Zang. 2004. Mechanisms of drug resistance in Mycobacterium tuberculosis. Front. Biosci. 9: 975 994.
155. Waggoner, J. J. 2009. First case report of community-acquired pneumonia due to Tsukamurella pulmonis. Ann. Intern. Med. 150: 147 148.
156. Wallace, R., Jr.,, A. Meier,, B. A. Brown,, Y. Zhang,, P. Sander,, G. O. Onyi,, and E. C. Böttger. 1996. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob. Agents Chemother. 40: 1676 1681.
157. Wallace, R. J., Jr.,, and D. E. Griffith,. 2005. Antimycobacterial agents, p. 350 360. In G. L. Mandell,, R. G. Douglas, Jr.,, and J. E. Bennett (ed.), Principles and Practices of Infectious Diseases, 6th ed. Elsevier Churchill Livingstone, Inc., Philadelphia, PA.
158. Williams, D. L.,, L. Spring,, L. Collins,, L. P. Miller,, L. B. Heifets,, P. R. Gangadharam,, and T. P. Gillis. 1998. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42: 1853 1857.
159. Wilson, T. M.,, and D. M. Collins. 1996. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol. Microbiol. 19: 1025 1034.
160. Winder, F. G., 1982. Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria, p. 353 438. In C. Ratledge, and J. Stanford (ed.), The Biology of the Mycobacteria, vol. 1. Physiology, Identification and Classification. Academic Press, Inc., New York, NY.
161. Winder, F. G.,, and P. B. Collins. 1969. The effect of isoniazid on nicotinamide nucleotide concentrations in tubercle bacilli. Am. Rev. Respir. Dis. 100: 101 103.
162. Winder, F. G.,, and P. B. Collins. 1968. The effect of isoniazid on nicotinamide nucleotide levels in Mycobacterium bovis strain BCG. Am. Rev. Respir. Dis. 97: 719 720.
163. Woods, G. L.,, J. S. Bergmann,, F. G. Witebsky,, G. A. Fahle,, A. Wanger,, B. Boulet,, M. Plaunt,, B. A. Brown,, and R. J. Wallace, Jr. 1999. Multisite reproducibility of results obtained by the broth microdilution method for susceptibility testing of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum. J. Clin. Microbiol. 37: 1676 1682.
164. Woods, G. L.,, N. Williams-Bouver,, R. J. Wallace, Jr.,, B. A. Brown-Elliot,, F. G. Witebsky,, P. S. Conville,, M. Plaunt,, G. Hall,, P. Aralar,, and C. Inderlied. 2003. Multisite reproducibility of results obtained by two broth dilution methods for susceptibility testing of Mycobacterium avium complex. J. Clin. Microbiol. 41: 627 631.
165. Woods, G. L.,, G. Fish,, M. Plaunt,, and T. Murphy. 1997. Clinical evaluation of Difco ESP culture system II for growth and detection of mycobacteria. J. Clin. Microbiol. 35: 121 124.
166. World Health Organization. 2008. Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. WHO/ HTM/TB/2008.402. World Health Organization, Geneva, Switzerland.
167. World Health Organization. 2008. New Laboratory Diagnostic Tools for Tuberculosis Control. World Health Organization, Geneva, Switzerland.
168. Yang, B.,, H. Koga,, H. Ohno,, K. Ogawa,, M. Fukuda,, Y. Hirakata,, S. Maesaki,, K. Tomono,, T. Tashiro,, and S. Kohno. 1998. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 42: 621 628. ( Erratum, 43:613, 1999.)
169. Young, L. S.,, O. G. Berlin,, and C. B. Inderlied. 1987. Activity of ciprofloxacin and other fluorinated quinolones against mycobacteria. Am. J. Med. 82: 23 26.
170. Young, L. S.,, L. Wiviott,, M. Wu,, P. Kolonoski,, R. Bolan,, and C. B. Inderlied. 1991. Azithromycin for treatment of Mycobacterium avium-intracellulare complex infection in patients with AIDS. Lancet 338: 1107 1109.
171. Zhang, Y.,, S. Dhandayuthapani,, and V. Deretic. 1996. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc. Natl. Acad. Sci. USA 93: 13212 13216.
172. Zhang, Y.,, and D. Mitchison. 2003. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis. 7: 6 21.
173. Zhang, Y.,, M. M. Wade,, A. Scorpio,, H. Zhang,, and Z. Sun. 2003. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetic by pyrazinoic acid. J. Antimicrob. Chemother. 52: 790 795.
174. Zhang, Y.,, A. Scorpio,, H. Nikaido,, and Z. Sun. 1999. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 181: 2044 2049.

Tables

Generic image for table
TABLE 1

Antimicrobial agents recommended for primary treatment of common mycobacterial infections

Recommendations for NTM are from reference .

Almost all (>95%) are resistant to pyrazinamide.

Azithromycin is an acceptable alternative agent.

Surgical debridement may be important for successful therapy.

Most common species are group, , and .

Currently there are no drug regimens of proven efficacy. Antimicrobial therapy may provide symptomatic improvement and disease regression. Surgical resection of limited disease (if possible) and multidrug therapy are optimal.

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 2

Genes associated with drug resistance in

Adapted from reference .

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 3

Test concentrations of antimycobacterial agents against

Where more than one concentration for an agent is listed, the lower concentration is the “critical concentration.”

The concentrations shown are from reference .

About 30% of RMP-resistant isolates are rifabutin susceptible.

INH and EMB may first be tested at the critical concentration. When INH or EMB has tested resistant at the critical concentration, the higher concentration of the drugs may be tested with other second-line agents.

NR, not recommended.

Laboratories may choose to test only the lower concentration.

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 4

Guidelines for selection of the dilution of a specimen concentrate prior to inoculation of 7H10 medium for susceptibility testing using the direct method

Dilutions of a concentrated specimen are prepared based on the number of bacilli observed in the initial acid-fast smear. Sterile distilled water is used to prepare the dilutions; the carbol fuchsin stain is examined with the oil immersion objective (1,000×), and the fluorochrome stain is examined with the high-dry objective (450×). If the patient is receiving therapy, not all bacilli observed in the smear may be viable; therefore, the undiluted specimen should be tested as well as the appropriate dilution based on the microscopic criteria given in this table.

rom reference .

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 5

Antimycobacterial agents and interpretative criteria for complex

Table and footnotes are adapted from reference . S, susceptible; I, intermediate; R, resistant.

pH is 7.3 to 7.4 for broth microdilution and 6.8 for BACTEC 460TB

Clarithromycin is the class drug for macrolides and is the only drug that need be tested.

If BACTEC 460TB pH 7.3 to 7.4 is used, breakpoints are ≤4 mg/ml (susceptible), 8 to 16 μg/ml (intermediate), and ≥32 μg/ml (resistant).

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 6

Secondary antimycobacterial agents and MIC values indicating resistance for testing

Table and footnotes are adapted from reference .

Ciprofloxacin and levofloxacin are interchangeable, but both are less active in vitro than moxifloxacin.

Clarithromycin is considered a primary drug in patients receiving the shortcourse and/or intermittent therapeutic regimens consisting of rifampin, ethambutol, and clarithromycin. For patients receiving the classic regimen of rifampin, ethambutol, and isoniazid, clarithromycin is a secondary agent. Clarithromycin is the class representative for the “newer” macrolides (clarithromycin, azithromycin, roxithromycin).

Breakpoints to establish susceptibility and resistance for NTM have not been established. Report the MIC value only, with no interpretation, for these drugs.

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 7

Broth microdilution interpretive criteria for rapidly growing mycobacteria

Table and footnotes are adapted from reference .

Isolates of with an MIC of ≥64 mg/ml should be retested. If the repeat result is ≥64 mg/ml, the MIC should be reported with the following comment: The MIC is greater than expected for this species; if the drug is being considered for therapy, the laboratory should be notified so the isolate can be sent to a reference laboratory for confirmation of resistance.

Ciprofloxacin and levofloxacin are interchangeable. Both are less active than the newer 8-methoxyfluoroquinolones.

The final reading for nonpigmented rapidly growing mycobacteria should be at 14 days to ensure detection of inducible macrolide resistance, unless the isolate is resistant at an earlier reading. Clarithromycin is the class representative for newer macrolides (i.e., azithromycin and roxithromycin).

If the MIC is .> μg/ml for group, group, and group, the test should be repeated with an incubation period of no more than 3 days. If the repeat result is .8 mg/ml, the MIC should be reported with the following comment: The MIC is greater than expected for this species; if the drug is being considered for therapy, the laboratory should be notified so the isolates can be sent to a reference laboratory for confirmation of resistance. Imipenem results do not predict results for meropenem or ertapenem. Activity against rapidly growing mycobacteria is greater for imipenem than for meropenem or ertapenem.

Tobramycin is used predominantly for treatment of infections. If the MIC to tobramycin is >4 μg/ml for an isolate of , the test should be repeated. If the repeat result is >4 mg/ml, the MIC should be reported with the following comment: The MIC is greater than expected for this species; if the drug is being considered for therapy, the laboratory should be notified so the isolate can be sent to a reference laboratory for confirmation of resistance.

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73
Generic image for table
TABLE 8

Broth microdilution breakpoints for

Table and footnotes are adapted from reference .

Ciprofloxacin and levofloxacin are interchangeable. Both are less active than the newer 8-methoxyfluoroquinolones.

Class representative for newer macrolides.

Citation: Woods G, Lin S, Desmond E. 2011. Susceptibility Test Methods: Mycobacteria, , and Other Actinomycetes , p 1215-1238. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch73

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error